Страница:
В капиталистическом обществе, писал он, производство работает только для прибыли предпринимателей. Не принимаются никакие меры для сохранения гарантированной оплаты всем способным и желающим работать людям. Существует постоянная армия безработных. Трудящиеся живут в вечном страхе потерять работу. Эти и другие "тяжелые условия" могут быть устранены только путем "создания социалистического хозяйства", "системы воспитания, поставленной на службу социальным целям". При такой организации хозяйства средства производства принадлежат обществу, которое использует их в строгом соответствии с планом.
Эйнштейн описал здесь в существенных чертах плановое хозяйство, которое в то время уже существовало в Советском Союзе и постепенно строилось в странах народной демократии. Верно отмечая, что при строительстве социализма необходимо избегать такой опасности, как "разрастание бюрократии", он, без сомнения, был убежден, что только социализм в состоянии осуществить идеал общественной справедливости.
После 1945 года Эйнштейн вновь и вновь в воззваниях и заявлениях подчеркивал ответственность ученых за сохранение мира во всем мире и будущее человечества. Он призывал их осознать огромную политическую ответственность и выступить за то, чтобы созданные ими средства не были использованы для тех жестоких целей, ради которых они изобретались. В мире, чреватом опасностью атомной войны, ни один ученый не имеет права равнодушно стоять в стороне. В своем заявлении 1946 года Эйнштейн писал: "Хотя современную опасность вызвало к жизни естествознание, но действительная проблема лежит в умах и сердцах людей".
Несмотря на то что свою главную задачу Эйнштейн видел в исследовательской работе в области теоретической физики, он не задумываясь "делил свое время между политикой и уравнениями" ради сохранения мира. Благодаря своей борьбе за мир он как политический деятель достиг такой высоты, как никакой другой естествоиспытатель до него. В последние годы он был в этой своей деятельности тесно связан с Альбертом Швейцером и Бертраном Расселом, наиболее значительным своим союзником в борьбе против атомного самоуничтожения человечества.
Когда 18 апреля 1955 года исследователь умер в принстонской клинике, на столике возле его кровати нашли незаконченную рукопись. Эта последняя его работа была посвящена вопросу о необходимости устранения атомной войны; человечество погибнет, если политическая борьба между обеими мировыми системами "превратится в настоящую войну".
Эйнштейн презирал культ личности в любых его формах. В ответ на приглашение принять участие в праздновании 50-летия квантовой теории света и специальной теории относительности, которое в марте 1955 года было организовано в Берлине физиками обоих германских государств, он писал Лауэ: "Возраст и болезнь делают для меня невозможным участие в таких мероприятиях; но я должен также заметить, что это божественное провидение несет с собой нечто освобождающее. Ибо все, так или иначе относящееся к культу личности, было мне всегда неприятно". Перед смертью он запретил проведение траурных торжеств и выразил желание, чтобы его пепел был развеян по ветру.
В оставшемся наброске жизнеописания Альберт Эйнштейн так обрисовал главное дело своей жизни: "Создание теории относительности, связанное с новым представлением о времени, пространстве, гравитации, эквивалентности массы и энергии. Всеобщая теория поля (не закончена). Вклад в развитие квантовой теории".
Ленин писал об Эйнштейне как о великом преобразователе естествознания. Имя творца теории относительности и одного из создателей квантовой теории так же бессмертно, как имена Галилея, Кеплера и Ньютона. Он равен им научным величием и превосходит их глубиной постановки вопроса и общественной значимостью результатов своих исследований.
Научное величие Альберта Эйнштейна, по словам Томаса Манна, нефизики могут постичь лишь интуитивно. Но в памяти всех людей доброй воли гениальный естествоиспытатель останется жить как неустрашимый борец за истину, человеческое достоинство и мир между народами.
Слова, сказанные Эйнштейном о Кеплере, справедливы и по отношению к нему самому: "Он принадлежал к числу тех немногих людей, которые не могут не высказывать открыто своих убеждений по любому вопросу".
Эта основная черта его существа стала глубочайшим источником его мировой славы.
Макс Фон Лауэ
Открытие интерференции рентгеновских лучей
Макс фон Лауэ завоевал признание не обоснованием и не разработкой классической квантовой теории, как Планк и Эйнштейн, не был он и физиком-ядерщиком, как Жолио-Кюри, Ферми или Гейзенберг. Но открытие и объяснение им интерференции рентгеновских лучей, при помощи которой впервые оптическими средствами было показано расположение атомов в кристаллических решетках, оказалось настолько блестящим и глубоким вкладом в атомную физику, что исследователь уже только благодаря этому может быть поставлен в первый ряд физиков-первооткрывателей атомного века. То, что он был одним из самых решительных антифашистов среди немецких физиков, вызывает особый интерес к его жизни и деятельности.
Славу Лауэ принесло открытие интерференции рентгеновских лучей. За это открытие, которое он совершил весной 1912 года вместе со своими помощниками-экспериментаторами Вальтером Фридрихом и Паулем Книппингом, он получил в 1914 году Нобелевскую премию по физике - на много лет раньше своего учителя Макса Планка и своего друга Альберта Эйнштейна.
Но и в других областях Лауэ добился успехов и указывал направление исследований. Научные результаты его труда предстают перед нами в виде множества книг и более чем двухсот публикаций в специальных журналах. Сфера его интересов была обширна.
После интерференции рентгеновских лучей следует назвать область теории относительности.
В 1911 году Лауэ написал первую книгу "Принцип относительности": исчерпывающее изложение круга вопросов специальной теории относительности с критическим разбором отдельных работ, относящихся к данной теме. Десятилетие спустя он написал второй том, в котором излагалась общая теория относительности. Эта классическая работа неоднократно переиздавалась. Она способствовала распространению учения Эйнштейна и ускорила его понимание.
Уже одно опровержение возражений противников специальной теории относительности следует признать личным творческим вкладом Лауэ в ее формирование и становление. Этому в немалой степени содействовали его математические способности, которые, по мнению друзей и коллег, превосходили математическое дарование Планка.
