Ни в коем случае к опухоли нельзя подключать отрицательный (—) заряд.
   Как сочетается применение метода заземления «мостиков» с методом «Плаща»? Казалось бы, эти два метода будут противоречить друг другу и один ослаблять действие другого. Но напомню, что при методе «Плаща» происходит накачка ткани анионами водорода. Естественно, что в первую очередь они будут накачивать те области, где заряд мембран недостаточен (онкоклетки). Тогда не будет ли метод заземления откачивать наружу эти анионы? Как известно, земля имеет отрицательный заряд, а ток идет от минуса к плюсу. Следовательно, избыточное поступление анионов (Н) на кожу здесь не будет откачиваться в землю. Но заземление должно активно откачивать протоны (Н+). Поэтому эти два метода совместимы и их можно применять одновременно.
 
   Важнейшей задачей всех предлагаемых нами методик является повысить водородный показатель крови и снять отрицательный заряд с мембран онкоклеток. Особенность онкоклеток в том, что они не чувствительны к водородному показателю, существующему в норме. Только поднятие водородного показателя хотя бы на несколько единиц позволяет сломать защитные механизмы опухоли, сделать их в новых условиях чувствительными к употреблению кислорода и заменить их извращенные генетические программы на прежний режим работы. Из-за отрицательного заряда мембран онкоклетки становятся невидимыми для иммунитета и не заводят кислород в митохондрии клеток. Их митохондрии переходят с аэробного (кислородного) режима работы на гликолизный путь (бескислородный). Весь перечисленный перечень различных методик направлен именно на эту цель – усилить водородный показатель субстратов среды вокруг клеток, их мембран, подключение утраченных энергетических и дыхательных возможностей клеток. Все методики только повышают эффективность друг друга, помогают усилить эффект.
   Усиление емкости системы низкомолекулярными органическими кислотами позволяет вызвать катаболизм в опухолевых клетках (саморазрушение), а минерально-щелочная фаза – «запустить» в них отключенные дыхательные процессы.
 
   Как повысить эффективность метода Гарбузова?
   Выше мы уже говорили, что указанный метод лечения, сутью которого является накачка опухолевых тканей анионами водорода, вполне реален, так как имеет доказуемую базу. Тем не менее радикально проблему он тоже не решает. Привлечь внимание медиков к нему пока не удалось. Естественно, возникает вопрос, можно ли существенно повысить эффективность метода? Что препятствует проявлению более мощного и постоянно выраженного эффекта?
   Есть основания утверждать, что ограниченные возможности метода связаны с перезарядкой разных слоев мембран – как самих клеток, так и мембран митохондрий. Создается новая устойчивая комбинация зарядов на наружных мембранах и на зависимых от них митохондриях. Появились данные о том, что ядра раковых клеток в отличие от нормальных не имеют электрического потенциала и соответственно поля. Причем заряды на всех клеточных органеллах в норме настолько велики, что становится очевидным – они не вторичны, а специально предусмотрены с такой огромной мощью, чтобы подчинить себе, своему полю действия регулировку общих для всех клеток процессов жизнедеятельности. Именно от их баланса и отталкивается вся внутриклеточная регулировка, они первичны, а все остальное – последующие эшелоны, этажи внутриклеточного хозяйства. Баланс регулировки здесь настолько тонкий и универсальный, что даже генетические базисные программы подчинены им. Поэтому все основные базисные виды жизнедеятельности клетки, в том числе и их митозы, как уже доказано, определяются именно на этом биоэлектрическом уровне, а не на уровне химизма, гормонов. А значит, и методы регулировки базисных основ жизнедеятельности больных или онкоклеток надо искать на электрофизических путях воздействия на клетки.

Энергетическая проблема раковых клеток

Основы биоэнергетики клеток

   Любое живое существо нуждается в постоянном притоке энергии извне. Биоэнергетика изучает одну из основных функций любого живого организма – способность обеспечить себя энергией за счет каких-либо внешних энергетических источников. Биоэнергетика позволяет нам заглянуть внутрь энергетических процессов, происходящих в организме, и понять, каким образом мы можем ими управлять.
   В организме человека биополимеры пищи распадаются в желудочно-кишечном тракте на жирные кислоты и глицерин, полисахариды – на моносахариды. Мономеры превращаются в организме в небольшие по величине моно-, ди– и трикарбоновые кислоты, которые уже способны окисляться с выделением определенного количества энергии.
   Биологическое окисление происходит в митохондриях – особых внутриклеточных образованиях, которые являются энергетическими станциями клетки. Митохондрии имеют вид шарообразных или вытянутых пузырьков размером от одного до нескольких десятков микрон. Именно в них происходят окислительно-восстановительные реакции. В результате этих реакций высвобождается энергия. Самое большое количество митохондрий можно увидеть в печеночных и мышечных клетках – там, где энергия наиболее интенсивно синтезируется и потребляется. В клетках печени, например, митохондрии могут занимать до 22 % всего объема, и в каждой клетке их можно насчитать больше тысячи.

