Так вот, в конце XVI века астрономы наблюдали яркую комету с двух наблюдательных пунктов, очень удаленных друг от друга. Оба пункта действовали, как "два глаза". Если бы комета находилась в атмосфере, т. е. недалеко от наблюдателей, то должен был бы наблюдаться параллакс: с одного пункта комета должна быть видна на фоне одних звезд, а с другого - на фоне других. Однако наблюдения показали, что никакого параллакса не было, и, значит, комета находилась гораздо дальше, чем даже Лупа. Земная природа комет была опровергнута, что сделало их еще более таинственными. Одна тайна сменилась другой, еще более заманчивой и недоступной.
   У многих астрономов сложилось мнение, что кометы приходят к нам из межзвездных глубин, т. е. не являются членами нашей Солнечной системы. Мало того, в какой-то момент даже предполагалось, что кометы приходят к Солнцу по прямолпнейпым траекториям и по таким же прямолинейным траекториям уходят от него.
   Любопытно, что эта "прямолинейпая версия" появилась, когда Кеплер уже доказал, что все планеты движутся вокруг Солнца по замкнутым эллиптическим орбитам. Что ж, в этом состоит еще одна прелесть науки: иногда самые, казалось бы, очевидные идеи проходят мимо внимания ученых, пока вдруг кто-то из них, наиболее внимательный и смелый, не сделает решающего
   шага. Хотелось бы, чтобы вы, дорогой читатель, оказались среди них.
   Б те далекие времена считалось, что все доселе наблюдавшиеся кометы пришли из межзвездного пространства и туда же вернулись опять.
   О чем говорит орбита?
   Трудно сказать, сколько времени продолжалось бы такое положение, если бы не одно важнейшее событие п истории человечества.
   Гениаттьный естествоиспытатель, великий физик и математик Исаак Ньютон завершил выдающийся научный труд, связанный с анализом движения планет вокруг Солнца, и сформулировал закон всемирного тяготения: сила взаимного притяжения между двумя телами прямо пропорциональна произведению их масс и обратно пропорциональна квадрату расстояния между ними. Иными словами, чем массивнее тела и чем меньше расстояние между ними, тем сильнее они ' притягиваются друг к Другу.
   Согласао этому закону природы все планеты движутся вокруг Солнца не произвольным образом, а строго по определенным орбитам. Орбиты эти представляют собой замкнутые линии. Напомним, что замкнутыми линиями являются, например, окружность, эллипс, т, е. липии у которых начала сливаются с концами.
   Орбиты планет являются эллипсами. Правда, эти эллипсы не очень сильно вытянуты. Например, орбита, по которой движется наша Земля, является почти круговой.
   Галлей обратился к Ньютону с предложением рассмотреть, как должны двигаться кометы в соответствии с законом всемирного тяготения. Напомним, что бытовало представление, что кометы движутся к Солнцу и от него по прямолинейным траекториям.
   По-видимому, Ньютон посчитал просьбу Галлея серьезной, поскольку с большой охотой приступил к пссле-дованаям. Согласно результатам этих исследований, кометы в зависимости от различных условий должны описывать около Солнца либо эллипс, либо параболу, либо гиперболу.
   Чтобы представить себе, как выглядит парабола (если вы пе помните этого из курса средней школы), нарисуйте карандашом вытянутый эллипс, затем половину
   его сотрите резинкой, а две торчащие линии продолжите до края листа и представьте себе, что эти линии так и уходят в бесконечность, никогда не пересекаясь. Параболу также можно изобразить с помощью гибкого прутика ивы. Возьмите прутик двумя руками за оба конца и аккуратно, чтобы не сломать, согните его до положения, когда концы прутика станут параллельными, и после дто-го слегка раздвиньте - получится парабола. Теперь раздвигайте концы прутика до тех пор, пока не образуется почти прямой угол. Это будет гипербола (рис. 10).
   Таким образом, вы видите, что в отличие от эллипса и парабола, и гипербола не являются замкнутыми линиями: их концы никогда не соединяются с началами. .
