БИОЛОГИ́ЧЕСКИЕ ЧАСЫ́, условное понятие, указывающее на способность живых организмов ориентироваться во времени. Растения, животные и человек способны воспринимать течение времени, регистрировать его, точно «отсчитывать» и «запоминать». Эта способность носит приспособительный характер и связана с выживанием организмов в конкретных условиях. «Учёт времени» приводит к установке особого режима жизнедеятельности, соответствующего циклическим колебаниям внешних факторов. «Метрономом» в биологических часах являются эндогенные биологические ритмы, которые синхронизируются с внешними ритмами, чаще с суточными. Напр., активность пения птиц различных видов точно соответствует определённому времени суток. По ним, как говорят, можно проверять часы. Помимо биологических часов, животные имеют т.н. биологический календарь, в соответствии с которым предупреждают смену времён года физиологическими изменениями в организме, напр. поздней осенью некоторые впадают в спячку или меняют окраску. Бывают случаи, когда календарь животных не совпадает с календарём природы и можно встретить белого зайца в ещё бесснежном лесу.
 
   БИОЛОГИ́ЧЕСКОЕ РАЗНООБРА́ЗИЕ (биоразнообразие), показатель, характеризующийся числом видов живых организмов, обитающих на единице площади суши или объёма водоёма. В широком смысле этот термин охватывает множество биологических показателей и соответствует понятию «жизнь на Земле». Явление удивительного разнообразия организмов обусловлено способностью макромолекул, прежде всего нуклеиновых кислот, к спонтанному изменению структуры, что приводит к наследственной изменчивости. На этой основе биологическое разнообразие создаётся на молекулярном (возникновение генетических вариаций), популяционном (действие естественного отбора) и видовом (видообразование) уровнях с последующим увеличением биоразнообразия на биоценотическом и биосферном уровнях. Обычно биоразнообразие рассматривают на видовом уровне, для чего разработаны специальные методы измерения, в т.ч. в единицах информации. Практическое применение показатели биоразнообразия находят при контроле за процессами, протекающими в живой природе (мониторинг), и при решении вопросов её охраны, т.к. богатые видами сообщества устойчивее бедных, а антропогенное воздействие (см. Антропогенные факторы) ведёт к снижению видового богатства и изменению его характера. Описано 1,75 млн. видов живых организмов, но, по мнению учёных-систематиков, их реальное число составляет не менее 10—35 млн. Особую ценность как центры видового разнообразия на Земле представляют влажные тропические леса – основные хранители генофонда земной флоры и фауны.
 