Во время берлинской профессуры Лауэ специально работал над сверхпроводимостью - странным неожиданным исчезновением электрического сопротивления у некоторых металлов и полупроводников на пороге абсолютного нуля температур. Это явление было открыто в 1911 году в Лейдене голландским физиком Камерлингом-Оннесом, которому незадолго до этого удалось получить жидкий гелий. Таким способом можно было получить очень низкие температуры ниже 10° по Кельвину.
При помощи этого нового метода физических исследований Камерлинг-Оннес установил, что электрическое сопротивление ртути при понижающейся температуре не только постепенно падает - это было уже известно, - но примерно при 4° по Кельвину внезапно бесследно исчезает. Ниже этой "точки скачка" закон Ома перестает действовать. В сверхпроводящем ртутном кольце электрический ток пробегал с неослабевающей силой в течение нескольких дней.
Вскоре лейденский физик, удостоенный за свое открытие в 1913 году Нобелевской премии, обнаружил аналогичное явление у ряда других чистых металлов, таких, как олово и свинец. Однако температура, при которой это явление отмечалось, была различной.
В противоположность обычному электрическому току, подчиняющемуся закону Ома, ток в сверхпроводнике не проникает глубоко в тело проводника. Это было установлено в 30-х годах советскими физиками. В Германии исследованием этих вопросов занимался в Физико-техническом институте в Берлине Вальтер Мейснер. В 1933 году он открыл, что магнитное поле в сверхпроводнике ограничено очень тонким слоем под поверхностью, в то время как внутренняя часть достаточно толстого сверхпроводника свободна от поля.
"Мейснеровский эффект" вытеснения магнитного поля стал поворотным пунктом в истории исследования сверхпроводимости. Он обратил внимание физиков на то, что в случаях сверхпроводимости и обычной проводимости с точки зрения термодинамики следует говорить о двух качественно различных фазах одного и того же явления, как, например, об алмазе и графите, являющихся двумя различными ступенями формирования одного химического элемента - углерода.
Теоретическим объяснением и математическим разрешением этих трудных проблем обстоятельно занимался Макс фон Лауэ. В своей книге он дал свободное изложение теории сверхпроводимости, включив в нее дополнение, которое внес в теорию в 1935 году его ученик Фриц Лондон. Суть этого дополнения заключалась в привлечении электродинамики Максвелла к объяснению сверхпроводимости.
Лауэ удалось теоретически объяснить, почему электрическое сопротивление сверхпроводника, если его температура приближается к "точке скачка", в случае использования переменного тока снижается значительно медленнее, чем при использовании постоянного тока. Выдвигая свою теорию, Лауэ преследовал цель - дать объяснение явлений сверхпроводимости, подобное тому, которое выдвинул Максвелл, сформулировав свою теорию электромагнитного поля (в ее первоначальном виде) для обычных проводников и для непроводников.
В указанных трех областях физики ученый оставил заметный след и способствовал развитию науки. Следует назвать и четвертую сферу, к которой он проявлял интерес особенно в последние годы своей жизни: историю физики.
Среди работ Лауэ немало статей и воспоминаний о великих физиках прошлого и настоящего. Серия историко-биографических исследований открывается именами Галилея и Ньютона, затем следуют Гельмгольц, Герц, Рентген, Больцман, Планк, Вилли Вин, Зоммерфельд, Эйнштейн и, наконец, Ганс Гейгер, известный физик-атомщик, создатель счетчика элементарных частиц. Книга Лауэ "История физики", вышедшая в 1947 году, неоднократно переиздавалась и еще при жизни автора была переведена на семь иностранных языков, в том числе на японский, польский и русский.
"Радость видеть и понимать", которую Эйнштейн в одном из афоризмов назвал "прекраснейшим даром природы", была основной чертой характера Лауэ. "Наука, - писал один из его друзей, - была для него не работой или занятием, а частью его жизни. Она продолжала жить в нем даже ночью во сне".
При его природной деликатности и душевной уязвимости жизнь ученого была, по словам Лизы Мейтнер, "хотя и всегда содержательной, но не всегда легкой".
Макс фон Лауэ родился 9 октября 1879 года в Пфаффендорфе близ Кобленца. Он был одногодком Отто Гана и Альберта Эйнштейна и, подобно Генриху Герцу и Максу Планку, был сыном юриста.
Отец Лауэ несколько десятилетий работал в прусской военной администрации, имел чин генерала. В 1914 году он был возведен в дворянское звание. Волею обстоятельств в том же году Шведская Академия наук отметила его сына высшей наградой за научную работу.
Так как отец часто переезжал, Лауэ в детские и школьные годы жил во многих гарнизонных городах тогдашней Германской империи. Народную школу и начальные классы гимназии он посещал в Познани. В возрасте 12 лет в 1891 году вместе со своими родителями он жил некоторое время в Берлине. Здесь он впервые заинтересовался вопросами физики.
Общество по распространению естественнонаучных знаний "Урания" установило а своих помещениях на Таубенштрассе приборы для физических опытов, которые каждый посетитель после соответствующих объяснений мог сам приводить в действие. Эти установки пробудили у мальчика любознательность и влечение к технике. Доклады "Урании", посещения ее обсерватории на Инвалиденштрассе послужили толчком к размышлениям о естественнонаучных проблемах.
Выбор профессии был предрешен в последних классах гимназии в Страсбурге. Протестантская гимназия, которую он там посещал, была гуманитарным учебным заведением, где на первом плане стояли филологическо-исторические дисциплины, но ее директор понимал возрастающее значение естественных наук и способствовал развитию склонностей учащихся к естественным наукам.
Лауэ получил здесь основательное знание древних языков и пристрастился к греческой философии. "Радость чистого познания, - говорил он позднее, даруют только греки, если не принимать во внимание исключений". Подобные же мысли высказывали и другие известные физики нашего времени: Эрвин Шрёдингер и Вернер Гейзенберг.