Аэробная энергетика, или Дыхание клетки

   Суть окислительно-восстановительных реакций, протекающих в митохондриях с выходом энергии, кратко можно выразить следующим образом: карбоновые кислоты окисляются кислородом воздуха до углерода с водородом, отщепленным от карбоновых кислот.
   Карбоновые кислоты могут образовываться в клетке за счет метаболизма, катаболических процессов клетки, а также поступать извне через кровь в качестве конечных продуктов распада.
   Окисление водорода кислородом – это реакция гремучего газа: О2 + 2Н2О. В лабораторных условиях она сопровождается взрывом. Если бы такая реакция происходила в живой клетке одномоментно, клетка погибла бы в результате выделения слишком большого количества энергии. Она бы попросту сгорела. Процесс выделения энергии в клетке происходит поэтапно. Высвобождающаяся в процессе биологического окисления энергия откладывается впрок и особым образом консервируется.

Митохондрии – биоэнергостанции клеток

   У всех эвкариот генетическая информация содержится не только в хромосомах клеточного ядра, но и в митохондриях – самовоспроизводящихся полуавтономных органеллах клетки, имеющих собственный геном. Если рассмотреть отдельно взятую митохондрию под электронным микроскопом, то можно увидеть две полупроницаемые оболочки, две мембраны: наружную и внутреннюю. Наружная мембрана гладкая, а вот внутренняя образует большое количество складок – крист. Эти кристы служат для увеличения поверхности мембраны, ведь именно в ней идет непосредственное образование энергии.
   В них встроены белковые компоненты дыхательной цепи – ферменты, участвующие в преобразовании энергии химических связей окисляемых питательных веществ в энергию молекул аденозинтрифосфорной кислоты (АТФ). Такой «конвертируемой валютой» клетка оплачивает все свои энергетические потребности.

Анаэробная энергетика, или Гликолиз в здоровых клетках

   При возникновении необходимо в малых количествах энергии или при небольших либо умеренных нагрузках выработка энергии идет бескислородным путем. Одна молекула глюкозы расщепляется на 2 молекулы молочной кислоты. При этом выделяется энергия, которая аккумулируется в виде 2 молекул АТФ.

Аэробная энергетика (аэробизм)