   БИОЛО́ГИЯ, совокупность наук о живой природе, изучающих свойства и проявления жизни на всех уровнях её организации – от молекулярного до биосферного. Особенности организации и специфические проявления жизни на каждом уровне изучают соответствующие отрасли биологии. Вместе с тем решение многих проблем биологии, напр. общих закономерностей эволюции или происхождения человека, требует объединения подходов и методов различных наук.
   Первичными знаниями о живой природе человек обладал уже в глубокой древности. Их расширение и специализация связаны с различными формами практической деятельности – охотой, скотоводством, земледелием, а также с врачеванием. Начиная с 6 в. до н.э. античными философами и врачами делаются первые попытки систематического познания органического мира. Так, Аристотель (384—322 до н.э.) считается основоположником зоологии, Теофраст (372—287 до н.э.) – «отцом» ботаники, Гиппократ (ок. 460 – ок. 370 до н.э.) – родоначальником ряда направлений в медицине. В Средние века и в эпоху Возрождения значительных работ в биологии сделано не было. Исключение составляет лишь изданная в 1543 г. книга знаменитого анатома А. Везалия «О строении человеческого тела», которая дала толчок быстрому развитию анатомии в 16—17 вв. В 1628 г. У.Гарвей открыл кровообращение, совершив тем самым настоящий переворот в истории биологии. Постепенно в биологию проникают экспериментальные методы и количественные измерения. Изобретение и усовершенствование микроскопа позволили в кон. 17 в. первым микроскопистам (Р. Гук, А. Левенгук, М. Мальпиги) открыть мир неведомых ранее мельчайших существ, положив начало микробиологии, создать первые представления о тонком строении организмов, заложить основы эмбриологии.
   На рубеже 17 и 18 вв. были сделаны первые значительные работы по систематике растений и животных. А в 1735 г. К. Линней опубликовал книгу «Система природы», составившую эпоху в классификации растительного и животного мира и оказавшую влияние на всю биологию. Линней ввёл в науку двойные латинские названия для всех организмов и тем самым дал биологам международный язык, исключавший путаницу и недоразумения. Все биологические виды Линней считал неизменными с момента их сотворения. Его современник, французский естествоиспытатель Ж. Бюффон высказывал противоположную точку зрения – виды могут изменяться под влиянием окружающей среды. Первую законченную теорию эволюции создал Ж.Б. Ламарк (1809).
   Для биологии, как и для других наук, 19 в. был временем бурного развития. Благодаря новым методам, экспедициям в ранее недоступные районы Земли, более тесному взаимодействию с другими науками существенно расширился круг изучаемых биологических объектов и явлений. С другой стороны, в результате активного накопления знаний происходит дробление крупных биологических наук (ботаники, зоологии) на более специальные, посвящённые отдельным группам организмов. В 19 в. возникают или складываются почти все основные биологические науки – систематика, сравнительная анатомия, цитология, морфология, эмбриология, физиология растений и животных, палеонтология, эволюционное учение, биохимия, экология и др. Наиболее важными теоретическими обобщениями были клеточная теория и теория эволюции Ч. Дарвина (1859). Однако крупнейшее открытие 19 в. – законы наследственности Г. Менделя (1865) оставалось практически неизвестным до нач. 20 в. В 19 в. были окончательно отвергнуты представления, не нашедшие экспериментального подтверждения, напр. теория самозарождения организмов.
   В 20 в. интенсивно развивались различные разделы биологии, но наибольшее внимание уделялось двум основным направлениям – молекулярно-генетическому и биосферно-экологическому. Каждое из этих направлений имеет практические приложения, способные оказать огромное влияние на дальнейшую историю человечества. Открытия строения ДНК (Д. Уотсон, Ф. Крик, 1953) и способов хранения и реализации генетической информации привели к развитию молекулярной биологии. Достижения в генной инженерии, в медицинской генетике, в расшифровке генома человека и других биологических видов, в клонировании клеток и целых организмов, в биотехнологии могут в перспективе во многом изменить производственную деятельность и жизнь человека.
   Столь же важное значение в научном и практическом отношении имеет биосферно-экологическое направление, в значительной степени обязанное своим развитием трудам В.И. Вернадского. С успехами в этом направлении связывают научную разработку условий для сохранения биологического разнообразия и поддержания биосферы в регулируемом состоянии, пригодном для жизни человека и других населяющих Землю существ.
   Оба эти направления имеют морально-этические аспекты, вызвавшие к жизни новый пограничный раздел биологии – биоэтику.
 
   БИОЛЮМИНЕСЦЕ́НЦИЯ, свечение некоторых живых организмов. Это явление широко распространено в природе и наблюдается у бактерий, грибов, некоторых животных (жгутиконосцев, кишечнополостных, головоногих моллюсков, ракообразных, оболочников, насекомых, рыб). У многих видов биолюминесценция обусловлена ферментативным окислением особого вещества – люциферина. В процессе обмена веществ освобождённая энергия АТФ в присутствии кислорода при наличии Мg2+ и фермента люциферазы активизирует люциферин, в котором возникает электронное возбуждение с излучением энергии в виде света. Свечение возможно и без участия кислорода, напр. у медузы эквории оно происходит при взаимодействии специфического белка с Са2+. Иногда свечение вызывается симбиотическими бактериями, поселившимися в органах свечения – фотофорах, имеющихся у некоторых животных. Эти органы снабжены особым отражающим эпителием и светопреломляющими линзами. Диапазон света, излучаемого фотофорами или всем телом животного, – от голубого до красного. Свечение может быть прерывистым (мерцание) или постоянным, длиться от доли секунд до нескольких лет.
   Животные используют биолюминесценцию для освещения и приманивания добычи, отпугивания врагов, опознания особей своего вида. Явление биолюминесценции было открыто в 19 в., но описание свечения у моллюсков было дано ещё Аристотелем.
 
   БИО́М, обособленное от других сообщество живых организмов (растительных и животных), образующееся в определённой ландшафтно-географической зоне в результате сложного взаимодействия физических (климатических и др.) и биотических факторов. Биомы разных континентов (напр., саванны, листопадные леса, тундры) сходны между собой.
 
   БИОМА́ССА, общая масса особей одного вида, группы видов или сообществ организмов в расчёте на единицу площади или объёма (водная среда) местообитания. Определяется в единицах массы сухого или сырого вещества. Выражается в г/м², г/м3, кг/м3, т/км², кг/га и т.д. Биомасса растений называется фитомассой, животных – зоомассой. Ок. 90% биомассы биосферы приходится на долю наземных растений. Среди животных наибольшая биомасса у почвенных беспозвоночных, особенно у дождевых червей – от 200 до 1500 кг/га. При изучении биологической продуктивности природных сообществ определяют отдельно биомассу организмов, занимающих определённое место в пищевых цепях – продуцентов, консументов, редуцентов.
 