   Итак, согласно Ньютону, кометы движутся либо по эллиптическим, либо по параболическим, либо по гиперболическим орбитам, причем в фокусе каждой орбиты -находится Солнце. Фокус кривой - это некоторая точка F, лежащая в плоскости этой кривой. Фокусы у парабол, гипербол и эллипсов расположены вблизи закруглений этих кривых. Очевидно, что у параболы и гиперболы имеется по одной такой точке, в ней и находится Солнце, а у эллипса таких точек две, и Солнце находится в одной из них.
   Мы говорим об этом столь подробно, чтобы дать вам некоторую информацию к размышлению. Если вы сейчас отложите книжку и немного поразмышляете, то сами убедитесь, какой важный метод исследования открыл Ньютон. Астрономам достаточно вычислить орбиту кометы, и эта орбита сама "скажет", вернется ли комета к Солнцу, или навсегда покинет его.
   Легко сообразить, что если орбита окажется параболической или гиперболической, т. е. незамкнутой, то комета, имеющая такую орбиту, уже никогда не вернется.
   Совсем другое дело, если орбита окажется эллиптической. Поскольку эллипс линия замкнутая, комета должна обязательно вернуться в ту точку пространства, в которой ее уже наблюдали с Земли. Когда же это произойдет? Тогда, когда комета сделает один оборот вокруг Солнца.
   А сколько для этого понадобится времени? Например, Земля совершает один оборот вокруг Солнца за каждые 365 дней, т. е. за год, А Юпитер, который отстоит от Солнца намного дальше, чем Земля, совершает один оборот за 4329 дней, т. е. поч^и за 12 земных лет.
   Сколько же времени нужно комете, движущейся по эллипсу, чтобы сделать один оборот? Это зависит от различных параметров эллипса, в частности от расстояния между его фокусами. Чем меньше это расстояние, тем быстрее комета совершит оборот вокруг Солнца.
   Надо сказать, что вычислить орбиту кометы по данным наблюдений - задача очень трудная. Это прекрасно понимал Ньютон, и поэтому первую орбиту он рассчитал сам.
   В те далекие времена не было ни вычислительных машин, ни микрокалькуляторов, ни даже арифмометров. Все вычисления делались вручную. Для этого составлялись специальные громоздкие таблицы, а сами вычисления могли продолжаться долгие месяцы, а иногда и годы. Орбита кометы, которую рассчитал Ньютон, оказалась эллиптической, и он сделал вывод, что комета должна вернуться.
   Каменистые тропы науки
   Вдохновленный научным подвигом Ньютона, Галлей стал собирать сведения о ранее наблюдавшихся кометах. Это было, конечно, очень непростое дело. Нужно было разыскать древние летописи, рукописи астро
   номов из различных стран, в которых приводились координаты комет на небе и достаточно точные данные о времени каждого наблюдения.
   Галлею удалось собрать данные о многих кометах, и он приступил к труднейшей и изнурительной работе - вычислению их орбит.
   К 1705 году Галлей рассчитая орбиты 20 комет, которые наблюдались после 1337 года. Но йеутошшый учо-ный не остановился на этом. Он с великим усердием принялся анализировать результаты своего уникального труда. Каково же было его удовлетворение, когда он установил, что у комет 1607 и 1682 годов орбиты оказались удивительно похожими друг на друга.
   Неужели это одна и та же комета? Если это так, то один оборот она делает за 75 лет, т. е. эта комета должна была наблюдаться и за 75 лет до 1607 года. И действительно, Галлей выяснил, что по такой же точно орбите двигалась и комета 1531 года!
   Вы уже, наверное, угадали следующий шаг Галлея? Да, раз последнее наблюдение этой кометы состоялось в 1682 году, значит очередное ее появление должно произойти через 75 лет. Именно Галлеем было предсказано, что в 1758 году комета вновь вернется к Солнцу.
   Галлей не дожил до дня своего триумфа. Он скончался в 1742 году в возрасте 86 лет.
   Надо сказат^, что пути в науко никогда не бывают гладкими. Наоборот, они просто усеяны трудностями, противоречиями, разочарованиями, и 'преодолеть их не всякому под силу. Не минула чаша сия и Галлея. Еще анализируя кометные орбиты, он обратил внимание, что возвращение кометы иногда происходит не точно через 75 лет, а с разницей в несколько месяцев и даже в один год. В чем дело, ни Галлей, ни его современники точно сказать не могли. Поэтому Галлей, предсказывая появление кометы в 1758 году, не мог назвать месяц, когда комета будет хорошо видна с Земли.