Учитель физики обратил внимание 17-летнего юноши на "Доклады и речи" Гельмгольца, которые тогда вышли в новом издании. Лауэ, по его собственному признанию, проштудировал оба объемистых тома "с пламенным усердием". "Я не хочу утверждать, - говорил он в 1959 году в благодарственной речи по поводу присуждения ему медали Гельмгольца, - что все в них я понял. Особенно философские доклады были предметом моего изучения в течение десятилетий. Но первые познания в физике я получил по большей части из этих томов. И никогда мне так не импонировала чья-либо автобиография, как напечатанная там речь на праздновании его 70-летия. Величие и кристальная чистота его личности нашли свое отражение в этой речи. К тому же она дает ряд указаний по технике исследовательской работы, которые ценны даже для того, кто осознает дистанцию между Гельмгольцем и собой".
Интерес к физике и математике привел Лауэ сначала в Страсбургский университет. Там его увлекли лекции крупного физика-экспериментатора Карла Фердинанда Брауна, который за свои исследования, решающим образом способствовавшие развитию беспроволочного телеграфа, а потом и телевидения, и радарной техники, в 1909 году получил Нобелевскую премию.
Во время следующих четырех семестров в Гёттингене Лауэ окончательно избрал сферой своей деятельности теоретическую физику. Он слушал здесь известных математиков Давида Гильберта и Феликса Клейна и физика-теоретика Вольдемара Фойгта. Он изучал самостоятельно сочинения Кирхгофа.
Как и Эйнштейн, Лауэ своими знаниями в основном был обязан книгам. Позднее он объяснял это так: "Чтение можно при желании прерывать и предаваться размышлениям о прочитанном. На лекции всегда чувствуешь себя связанным ходом мысли говорящего и теряешь нить, если отвлекаешься". Лекции в большинстве случаев только побуждали его к тому, чтобы углубиться в соответствующую литературу.
Несмотря на это, Лауэ, будучи студентом, в отличие от Эйнштейна регулярно посещал лекции. "Я никогда не мог понять, как студенты могут опаздывать на лекции, например из-за своих общественных обязанностей в студенческом союзе. У меня в голове была только наука". Так писал он в автобиографии.
По-видимому, из гёттингенских ученых самое сильное впечатление на Лауэ произвел Давид Гильберт. Даже в последующие годы жизни Лауэ говорил, что Гильберт был величайшим из научных гениев, которых он когда-либо видел собственными глазами На вопрос о том, нельзя ли сравнивать его по гениальности с Планком, он отвечал не раздумывая: Планк явил миру только одно-единственное великое достижение, Гильберт же, напротив, высказал много гениальных идей. Тем, что Лауэ стал одним из лучших математиков среди физиков нового времени, он не в последнюю очередь обязан тренированности ума, полученной им от таких ученых, как Гильберт и Клейн, которые принадлежали к самым значительным математикам-мыслителям в истории науки.
К математике Лауэ всегда питал особое внутреннее пристрастие. По его убеждению, эта наука наиболее чисто и наиболее непосредственно передает опыт истины. В атом он видел также ее ценность для общего образования. Еще в годы ученичества прекрасное своей законченностью математическое доказательство доставляло ему огромную радость.
Но так же, как и Эйнштейна, математика привлекала Лауэ лишь в ее применении к вопросам физики. Математические формулы и доказательства должны, как он говорил, "иметь какое-нибудь отношение к действительности". Занятия математикой как самоцель казались ему напряжением сил при отсутствии предмета, к которому можно было бы приложить силу, подобно плаванию в пустом пространстве. "Я никогда не смог бы быть чистым математиком", - заметил он в одной из своих последних рукописей.
Это подчеркивание соотнесенности математических методов с предметом было еще одним свидетельством материалистической направленности взглядов Лауэ. Но вместе с тем здесь он следовал также культивируемой в Гёттингене традиции тесной связи математических и физических исследований. Начало этой традиции положили Гаусс и Вебер. Клейн и Гильберт настойчиво и успешно продолжали ее.
После блестящих наставников Страсбурга и Гёттингена Лауэ встретился в Мюнхене с другим прославленным исследователем - Вильгельмом Конрадом Рентгеном. Правда, провел он в Мюнхене лишь один семестр и не сошелся близко с первооткрывателем Х-лучей, который незадолго до этого начал преподавать в Мюнхенском университете и в это же время получил Нобелевскую премию. Всего один раз Рентген беседовал с ним на практических занятиях и при этом, как писал Лауэ в автобиографии, "видимо, с удовлетворением" проверял его знания.
Другое приобретение мюнхенского зимнего семестра 1901...1902 годов физик видел в том, что он в компании своих друзей, студентов-математиков, впервые познакомился с зимними Альпами. "Жаль только, что тогда в Германии не было еще лыжного спорта", - заметил он по этому поводу. Лауэ начал заниматься ходьбой на лыжах через несколько лет после этого в Шварцвальде под руководством Вилли Вина, вместе с которым он затем вплоть до первой мировой войны каждый раз в конце зимы выезжал в Миттенвальд для занятий зимним спортом. Воспоминания об этом оставившем значительный след в науке и одновременно увлеченном спортом ученом и добром человеке Лауэ причислял к самым лучшим в своей жизни.
Во время летнего семестра 1902 года "студент-философ Макс Лауэ" записался в Берлинский университет. Он хотел закончить свое специальное образование докторской работой у Планка, ведущего физика-теоретика Германии. О научном подвиге Макса Планка, об обосновании им квантовой теории, Лауэ в то время еще ничего не знал. Ни в Гёттингене, ни в Мюнхене об этом не говорили. В этом нет ничего удивительного, так как революционизирующее значение открытия элементарного кванта действия еще не получило признания.