   АТФ – универсальное топливо всех живых клеток. Аккумуляция энергии в виде АТФ просто необходима, так как энергия выделяется в одно время, а используется в другое, вырабатывается в одном месте, а потребляется в другом. АТФ как аккумулятор позволяет организму использовать полученную энергию в различных органах и в любое время вне зависимости от создавшейся ситуации. При больших и сверхмаксимальных нагрузках выработка энергии осуществляется уже с помощью кислорода. Глюкоза распадается на более простые, чем молочная кислота, части и вступает в цикл Кребса.
   Цикл Кребса – целая цепь химических реакций. В этих реакциях водород постепенно, маленькими порциями отщепляется от одного окисляемого вещества и передается другому, от другого третьему и т. д. до тех пор, пока не соединится с кислородом воздуха с образованием воды. Энергия при этом высвобождается тоже не сразу, а постепенно, частями, аккумулируясь в виде АТФ. При кислородном окислении одной молекулы глюкозы образуются уже не 2, а целых 38 молекул АТФ.
   Как образуется АТФ? При переносе атомов водорода (и соответствующих ему электронов) от одного вещества к другому возникает перепад ионов водорода. В результате такого перепада концентраций электронов наружная мембрана митохондрий заряжается положительно, а внутренняя – отрицательно. Образуется энергетический мембранный потенциал. Энергия возникшей разницы потенциалов и затрачивается на синтез АТФ.
   Если окисление происходит во внешней мембране митохондрий, то АТФ синтезируется во внутренней.
   Митохондрия – одно из самых поразительных изобретений природы. Если вдуматься, то митохондрии есть не что иное, как живые молекулярные электростанции! Внутренняя мембрана митохондрий содержит так называемые дыхательные ферменты. Одни дыхательные ферменты присоединяют и отсоединяют атом водорода, передавая его с вещества на вещество. Другие отвечают за передачу электронов. В результате работы дыхательных ферментов и происходит генерация электрического мембранного потенциала, который запускает синтез АТФ. В процессе совершения химической, осмотической и механической работы, как оказалось, расходуется не только энергия, запасенная в виде АТФ. Все виды работ могут совершаться и непосредственно за счет использования электрического мембранного потенциала без участия АТФ. Такой электрический потенциал между двумя мембранами митохондрий наряду с АТФ есть конвертируемая форма энергии в живой клетке. АТФ растворима в воде и хорошо подходит для использования в водной среде. Мембранный потенциал используется для совершения работы внутри липидных клеточных мембран, которые обладают водоотталкивающими свойствами.
   Совокупность окислительно-восстановительных реакций, протекающих в клетке с использованием кислорода, и называется дыханием. Дыхание – это длинная цепь окислительно-восстановительных реакций, где водород, а также электроны переносятся с окисляемых веществ на кислород воздуха. Путь прохождения водорода и электронов с окисляющего вещества на кислород является довольно длинным. Он имеет большое физиологическое значение, так как позволяет постепенно использовать энергию, освобождающуюся в результате переноса водорода и электронов от одних веществ к другим.
   Кислород – самый эффективный конечный присоединитель электронов (акцептор). Наиболее эффективным он является потому, что позволяет добиться наибольшего выхода энергии по сравнению с другими веществами, способными присоединять электроны.
   Основное количество энергии все ткани и органы получают за счет кислородного окисления веществ. Бескислородное окисление в обычных условиях является второстепенным как менее эффективное в энергетическом отношении. Кислородное и бескислородное окисление в нормальных тканях сосуществуют, дополняя друг друга.
   Энергетически малоэффективное бескислородное окисление является в организме тем резервным механизмом, который может очень сильно активизироваться в экстремальных условиях. Бескислородное окисление может стать тем спасательным кругом, который позволяет клеткам выжить даже в условиях тяжелого, чрезмерно выраженного кислородного голодания.
   Классическим примером здесь может послужить работа скелетной мышцы. При очень большой нагрузке (интенсивный бег, тяжелое базовое упражнение и т. д.) мышца оказывается в экстремальных условиях. Возникает опасный для мышечных клеток энергетический дефицит. Тут же срабатывает защитный механизм: интенсивность бескислородного окисления, например в поперечно-полосатой мышце, возрастает в 100–1000 раз по сравнению со спокойным состоянием. Чем выше уровень тренированности, тем большая интенсивность бескислородного окисления может быть достигнута при больших нагрузках.

Электрогомеостаз и онкология

   Чтобы получить полноценный ответ на все глубинные вопросы онкологии, возникла необходимость разработать и признать новую теорию электрогомеостаза клетки, основанную на управлении основными жизненными процессами клетки путем поддержания и сохранения оптимального соотношения электрозарядов в ее органеллах.
   Онкология – в первую очередь изменение гомеостаза электрозарядов во внутреннем хозяйстве клетки и между органеллами. Именно этот электрогомеостаз и определяет статус базисных генетических программ, а изменения в электробалансе переопределяет их статус. Причем все начинается именно с поддержания баланса на различных структурах клетки. Все заряды в клетках на различных слоях мембран в разных органеллах строго взаимоувязаны. Поэтому, действуя на одну область заряда мембран клеток, мы можем одновременно рассчитывать на мгновенную корректировку потенциала или соответствующей поляризации на остальных частях клетки, где имеется свой определенный заряд. Но это в норме, а, например, в случае патологического нарушения заряда на митохондриях корректировка его со стороны других мембран клетки, в том числе и внешних, не происходит. Очевидно, в этом случае произойдет вторичная переполяризация внешних мембран клеток. Одно обусловливает состояние активности другого. В свою очередь, первичное патологическое изменение заряда внешних мембран тоже может вторично привести к изменению заряда митохондрий.

Норма заряда клеток

   Клетки организма обладают своим электрическим потенциалом, в зависимости от его уровня происходит продуцирование важнейших субстанций: сахара в крови и утилизирование кислорода. При снижении вольтажа с 70–110 до 50 мВ нормальные клетки могут продолжать свое функционирование, но раковые или вирусные не могут обеспечить себя энергетически и начинают голодать.