   И вот наступил 1758 год. Астрономы приникли к окулярам своих телескопов, надеясь первыми обнаружить комету и известить мир о том, что пришла пора взглянуть на чудо научного предсказания и воздать должное незабвенному Галлею. Но напрасны были их ожидания. 1758 год проходил, а комета не появлялась.
   Что же случилось? Предсказание Галлея было ошибкой, или комета опаздывала?
   Как всегда, общество разделилось па два лагеря. Большая часть скептически настроенных людей, для которых безвозмездный труд астрономов казался чудачеством, еслп не сказать глупостью, откровенно смеялись над наивностью одураченной публики. Люди более образовап-пые и особенно астрономы очень хотели, чтобы предсказание Галлея сбылось. Но... комета не появилась.
   Что могло задержать ее в пути? По-видимому, влэтя-пие больших планет Юпитера и Сатуряа - к такому мне-пию пришли многие ученые. Что же оставалось делать? Ждать? Ведь ме^бдов учета влияния планет па движение комет еще пе было.
   И вот за эту труднейшую задачу берется французский математик Длексис Клеро. По-видимому, Клеро самому не удалось бы справиться с огромной вычислительной работой, "которую требовала разработка метода, но ему мужественно помогли французский астроном Жозеф Ла-ланд и жена известного в Париже механика и конструктора часов Николь Лепот. Несмотря н^ эту помощь Клеро работал чрезвычайно интенсивно, отказывая себе в полно-цеппом сне и отдыхе, и подорвал свое здоровье. Не щадили себя и его помощники, особенно мадам Лепот. Лаланд впоследствии вспоминал, что без ее энтузиазма, самопожертвования, веры в успех нечего было и начинать это безнадежно трудное дело.
   Главная трудность заключилась в том, что пужпо было рассчитывать расстояния между кометой и Юпитером и Сатурном па протяжении 150 дет для несметного мпоже
   ства точек на орбите кометы. Ведь в каждой из этих точек сила притяжения, которая действовала на комету со стороны Юпитера и Сатурна, непрерывно менялась.
   Целых шесть месяцев работали Клеро, Лаланд и Ле-пот, что называется, не разгибая спины. По их еще по законченным данным становилось ясно, что комета в пути, что скоро ее можно будет обнаружить.
   Чтобы объявить результат работы хоть па несколько дней раньше, чем комета будет обнаружена на небе, "могучая тройка" решила провести заключительные расчеты по более грубому методу. И 15 ноября 1758 года на заседании Парижской академии наук был объявлен результат: комета подойдет к Солнцу на ближайшее расстояние (эта ближайшая точка называется перигелием) 13 апреля 1759 года. Из-за применения более грубого, но ускоренного метода погрешность может составлять 30 суток в ту или другую сторону.
   Общество вновь всколыхнулось. Астрономы бросились к своим телескопам. Поскольку до прохождения перигелия оставалось совсем немного времени, комету, пусть еще очень слабенькую, можно увидеть на пути к Солнцу.
   Поистине, пути науки неисповедимы! Лучшие астро-помы того времени обшаривали каждый уголок небесного свода, но удача прошла мимо них, как вода через решето. Первым комету увидел никому не известный немецкий крестьянин по фамилии Палич, который в ночь под рождество 25 декабря 1758 года не танцевал и не пел вокруг елки, а внимательно всматривался в звездное небо, отыскивая небесную странницу. _ Предсказание Галлея сбылось.
   Через перигелий комета прошла 13 марта 1759 года - только на 32 дня раньте, чем предсказали Клеро, Ла-ланд и Лепот. Если вы помните, это произошло из-за того, что метод расчета был на конечной стадии упрощен. Общественность понимала, что победа была полной.
   Земля ныряет в хвост кометы
   Комету наблюдали очень тщательно, стараясь получить как можно более точные данные о ее положении среди звезд и отмечая моменты времени с максимально возможной точностью, чтобы использовать полученные сведения для расчета ее следующего появления уже в XIX веке.