У Планка Лауэ слушал термодинамику, теорию газа и теплового излучения. "На меня тогда произвели сильнейшее впечатление больцмановский принцип связи энтропии и вероятности, закон смещения Вина и доказательство его Планком в законченной форме и, наконец, смелый вывод Планком закона излучения из гипотезы конечных квантов энергии" - отмечал он в автобиографии. Больше всего, однако, дали ему лекции Планка по теоретической оптике.
Физик-экспериментатор Отто Луммер, работавший в Физико-техническом институте, читал в университете теорию света. При этом особое внимание он уделял явлениям дифракции и интерференции на оптических решетках и плоскопараллельных пластинках. Как позднее сказал Лауэ, он приобрел у Луммера тот "оптический инстинкт", который в дальнейшем так ему пригодился. Однако самыми глубокими и самыми решающими стимулами он обязан впоследствии он постоянно это подчеркивал - Максу Планку, человеческое обаяние которого покоряло каждого его слушателя.
Уже примерно через год, в начале лета 1903 года, Лауэ за исследования по теории интерференции на плоскопараллельных пластинках получил степень доктора философии. В отзыве Планка говорится, что работа выполнена "с большой тщательностью и мастерством" и свидетельствует об "основательной подготовке и самостоятельном мышлении". Физик-экспериментатор Эмиль Варбург, будучи вторым рецензентом, ограничился замечанием: "Согласен с вышеприведенной оценкой". О ходе устного испытания свидетельствует протокол от 9 июля 1903 года.
"Экзамен по физике как главному предмету, - говорится в нем, - открыл господин Планк вопросами по теории упругости твердых и жидких тел. Речь шла о гельмгольцевских законах вихревого движения, а также о движении твердого тела в несжижаемой жидкости. Потом обсуждались уравнения электромагнитного поля, а также научные и технические единицы электрических и магнитных величин. В заключение было задано несколько вопросов по термодинамике. Кандидат показал вполне удовлетворительные знания".
Эмиль Варбург продолжал экзамен по экспериментальной физике как второй специальности, задав вопросы по распространению звука, двойному преломлению и другим проблемам оптики, по измерению сопротивления, индукции, электрическим колебаниям и т.п. Он обнаружил у кандидата "в общем весьма удовлетворительные знания". Математик Шварц отметил, что кандидат показал себя во всех областях, которых касался экзамен, "очень хорошо подготовленным": "Все его ответы отличались ясностью, определенностью и правильностью"
Наконец, Фридрих Паульсен закончил экзамен вопросами по философии как второстепенному предмету. Его запись гласит: "Кантовская философия была исходным пунктом экзамена. Кандидат показал, что он основательно знаком с системой Канта, может ясно и последовательно развивать свою мысль. Результат вполне удовлетворителен". Общая оценка, которую получил Лауэ, - "magna cum laude".
Похвальная оценка его философских знаний тем более примечательна, что Лауэ, который был не согласен с господствовавшей тогда школьной философией, никогда не посещал лекций по философии. Но он приобрел основательные философские познания благодаря самостоятельному изучению сочинений Канта. В течение целого года он систематически штудировал основные произведения по теории познания великого кёнигсбергского философа и его этические работы.
В течение всей жизни кантовская философия была для Лауэ вершиной философского мышления человечества. Его личное уважение к Канту было настолько велико, что даже в последние годы он в одном из разговоров подробно расспрашивал, избежала ли могила философа разрушений во время войны и поддерживается ли она в порядке. Другой представитель немецкой классической философии, Фихте, интересовал его гораздо меньше. Лауэ был не согласен с его взглядами, так как Фихте, по его словам, был слишком "политическим агитатором".
Лауэ, был намного более сознательным кантианцем, чем Планк или Гельмгольц. Последний, по его мнению, "основательно исказил" Канта и не мог понять всей глубины вопроса о возможности опыта. Такого же мнения был он и об Эйнштейне, который, как он выражался, "не выносил Канта". "В этом вопросе я чувствую свое превосходство над Эйнштейном, - писал он в одном из писем, я довольно долго штудировал Канта". По сути дела, Лауэ истолковывал Канта в материалистическом смысле. Таким образом, классическая немецкая философия оказала ему неоценимую помощь в его исследовательской работе по физике. В другой форме, чем у Эйнштейна, но не менее отчетливо в трудах Лауэ сказалось то, что ученый "может почерпнуть для себя много полезного во всякой философии", как заметил В.И. Ленин в письме к Максиму Горькому, говоря о литературно-художественном творчестве.
После получения докторской степени Лауэ возвратился в Гёттинген для того, чтобы в тиши этого "типичного маленького городка" совершенствовать свое специальное образование. Он провел здесь четыре семестра. У молодого доцента Макса Абрахама, ученика Планка, он слушал лекции по электронной теории, а у астрофизика Карла Шварцшильда - по геометрической оптике. Как и его учитель Планк, Лауэ сдал государственный экзамен на право преподавания в средней школе; однако этим правом он так никогда и не воспользовался.
На экзамене по другому второстепенному предмету, химии, требовалось знание основ минералогии. Так Лауэ впервые соприкоснулся с той областью, которая несколько лет спустя стала основной сферой его интересов.
Однако его познания в минералогии были тогда, по-видимому, не слишком глубоки. "Я до сих пор помню, - замечал Лауэ о минералоге, который его экзаменовал, - как росло его веселое настроение по мере того, как он все более убеждался в моем полном невежестве". Только приняв во внимание его столь необычные для кандидата, сдававшего государственный экзамен, знания по химии, комиссия сочла его все же выдержавшим экзамен. Основательно Лауэ познакомился с кристаллографией за годы профессуры во Франкфурте.
Когда осенью 1905 года Планк предложил ему освободившееся место ассистента, Лауэ с радостью согласился. Более трех лет он был помощником Планка. Просмотр студенческих работ и подготовка семинаров оставляли ему достаточно времени для собственных исследований.