Деполяризация мембраны клетки и рак

   В онкоклетках происходит деполяризация или переполяризация мембран различных слоев и органелл. Исследования показали, что раковые клетки относительно деполяризованы по сравнению с непреобразованными клетками. Cone предложил «объединенную теорию» митогенного контроля, в которой устойчивая деполяризация мембраны клетки связывалась с непрерывной клеточной пролиферацией. Было принято за постулат, что при злокачественных изменениях после деления клетки происходит устойчивая деполяризация; теперь клетка не способна поляризоваться. В поддержку этого представления можно привести такой пример: чувствительный к температуре вирус саркомы Moloney при использовании его для инфицирования и изменения почечных клеток в культуре приводит к деполяризации мембраны клетки, при этом деполяризация предшествует другим специфическим явлениям трансформации.

Роль мембран клеток в качестве электрокон-денсаторов

   Мембраны клетки представляют собой полупроницаемые, липопротеиновые, двухслойные оболочки, которые ведут себя как негерметичные электрические конденсаторы (внутренний и внешний слои мембраны являются аналогами пластин конденсатора, на которых накапливаются заряды). Посмотрим на мембраны как на двуслойные конденсаторы: если на одной пластине будет накапливаться отрицательный заряд, то на другой – положительный. Выше мы рассматривали вопрос о заземлении, то есть отводе вовне избыточного положительного и вредного заряда. Но с другой стороны, он должен присутствовать на одной из пластин, то есть быть на внутренней стороне, но не на наружных слоях. Онкоклетки, как известно, имеют не совсем вредный заряд снаружи, а всего лишь недосток отрицательного, то есть слабую заряженность снаружи и сильную противоположную заряженность изнутри. Как бы то ни было, любое происходящее накопление положительного заряда протонов на несоответствующих лепестках конденсатора или чрезмерное его скапливание на внутренней стороне ограничивает возможности доступа избыточного количества анионов водорода внутрь клеток к митохондриям. Это и является препятствием, для устранения которого требуется дозарядка недостаточного потенциала мембран митохондрий, что и является нашей целью. Вообще-то, для онкоклеток надо будет не просто зарядить до нормы этот потенциал, а значительно его превысить, что должно стать запускающим стартером, «пускачем» для остановленных механизмов. Переполнение клетки протонами предотвращает дополнительный доступ анионов на конденсаторные лепестки мембран, которыми, по сути, они и являются. Протоны могут скапливаться из-за того, что «энергетическая топка» не работает: в ней в норме они должны гаситься кислородом. Ток вглубь в достаточных количествах не проникает.

Токопроводность и сопротивление в онкоклетках

   Онкоклетки обладают повышенным сопротивлением току и пониженной токопроводностью. Как преодолеть это сопротивление, какова его природа?
   Электрофизические процессы первичны в клетке при патологиях на клеточном уровне, в том числе связанных и со сбоем генетических программ. Создавая свою электрохимическую гипотезу онкологии и разрабатывая собственные методы лечения, мы понимаем, что идем вразрез с общепринятым подходом, где на передний причинный план выходят проблемы химические, обменные нарушения, которые, в свою очередь, признаются вторичными из-за нарушения генетических программ. Нами же на передний план выводятся электрические процессы клеток, которые уже вторично могут обусловливать изменения химических и ферментных процессов. В свою очередь, изменяя в них процессы через коррекцию электропроцессов, мы можем добиться такого нового состояния субстратного поля, которое уже способно переключить и генетические программы в хромосомах митохондрий. То есть данный подход намного глубже всех существующих до него методов коррекции и воздействия на природу онкологических клеток.