   Комета получила имя Галлся в честь ее первооткры вателя.
   Следующее появление кометы происходило, когда возможности ученых неизмеримо выросли по сраппенпю с наблюдениями 1758-1759 годов. Ведь 75 лет даже для темпоп развития науки XVIII-XIX веков-срок пемд-лый. Были изобретены новые, более светосильные телескопы, создана такая мощная область пауки как небесная механика, благодаря которой данные о появлешш кометы рассчитывались с учетом влияния не только Юпитера и Сатурна, но и всех остальных известпых тогда планет: Меркурия, Венеры, Земли, Марса и Урана. Мало того, была вычислена дата прохождения перигелпл. что, как мы видели) является чрезвычайно трудной задачей, а также предвычислеп путь кометы на небе среди зиезд. Это означало, что еще задолго до сближения кометы с Солнцем ее можно обнаружить на небо не путем долгого и "слепого" поиска, как это сделал Палич в 1758 году, а с помощью телескопа, наведенного в точку на небе, вычисленную теоретически. Именно так опа была обнаружена 6 августа 1835 года.
   В сентябре 1835 года известный русский астроном Василий Яковлевич Струве наблюдал очень редкое явление -'комета заслонила собой далекую звезду. Если у кометы есть плотное крупное ядро, то оно должно на некоторое время заслонить от нас свет звезды. По времени "затмения" звезды можно было оценить размеры ядра кометы. Именно этого ожидал с нетерпением Струве.
   Однако все произошло иначе. Звезда светила сквозь центральную часть кометы с той же силой, что и через периферийные части. На основании этих наблюдений были сделаны очень важные выводы о том, что, во-первых, вещество в голове кометы сильно разрежено и, во-вторых, что у кометы либо вовсе отсутствует твердое ядро, либо ядро имеет ничтожные размеры.
   Удивлению астрономов не было предела. Природа комет стала еще загадочнее. Их даже стали называть "видимое ничто".
   Прошло еще 75 лет. За этот период арсенал астрономов неизмеримо вырос. Появились новые телескопы, были выстроены дрекрасные обсерватории, была открыта еще одна планета Нептун и ее влияние па движение комеил тоже было учтено.
   Но, пожалуй, главным отличием от наблюдений 1835 года было применение фотографии в астропомиче
   ских наблюдениях. Комету можно было не только увидеть глазом, но и сфотографировать на крупнейших те" лескопах.
   Итак, начало XX века. Газеты всего мира пестрят со" общениями о предстоящем появлении кометы Галлея. Ученые ждали комету с нетерпением, а многие обыватели - со страхом. Эти чувства усугублялись предсказаниями астрономов о том, что комета должна пройти между Землей и Солнцем и своим хвостом накрыть Землю, т. е. наша планета должна будет несколько часов двигаться через хвост кометы.
   18 мая 1910 года Земля "нырнула" в кометный хвост. Ученые, тщательно подготовившись к этому уникальному моменту, вели активные геофизические наблюдения. Постоянно брались на анализ пробы воздуха, в различных точках на планете измерялась интенсивность свече-вия неба, однако никаких аномалий зарегистрировано не было. Стало ясно, что, если бы газетчики и журналисты широко не оповестили читателей о том, что ожидает Землю в ближайшее время, ни один человек не заметил бы, что Земля прошла через хвост кометы.
   В тот же день, 18 мая 1910 года, произошло еще одно важное событие. Как вы помните, в это время комета проходила между Землей и Солнцем. Расстояние до кометы составляло 23 миллиона километров. Комета проходила на фоне солнечного диска, поэтому опять представилась уникальная возможность обнаружить ее ядро. Наблюдательные возможности позволяли обнаружить ядро, если оно имеет в поперечнике не менее 30 километров. В этом случае по диску Солнца должна была пройти темная точка. Но ожидания и в этот раз оказались тщетными. Ядро вновь обнаружить не удалось.
   В 1910 году комета очень хорошо была видна невооруженным глазом. Ее хвост простирался по небосводу на расстояние до 60 поперечников полной Луны. Было проведено большое количество наблюдений, получено около 500 фотографий головы и хвоста кометы, а также около 100 фотографий с изображением ее спектров.