Молодой физик занимался теперь снова исключительно вопросами оптики. Статья "К термодинамике явлений интерференции" и шесть других опубликованных работ уже через год после начала работы в Берлинском университете, в ноябре 1906 года, дали ему право на преподавание теоретической физики. В конкурсной работе рассматривался вопрос о действительности второго принципа термодинамики для оптических процессов и давался утвердительный ответ на этот вопрос.
Эйнштейн описал здесь в существенных чертах плановое хозяйство, которое в то время уже существовало в Советском Союзе и постепенно строилось в странах народной демократии. Верно отмечая, что при строительстве социализма необходимо избегать такой опасности, как "разрастание бюрократии", он, без сомнения, был убежден, что только социализм в состоянии осуществить идеал общественной справедливости.
После 1945 года Эйнштейн вновь и вновь в воззваниях и заявлениях подчеркивал ответственность ученых за сохранение мира во всем мире и будущее человечества. Он призывал их осознать огромную политическую ответственность и выступить за то, чтобы созданные ими средства не были использованы для тех жестоких целей, ради которых они изобретались. В мире, чреватом опасностью атомной войны, ни один ученый не имеет права равнодушно стоять в стороне. В своем заявлении 1946 года Эйнштейн писал: "Хотя современную опасность вызвало к жизни естествознание, но действительная проблема лежит в умах и сердцах людей".
Несмотря на то что свою главную задачу Эйнштейн видел в исследовательской работе в области теоретической физики, он не задумываясь "делил свое время между политикой и уравнениями" ради сохранения мира. Благодаря своей борьбе за мир он как политический деятель достиг такой высоты, как никакой другой естествоиспытатель до него. В последние годы он был в этой своей деятельности тесно связан с Альбертом Швейцером и Бертраном Расселом, наиболее значительным своим союзником в борьбе против атомного самоуничтожения человечества.
Когда 18 апреля 1955 года исследователь умер в принстонской клинике, на столике возле его кровати нашли незаконченную рукопись. Эта последняя его работа была посвящена вопросу о необходимости устранения атомной войны; человечество погибнет, если политическая борьба между обеими мировыми системами "превратится в настоящую войну".
Эйнштейн презирал культ личности в любых его формах. В ответ на приглашение принять участие в праздновании 50-летия квантовой теории света и специальной теории относительности, которое в марте 1955 года было организовано в Берлине физиками обоих германских государств, он писал Лауэ: "Возраст и болезнь делают для меня невозможным участие в таких мероприятиях; но я должен также заметить, что это божественное провидение несет с собой нечто освобождающее. Ибо все, так или иначе относящееся к культу личности, было мне всегда неприятно". Перед смертью он запретил проведение траурных торжеств и выразил желание, чтобы его пепел был развеян по ветру.
В оставшемся наброске жизнеописания Альберт Эйнштейн так обрисовал главное дело своей жизни: "Создание теории относительности, связанное с новым представлением о времени, пространстве, гравитации, эквивалентности массы и энергии. Всеобщая теория поля (не закончена). Вклад в развитие квантовой теории".
Ленин писал об Эйнштейне как о великом преобразователе естествознания. Имя творца теории относительности и одного из создателей квантовой теории так же бессмертно, как имена Галилея, Кеплера и Ньютона. Он равен им научным величием и превосходит их глубиной постановки вопроса и общественной значимостью результатов своих исследований.
Научное величие Альберта Эйнштейна, по словам Томаса Манна, нефизики могут постичь лишь интуитивно. Но в памяти всех людей доброй воли гениальный естествоиспытатель останется жить как неустрашимый борец за истину, человеческое достоинство и мир между народами.
Слова, сказанные Эйнштейном о Кеплере, справедливы и по отношению к нему самому: "Он принадлежал к числу тех немногих людей, которые не могут не высказывать открыто своих убеждений по любому вопросу".
Эта основная черта его существа стала глубочайшим источником его мировой славы.
Макс Фон Лауэ
Открытие интерференции рентгеновских лучей
Макс фон Лауэ завоевал признание не обоснованием и не разработкой классической квантовой теории, как Планк и Эйнштейн, не был он и физиком-ядерщиком, как Жолио-Кюри, Ферми или Гейзенберг. Но открытие и объяснение им интерференции рентгеновских лучей, при помощи которой впервые оптическими средствами было показано расположение атомов в кристаллических решетках, оказалось настолько блестящим и глубоким вкладом в атомную физику, что исследователь уже только благодаря этому может быть поставлен в первый ряд физиков-первооткрывателей атомного века. То, что он был одним из самых решительных антифашистов среди немецких физиков, вызывает особый интерес к его жизни и деятельности.
Славу Лауэ принесло открытие интерференции рентгеновских лучей. За это открытие, которое он совершил весной 1912 года вместе со своими помощниками-экспериментаторами Вальтером Фридрихом и Паулем Книппингом, он получил в 1914 году Нобелевскую премию по физике - на много лет раньше своего учителя Макса Планка и своего друга Альберта Эйнштейна.
Но и в других областях Лауэ добился успехов и указывал направление исследований. Научные результаты его труда предстают перед нами в виде множества книг и более чем двухсот публикаций в специальных журналах. Сфера его интересов была обширна.
После интерференции рентгеновских лучей следует назвать область теории относительности.
В 1911 году Лауэ написал первую книгу "Принцип относительности": исчерпывающее изложение круга вопросов специальной теории относительности с критическим разбором отдельных работ, относящихся к данной теме. Десятилетие спустя он написал второй том, в котором излагалась общая теория относительности. Эта классическая работа неоднократно переиздавалась. Она способствовала распространению учения Эйнштейна и ускорила его понимание.
Уже одно опровержение возражений противников специальной теории относительности следует признать личным творческим вкладом Лауэ в ее формирование и становление. Этому в немалой степени содействовали его математические способности, которые, по мнению друзей и коллег, превосходили математическое дарование Планка.