Зарядомагнитный каркас клеток

   Каждая живая клетка обладает на всех своих органеллах, структурах строго обозначенным зарядом (напряженностью) и магнитным полем (намагниченностью). В совокупности они определяют энергетическое «лицо» клетки, ее состояние и здоровье. Взаимоотношение величин этих зарядов и намагниченности между различными органеллами строго предопределено. Если абстрагироваться от всех материальных носителей, мембран и жидких субстратов, на которых они находятся, то их можно представить как некую сферу, довлеющую над клеткой и обусловливающую все ее материальные процессы. Каждая клетка, чтобы сохранять здоровье, стремится поддерживать свой электрогомеостаз. Но электрогомеостаз – это сохранение констант электропотоков между органеллами клеток. Он, в свою очередь, полностью определяется внешним состоянием электромагнитного каркаса клеток, или, по-другому, электромагнитного скелета клеток или их «сферы».
   Именно эта энергетическая «сфера», каркас клеток и является первичной информационной матрицей для всех остальных химических и физических процессов. Все от него отталкивается и корректируется. Вся предшествующая история биологической науки не придавала должного значения этой энергетической матрице, ошибочно считая ее вторичной, производной от всех остальных материальных процессов клетки. Из-за неверных посылок делались и неправильные выводы о том, что материальную основу процесса онкогенеза надо искать на генетическом уровне и поиск путей воздействия на онкоклетки тоже был соответствующим имеющейся доктрине. Это и привело в тупик всю онкологическую науку с ее бесплодными теориями и методами лечения.
   Оказывается, энергетическая матрица клетки и определяет все базисные константы других показателей гомеостаза. Чтобы решить эту сложную теоретическую проблему, все надо было перевернуть с головы на ноги. Воздействуя на матрицу, можно изменить многие физико-химические показатели клетки и тем самым провести активное лечение на клеточном уровне. И это действительно так! Ортодоксальный научный взгляд так и не смог преодолеть это препятствие, то есть выйти за пределы, из плена генетических и химических теорий.
   Оказывается, можно влиять на базисные первичные процессы клеток опосредовано, а именно через физические воздействия на общую энергоинформационную матрицу, тем самым меняя патологический портрет до нормы. Этого можно достичь комплексным воздействием на клетки через подзарядку их мембран электрогальваническими методами, методами восстановления намагниченности с помощью магнитов и затем методами повышения кислотно-щелочного потенциала (КЩП) клеток изнутри через воздействие на их метаболизм, то есть поднимая ОВП (окислительно-восстановительный потенциал) с помощью активированных жидкостей, катионидов (минералов) или «живой» воды. Однако применение этих методов по отдельности не дает устойчивых выраженных результатов, так как они не могут воссоздать весь нужный портрет зарядомагнитной сферы клетки. Это и обусловливало слабость всех рассмотренных электрофизических разрозненных методов, которые можно считать по сути запчастями единого общего механизма воссоздания в клетке ее нормального облика. Вместе, в принципе, они и должны запустить вырубленные механизмы саморепарации клеток, которые в случае онкологии не работают.
   Итак, регенерируя зарядомагнитный каркас онкоклеток, мы можем вызвать процесс репарации и ожидать, что в течение нескольких циклов генераций, митозов они выйдут на режим работы обычных клеток.

Гипотеза об особенностях заряда мембран у различных типов опухолей

   Чтобы попытаться ответить на вопрос, почему наши методы накачки недостаточно влияют на митохондрии, мною предложено воспользоваться гипотезой Д. Б. Давидяна об особенностях мембран онкоклеток. При этом хочу отметить совпадение его взглядов с моими на то, что мембраны онкоклеток имеют положительный заряд (катионы водорода). Если это так, то, в принципе, возможно подобрать физические адресные методики перезарядки мембран онкоклеток. А это означает, что в первую очередь их надо будет не столько зарядить отрицательным зарядом, сколько восстановить нужную комбинацию зарядов на различных лепестках конденсатора и суметь снять с них этот несоответствующий электростатический заряд. Очевидно, в помощь этому могли бы быть разработки методик откачки протонов водорода с мембран, возможно с помощью особой методики заземления. Но еще лучше не пассивный отвод, а активное их откачивание. Для этого нужны будут какие-то активные конденсаторы, которые способны под напряжением снимать недостаточный внутренний заряд и тем самым разряжать другие системы. Только после этого можно говорить о накачке, зарядке этих мембран отрицательным зарядом. Очевидно, это и есть причина того, что без откачки, отвода катионов из-за особенности конденсаторной структуры мембран невозможно подать достаточный заряд внутрь клеток и в их митохондрии.

Мембранно-митохондриальная теория канцерогенеза Г. А. Гарбузова

Новое понимание процессов образования опухолей

   Мною предложено смотреть на проблему онкогенеза с позиции единого мембранно-митохондриального комплекса.
   Мембраны клеток – сложные сенсорные механизмы, автоматически контролирующие внешние условия, в которых живет клетка, и корректирующие ее работу соответственно различным изменениям. Эти сенсорные механизмы и определяют состояние митохондрий и ядра. Нарушения их работы приводит к сбою в функционировании ядра и его генома. Таким образом, проблема образования раковых опухолей видится нам как нарушение (аберрация) взаимоотношений митохондрий и клеточных мембран, а не как простая мутация митохондрий. Без наличия предше ствующего длительного повреждения клеточных мембран цитоплазмы и митохондрий нельзя объяснить начальные этапы зарождения опухоли.