   Очевидцами следующего появления кометы Галлея стали мы с вами. Кстати, это было ее 30-е появление, отмеченное в анналах истории. Комета прошла перигелий 9 февраля 1986 года. Однако подготовка к встрече с ней началась задолго до ее появления.
   Вы, наверное, помните, что каждая новая встреча с кометой отличалась от предыдущей. За 75 лет астроно
   мия уходила далеко вперед, и поэтому каждый раз наблюдения были все совершепнее.
   Так, появление кометы 1758 года было впервые предсказано. В 1835 году был предвычислен даже иуть кометы среди звезд, что позволило обнаружить ее задолго до приближения к Солнцу. В 1910 году астрономы имели в своем распоряжении такое мощное средство наблюдения, как астрономическая фотография. Как же собирались встретить знаменитую комету ученые в конце XX века?
   Расчеты показали, что, к великому сожалению, условия видимости кометы в момент ее самого близкого расположения к Солнцу будут самые худшие за все последние 2000 лет! Напомним, что условия видимости зависят от взаимного расположения Земли, кометы и Солнца.
   Так вот, в феврале 1986 года это расположение оказалось очень неблагоприятным. Было известно, что Згм-ля и комета будут расположены по разные стороны or Солнца. Комета будет проецироваться на дневное побо рядом с Солнцем и, конечно, видна не будет.
   Тем не менее было ясно, что надо сделать все возможное, чтобы получить как можно больше нвформацип.
   Место встречи изменить нельзя
   На 18-й Генеральной ассамблее Международного астрономического союза в Греции в 1982 году была утверждена Международная программа ваблюденай кометы Галлея. Большое место в реализации этой программы было отведено советским ученым. Поэтому в нашей стране была разработана советская программа па-земных исследовании кометы Галлея (СОЙРОГ). В наблюдениях по этой программе приняли участие все ведущие астрономические учреждения страны.
   Кроме того, было принято решение исследовать комету не только всеми возможными на Земле средствами, iio и направить к комете космические аппараты.
   Вы, конечно, понимаете, что любой космический эксперимент - задача во всех звеньях чрезвычайно сложная. Это касается разработки проекта, конструирования аппарата и различных приспособлений, создания специальной научной аппаратуры, управления полетом, передачи информации на Землю и многого другого.
   До сих пор космические миссии направлялись только к очепь крупным телам Солнечной системы: к Луке) планетам Венере, Марсу, Юпитеру, Сатурну. Кометы же
   очень резко отличаются от них п своими размерами, п строением вещества.
   Главная задача, которую предполагалось решить с помощью космических миссий к комете Галлея,- это исследовать ее ядро и околоядерную область. Для этого надо было, чтобы аппарат прошел достаточно близко от ядра. Он должен был "найти" комету, навести на нее необходимые приборы, произвести исследования и передать результаты на Землю. Задача осложнялась еще и тем, что скорость, с которой космический аппарат и комета должны пролететь друг относительно друга, должна быть фантастической: 80 километров в секунду! Итак, всю исследовательскую программу надо выполнить без сучка и задоринки за несколько минут.
   Конечно, предприятие было рискованное. Ученые должны были дать гарантию, что эти несколько минут будут плодотворными и что подготовка, на которую уйдут годы, будет оправдана.
   Но посудите сами, как нелегко дать такую гарантию! Надо исключительно точно рассчитать траекторию полета космического аппарата, чтобы он, пролетев больше сотни миллионов километров, оказался в данное время в данной точке пространства. Не раньше и не позже. Именно в этом месте и ни в каком другом. Вот уж поистине, место встречи изменить нельзя!
   При подлете к комете аппарат должен так сориентироваться, чтобы исследовать именно комету, а не какой-либо другой участок космического пространства. Мало того, все приборы должны быть в полном рабочем состоянии, несмотря на беспрецедентный космический полет, с оптических приборов должны автоматически сняться защитные крышки, телекамеры должны увидеть именно кометное ядро, а полученная многообразная информация должна поступить именно на Землю, а не в какую-нибудь другую область Солнечной системы.