Во время берлинской профессуры Лауэ специально работал над сверхпроводимостью - странным неожиданным исчезновением электрического сопротивления у некоторых металлов и полупроводников на пороге абсолютного нуля температур. Это явление было открыто в 1911 году в Лейдене голландским физиком Камерлингом-Оннесом, которому незадолго до этого удалось получить жидкий гелий. Таким способом можно было получить очень низкие температуры ниже 10° по Кельвину.
При помощи этого нового метода физических исследований Камерлинг-Оннес установил, что электрическое сопротивление ртути при понижающейся температуре не только постепенно падает - это было уже известно, - но примерно при 4° по Кельвину внезапно бесследно исчезает. Ниже этой "точки скачка" закон Ома перестает действовать. В сверхпроводящем ртутном кольце электрический ток пробегал с неослабевающей силой в течение нескольких дней.
Вскоре лейденский физик, удостоенный за свое открытие в 1913 году Нобелевской премии, обнаружил аналогичное явление у ряда других чистых металлов, таких, как олово и свинец. Однако температура, при которой это явление отмечалось, была различной.
В противоположность обычному электрическому току, подчиняющемуся закону Ома, ток в сверхпроводнике не проникает глубоко в тело проводника. Это было установлено в 30-х годах советскими физиками. В Германии исследованием этих вопросов занимался в Физико-техническом институте в Берлине Вальтер Мейснер. В 1933 году он открыл, что магнитное поле в сверхпроводнике ограничено очень тонким слоем под поверхностью, в то время как внутренняя часть достаточно толстого сверхпроводника свободна от поля.
"Мейснеровский эффект" вытеснения магнитного поля стал поворотным пунктом в истории исследования сверхпроводимости. Он обратил внимание физиков на то, что в случаях сверхпроводимости и обычной проводимости с точки зрения термодинамики следует говорить о двух качественно различных фазах одного и того же явления, как, например, об алмазе и графите, являющихся двумя различными ступенями формирования одного химического элемента - углерода.
Теоретическим объяснением и математическим разрешением этих трудных проблем обстоятельно занимался Макс фон Лауэ. В своей книге он дал свободное изложение теории сверхпроводимости, включив в нее дополнение, которое внес в теорию в 1935 году его ученик Фриц Лондон. Суть этого дополнения заключалась в привлечении электродинамики Максвелла к объяснению сверхпроводимости.
Лауэ удалось теоретически объяснить, почему электрическое сопротивление сверхпроводника, если его температура приближается к "точке скачка", в случае использования переменного тока снижается значительно медленнее, чем при использовании постоянного тока. Выдвигая свою теорию, Лауэ преследовал цель - дать объяснение явлений сверхпроводимости, подобное тому, которое выдвинул Максвелл, сформулировав свою теорию электромагнитного поля (в ее первоначальном виде) для обычных проводников и для непроводников.
В указанных трех областях физики ученый оставил заметный след и способствовал развитию науки. Следует назвать и четвертую сферу, к которой он проявлял интерес особенно в последние годы своей жизни: историю физики.
Среди работ Лауэ немало статей и воспоминаний о великих физиках прошлого и настоящего. Серия историко-биографических исследований открывается именами Галилея и Ньютона, затем следуют Гельмгольц, Герц, Рентген, Больцман, Планк, Вилли Вин, Зоммерфельд, Эйнштейн и, наконец, Ганс Гейгер, известный физик-атомщик, создатель счетчика элементарных частиц. Книга Лауэ "История физики", вышедшая в 1947 году, неоднократно переиздавалась и еще при жизни автора была переведена на семь иностранных языков, в том числе на японский, польский и русский.
"Радость видеть и понимать", которую Эйнштейн в одном из афоризмов назвал "прекраснейшим даром природы", была основной чертой характера Лауэ. "Наука, - писал один из его друзей, - была для него не работой или занятием, а частью его жизни. Она продолжала жить в нем даже ночью во сне".
При его природной деликатности и душевной уязвимости жизнь ученого была, по словам Лизы Мейтнер, "хотя и всегда содержательной, но не всегда легкой".
Макс фон Лауэ родился 9 октября 1879 года в Пфаффендорфе близ Кобленца. Он был одногодком Отто Гана и Альберта Эйнштейна и, подобно Генриху Герцу и Максу Планку, был сыном юриста.
Отец Лауэ несколько десятилетий работал в прусской военной администрации, имел чин генерала. В 1914 году он был возведен в дворянское звание. Волею обстоятельств в том же году Шведская Академия наук отметила его сына высшей наградой за научную работу.
Так как отец часто переезжал, Лауэ в детские и школьные годы жил во многих гарнизонных городах тогдашней Германской империи. Народную школу и начальные классы гимназии он посещал в Познани. В возрасте 12 лет в 1891 году вместе со своими родителями он жил некоторое время в Берлине. Здесь он впервые заинтересовался вопросами физики.
Общество по распространению естественнонаучных знаний "Урания" установило а своих помещениях на Таубенштрассе приборы для физических опытов, которые каждый посетитель после соответствующих объяснений мог сам приводить в действие. Эти установки пробудили у мальчика любознательность и влечение к технике. Доклады "Урании", посещения ее обсерватории на Инвалиденштрассе послужили толчком к размышлениям о естественнонаучных проблемах.
Выбор профессии был предрешен в последних классах гимназии в Страсбурге. Протестантская гимназия, которую он там посещал, была гуманитарным учебным заведением, где на первом плане стояли филологическо-исторические дисциплины, но ее директор понимал возрастающее значение естественных наук и способствовал развитию склонностей учащихся к естественным наукам.
Лауэ получил здесь основательное знание древних языков и пристрастился к греческой философии. "Радость чистого познания, - говорил он позднее, даруют только греки, если не принимать во внимание исключений". Подобные же мысли высказывали и другие известные физики нашего времени: Эрвин Шрёдингер и Вернер Гейзенберг.
Учитель физики обратил внимание 17-летнего юноши на "Доклады и речи" Гельмгольца, которые тогда вышли в новом издании. Лауэ, по его собственному признанию, проштудировал оба объемистых тома "с пламенным усердием". "Я не хочу утверждать, - говорил он в 1959 году в благодарственной речи по поводу присуждения ему медали Гельмгольца, - что все в них я понял. Особенно философские доклады были предметом моего изучения в течение десятилетий. Но первые познания в физике я получил по большей части из этих томов. И никогда мне так не импонировала чья-либо автобиография, как напечатанная там речь на праздновании его 70-летия. Величие и кристальная чистота его личности нашли свое отражение в этой речи. К тому же она дает ряд указаний по технике исследовательской работы, которые ценны даже для того, кто осознает дистанцию между Гельмгольцем и собой".
Интерес к физике и математике привел Лауэ сначала в Страсбургский университет. Там его увлекли лекции крупного физика-экспериментатора Карла Фердинанда Брауна, который за свои исследования, решающим образом способствовавшие развитию беспроволочного телеграфа, а потом и телевидения, и радарной техники, в 1909 году получил Нобелевскую премию.
Во время следующих четырех семестров в Гёттингене Лауэ окончательно избрал сферой своей деятельности теоретическую физику. Он слушал здесь известных математиков Давида Гильберта и Феликса Клейна и физика-теоретика Вольдемара Фойгта. Он изучал самостоятельно сочинения Кирхгофа.
Как и Эйнштейн, Лауэ своими знаниями в основном был обязан книгам. Позднее он объяснял это так: "Чтение можно при желании прерывать и предаваться размышлениям о прочитанном. На лекции всегда чувствуешь себя связанным ходом мысли говорящего и теряешь нить, если отвлекаешься". Лекции в большинстве случаев только побуждали его к тому, чтобы углубиться в соответствующую литературу.
Несмотря на это, Лауэ, будучи студентом, в отличие от Эйнштейна регулярно посещал лекции. "Я никогда не мог понять, как студенты могут опаздывать на лекции, например из-за своих общественных обязанностей в студенческом союзе. У меня в голове была только наука". Так писал он в автобиографии.
По-видимому, из гёттингенских ученых самое сильное впечатление на Лауэ произвел Давид Гильберт. Даже в последующие годы жизни Лауэ говорил, что Гильберт был величайшим из научных гениев, которых он когда-либо видел собственными глазами На вопрос о том, нельзя ли сравнивать его по гениальности с Планком, он отвечал не раздумывая: Планк явил миру только одно-единственное великое достижение, Гильберт же, напротив, высказал много гениальных идей. Тем, что Лауэ стал одним из лучших математиков среди физиков нового времени, он не в последнюю очередь обязан тренированности ума, полученной им от таких ученых, как Гильберт и Клейн, которые принадлежали к самым значительным математикам-мыслителям в истории науки.
К математике Лауэ всегда питал особое внутреннее пристрастие. По его убеждению, эта наука наиболее чисто и наиболее непосредственно передает опыт истины. В атом он видел также ее ценность для общего образования. Еще в годы ученичества прекрасное своей законченностью математическое доказательство доставляло ему огромную радость.
Но так же, как и Эйнштейна, математика привлекала Лауэ лишь в ее применении к вопросам физики. Математические формулы и доказательства должны, как он говорил, "иметь какое-нибудь отношение к действительности". Занятия математикой как самоцель казались ему напряжением сил при отсутствии предмета, к которому можно было бы приложить силу, подобно плаванию в пустом пространстве. "Я никогда не смог бы быть чистым математиком", - заметил он в одной из своих последних рукописей.
Это подчеркивание соотнесенности математических методов с предметом было еще одним свидетельством материалистической направленности взглядов Лауэ. Но вместе с тем здесь он следовал также культивируемой в Гёттингене традиции тесной связи математических и физических исследований. Начало этой традиции положили Гаусс и Вебер. Клейн и Гильберт настойчиво и успешно продолжали ее.
После блестящих наставников Страсбурга и Гёттингена Лауэ встретился в Мюнхене с другим прославленным исследователем - Вильгельмом Конрадом Рентгеном. Правда, провел он в Мюнхене лишь один семестр и не сошелся близко с первооткрывателем Х-лучей, который незадолго до этого начал преподавать в Мюнхенском университете и в это же время получил Нобелевскую премию. Всего один раз Рентген беседовал с ним на практических занятиях и при этом, как писал Лауэ в автобиографии, "видимо, с удовлетворением" проверял его знания.
Другое приобретение мюнхенского зимнего семестра 1901...1902 годов физик видел в том, что он в компании своих друзей, студентов-математиков, впервые познакомился с зимними Альпами. "Жаль только, что тогда в Германии не было еще лыжного спорта", - заметил он по этому поводу. Лауэ начал заниматься ходьбой на лыжах через несколько лет после этого в Шварцвальде под руководством Вилли Вина, вместе с которым он затем вплоть до первой мировой войны каждый раз в конце зимы выезжал в Миттенвальд для занятий зимним спортом. Воспоминания об этом оставившем значительный след в науке и одновременно увлеченном спортом ученом и добром человеке Лауэ причислял к самым лучшим в своей жизни.
Во время летнего семестра 1902 года "студент-философ Макс Лауэ" записался в Берлинский университет. Он хотел закончить свое специальное образование докторской работой у Планка, ведущего физика-теоретика Германии. О научном подвиге Макса Планка, об обосновании им квантовой теории, Лауэ в то время еще ничего не знал. Ни в Гёттингене, ни в Мюнхене об этом не говорили. В этом нет ничего удивительного, так как революционизирующее значение открытия элементарного кванта действия еще не получило признания.
У Планка Лауэ слушал термодинамику, теорию газа и теплового излучения. "На меня тогда произвели сильнейшее впечатление больцмановский принцип связи энтропии и вероятности, закон смещения Вина и доказательство его Планком в законченной форме и, наконец, смелый вывод Планком закона излучения из гипотезы конечных квантов энергии" - отмечал он в автобиографии. Больше всего, однако, дали ему лекции Планка по теоретической оптике.