   Мы не имеем возможности поведать о тех горячих дискуссиях, которые предшествовали разработке уникального проекта. Достаточно сказать, что в такой развитой в научном и техническом отношении стране как США ученым так и не удалось добиться осуществления очень интересного проекта космического исследования знаменитой кометы. В 1981 году, когда американские ученые еще надеялись на то, что их правительство выделит средства на мирный научный эксперимент, они через крупный астрономический журнал обратились к
   е*п
   населению страны с просьбой организовать добропольпмп сбор средств в поддержку космического эксперимента. Ученые подчеркивали, что если эксперимент не состоится, то следующая возможпость исследовать комету Галлея представится лишь в 2061 году! Конгресс США достаточно долго дебатировал этот вопрос, по эксперимент так и не был финансирован.
   В конце концов реальными оказались пять миссий: две советские "Вега-1" и "Вега-2", "Джотто", осуществленная на средства нескольких западноевропейских стран, и две маленькие японские станции "Суисей" и "Саки-гаке".
   Организатором и руководителем советского проекта стал академик Р. 3. Сагдеев. Проект получил название "Вега" (сокращенно от "Венера-Галлей"). Как видно из названия, объектом исследования была не только комету Галлея, но и планета Венера. Проект предполагал три этапа исследований: 1) многостороннее изучение атмосферы и поверхности Венеры с помощью специальных аппаратов, осуществляющих автоматическую посадку на далекую планету;
   2) детальное изучение закономерностей перемещения атмосферных масс Венеры с помощью аэростатов, запущенных с космического аппарата; 3) пролет мимо ядра кометы Галлея. Именно этот третий этап был наиболее сложным, ответственным и необычным. Аналогов такому эксперименту в истории космических исследований еще не было.
   В подготовке к эксперименту принимали активное участие ученые нескольких стран. Так, специальную поворотную платформу, на которой размещались оптические приборы, разработали советские и чехословацкие специалисты, уникальный прибор для ориентации платформы на исследуемый объект разработан советскими, венгерскими и французскими учеными. Специальный прибор для измерения температуры ядра был изготовлен во Франции. Прибор для получения спектров излучения внутренних областей головы кометы совместно разрабатывали и изготовили советские, болгарские и французские специалисты.
   Кроме того, активное участие па различных стадиях разработки проекта принимали ученые из Австрии, ГДР, Польши, ФРГ.
   Ежесуточно ядро выбрасывает из своих недр несколько миллионов т(?нн водяного пара и газов и около миллиона тонн пыли. Это говорит о том, что корка имесг пористое строение, а внутри ядра содержится большое количество льда. Под воздействием солнечного излучения лед под коркой нагревается и испаряегся черс^ поры. При этом очень часто водяного пара скапливается так много, что он разрывает плотную корку и устремляется нарушу. Проявление таких "кометных вулкапов)
   было неоднократно зарегистрировано и при наблюдениях с Земли. После каждого извержения "рана" быстро зарастала новой коркой.
   Благодаря космическому эксперименту ученые впервые увидели кометное ядро, которое оказалось очень похожим на спутники Марса Фобос и Деймос, а также ил малые спутцйКи Сатурна и Урана. А это свидетельствует о том, что на заре формирования Солнечной системы кометные ядра могли образовываться в сравнительной близости от Солнца приблизительно в районе между орбитами планет-гигантов Юпитера и Нептуна. В дальнеп
   15 декабря 1984 года автоматическая межпланетная станция "Вега-1" отправилась с космодрома Байконур в далекое путешествие. Ровно через шесть дней стартовала и "Вега-2". Их путь лежал к "сестре" Земли- планете Венера.
   Лишь в июне 1985 года обе "Беги" достигли Венеры и выполнили серию необходимых экспериментов. Затем, совершив сложный маневр, станции направились к месту встречи с кометой Галлея.
   Как уже говорилось, основной задачей станций было исследование ядра кометы. Поскольку скорость полета была очень большой, решено было осуществить пролет мимо ядра кометы обеих станций на расстоянии около 10 000 километров. Подходить ближе было опасно, так как ядро окружено облаком пыли. Пылинки, ударяясь со скоростью 80 километров в секунду о различные части исследовательских приборов, могли вывести эти приборы из строя еще до подлета к ядру. Так и случилось с одной из зарубежных станций, пролетевшей значительно ближе к ядру.