Физик-экспериментатор Отто Луммер, работавший в Физико-техническом институте, читал в университете теорию света. При этом особое внимание он уделял явлениям дифракции и интерференции на оптических решетках и плоскопараллельных пластинках. Как позднее сказал Лауэ, он приобрел у Луммера тот "оптический инстинкт", который в дальнейшем так ему пригодился. Однако самыми глубокими и самыми решающими стимулами он обязан впоследствии он постоянно это подчеркивал - Максу Планку, человеческое обаяние которого покоряло каждого его слушателя.
Уже примерно через год, в начале лета 1903 года, Лауэ за исследования по теории интерференции на плоскопараллельных пластинках получил степень доктора философии. В отзыве Планка говорится, что работа выполнена "с большой тщательностью и мастерством" и свидетельствует об "основательной подготовке и самостоятельном мышлении". Физик-экспериментатор Эмиль Варбург, будучи вторым рецензентом, ограничился замечанием: "Согласен с вышеприведенной оценкой". О ходе устного испытания свидетельствует протокол от 9 июля 1903 года.
"Экзамен по физике как главному предмету, - говорится в нем, - открыл господин Планк вопросами по теории упругости твердых и жидких тел. Речь шла о гельмгольцевских законах вихревого движения, а также о движении твердого тела в несжижаемой жидкости. Потом обсуждались уравнения электромагнитного поля, а также научные и технические единицы электрических и магнитных величин. В заключение было задано несколько вопросов по термодинамике. Кандидат показал вполне удовлетворительные знания".
Эмиль Варбург продолжал экзамен по экспериментальной физике как второй специальности, задав вопросы по распространению звука, двойному преломлению и другим проблемам оптики, по измерению сопротивления, индукции, электрическим колебаниям и т.п. Он обнаружил у кандидата "в общем весьма удовлетворительные знания". Математик Шварц отметил, что кандидат показал себя во всех областях, которых касался экзамен, "очень хорошо подготовленным": "Все его ответы отличались ясностью, определенностью и правильностью"
Наконец, Фридрих Паульсен закончил экзамен вопросами по философии как второстепенному предмету. Его запись гласит: "Кантовская философия была исходным пунктом экзамена. Кандидат показал, что он основательно знаком с системой Канта, может ясно и последовательно развивать свою мысль. Результат вполне удовлетворителен". Общая оценка, которую получил Лауэ, - "magna cum laude".
Похвальная оценка его философских знаний тем более примечательна, что Лауэ, который был не согласен с господствовавшей тогда школьной философией, никогда не посещал лекций по философии. Но он приобрел основательные философские познания благодаря самостоятельному изучению сочинений Канта. В течение целого года он систематически штудировал основные произведения по теории познания великого кёнигсбергского философа и его этические работы.
В течение всей жизни кантовская философия была для Лауэ вершиной философского мышления человечества. Его личное уважение к Канту было настолько велико, что даже в последние годы он в одном из разговоров подробно расспрашивал, избежала ли могила философа разрушений во время войны и поддерживается ли она в порядке. Другой представитель немецкой классической философии, Фихте, интересовал его гораздо меньше. Лауэ был не согласен с его взглядами, так как Фихте, по его словам, был слишком "политическим агитатором".
Лауэ, был намного более сознательным кантианцем, чем Планк или Гельмгольц. Последний, по его мнению, "основательно исказил" Канта и не мог понять всей глубины вопроса о возможности опыта. Такого же мнения был он и об Эйнштейне, который, как он выражался, "не выносил Канта". "В этом вопросе я чувствую свое превосходство над Эйнштейном, - писал он в одном из писем, я довольно долго штудировал Канта". По сути дела, Лауэ истолковывал Канта в материалистическом смысле. Таким образом, классическая немецкая философия оказала ему неоценимую помощь в его исследовательской работе по физике. В другой форме, чем у Эйнштейна, но не менее отчетливо в трудах Лауэ сказалось то, что ученый "может почерпнуть для себя много полезного во всякой философии", как заметил В.И. Ленин в письме к Максиму Горькому, говоря о литературно-художественном творчестве.
После получения докторской степени Лауэ возвратился в Гёттинген для того, чтобы в тиши этого "типичного маленького городка" совершенствовать свое специальное образование. Он провел здесь четыре семестра. У молодого доцента Макса Абрахама, ученика Планка, он слушал лекции по электронной теории, а у астрофизика Карла Шварцшильда - по геометрической оптике. Как и его учитель Планк, Лауэ сдал государственный экзамен на право преподавания в средней школе; однако этим правом он так никогда и не воспользовался.
На экзамене по другому второстепенному предмету, химии, требовалось знание основ минералогии. Так Лауэ впервые соприкоснулся с той областью, которая несколько лет спустя стала основной сферой его интересов.
Однако его познания в минералогии были тогда, по-видимому, не слишком глубоки. "Я до сих пор помню, - замечал Лауэ о минералоге, который его экзаменовал, - как росло его веселое настроение по мере того, как он все более убеждался в моем полном невежестве". Только приняв во внимание его столь необычные для кандидата, сдававшего государственный экзамен, знания по химии, комиссия сочла его все же выдержавшим экзамен. Основательно Лауэ познакомился с кристаллографией за годы профессуры во Франкфурте.
Когда осенью 1905 года Планк предложил ему освободившееся место ассистента, Лауэ с радостью согласился. Более трех лет он был помощником Планка. Просмотр студенческих работ и подготовка семинаров оставляли ему достаточно времени для собственных исследований.
Молодой физик занимался теперь снова исключительно вопросами оптики. Статья "К термодинамике явлений интерференции" и шесть других опубликованных работ уже через год после начала работы в Берлинском университете, в ноябре 1906 года, дали ему право на преподавание теоретической физики. В конкурсной работе рассматривался вопрос о действительности второго принципа термодинамики для оптических процессов и давался утвердительный ответ на этот вопрос.