   БИО́НИКА, направление биологии, изучающее особенности строения и жизнедеятельности организмов с целью применения полученных знаний для решения ряда инженерных и других задач. Как наука сформировалась в сер. 20 в. Исследует способы передачи, переработки и хранения информации в нервной системе, строение и функционирование органов чувств, систем ориентации, навигации и локации у животных и др. Результаты исследований находят применение в кибернетике, машино– и приборостроении, строительстве, архитектуре, медицине, сельском хозяйстве и др. Напр., использование принципов биомеханики помогло созданию роботов, способных выполнять различные работы; изучение механизмов прогнозирования некоторыми живыми организмами метеорологических явлений позволило создать автоматические устройства, способные прогнозировать ливни, грозы, ураганы и др.
 
   БИОПОЛИМЕ́РЫ, высокомолекулярные природные соединения – белки, нуклеиновые кислоты, полисахариды, а также их производные. Являются структурной основой живых организмов и играют ведущую роль в процессах жизнедеятельности.
 
   БИОСФЕ́РА, оболочка Земли, состав, структура и энергетика которой определяются и преобразуются совокупной деятельностью живых организмов, в т.ч. человека. Иными словами, биосфера – это биогеоценотический покров Земли (см. Биогеоценоз). Включает нижнюю часть атмосферы (до высоты озонового экрана – 20—25 км над у.м.), всю гидросферу и верхнюю часть литосферы (до глуб. 3—4 км на суше и на 1—2 км ниже дна океана). Все живые организмы биосферы в совокупности образуют биомассу планеты.
   Учение о биосфере создал В.И. Вернадский, разрабатывавший его с 1926 г. Живые организмы биосферы в их совокупности он назвал живым веществом. Кроме того, он выделил биогенное вещество, создаваемое и перерабатываемое живыми организмами (напр., горючие ископаемые); косное вещество, образуемое без участия живых организмов (напр., вулканическая лава); биокосное вещество, создаваемое живыми организмами и процессами неорганической природы (напр., почва); радиоактивное и космическое (метеориты и др.) вещества.
   Ведущей силой планетарного развития Вернадский считал живое вещество. Он установил, что непрерывное взаимодействие живых организмов друг с другом и со средой обитания обеспечивает условия внешней среды, необходимые для существования жизни, т.е. гомеостаз на биосферном уровне. Учёный охарактеризовал биосферу как сложную, высокоорганизованную, динамическую систему, осуществляющую улавливание, накопление и перенос энергии путём обмена веществ между живым веществом и окружающей средой, т.е. как единую экосистему земного шара.
   Позднее (1944) Вернадский ввёл понятие – ноосфера, имея в виду новое состояние биосферы, при котором определяющим фактором её развития становится разум человека. Это положение приобретает особую актуальность в связи со всё возрастающей интенсивностью хозяйственной деятельности человека, которая в 20 в. приобрела глобальный характер и сопровождается загрязнением воздуха, воды, эрозией почв, а также другими отрицательными для биосферы последствиями. Для сохранения отдельных биогеоценозов, составляющих биосферу, создаются биосферные заповедники, принимаются также национальные и международные программы, направленные на уменьшение отрицательного антропогенного воздействия на биосферу.
 
   БИОСФЕ́РНЫЙ ЗАПОВЕ́ДНИК, охраняемые законами, в т.ч. международными, эталонные участки определённых природных зон (тайги, степи, тундры и т.д.), на которых сохраняется типичное биологическое разнообразие, ведутся наблюдения за естественными биогеоценозами, проводятся научные исследования. Такие заповедники создаются на основании международных и национальных программ под эгидой ЮНЕСКО. В 2001 г. в мире имелось 368 биосферных заповедников, расположенных в 91 стране, их общая площадь составляла 260 млн. га; в России 21 биосферный заповедник (Кавказский, Приокско-Террасный, Окский, Сихотэ-Алинский и др.).
 
   БИОТЕХНОЛО́ГИЯ, использование живых организмов и биологических процессов для получения и переработки различных продуктов. Биотехнологические методы издавна применяются в хлебопечении, сыроварении, виноделии и других производствах с участием микроорганизмов (бактерий и микроскопических грибов). С сер. 20 в. микроорганизмы начали использовать для промышленного получения вначале антибиотиков, затем витаминов, аминокислот, ферментов, кормовых белков, бактериальных удобрений и др. Микробиологическая промышленность стала важной отраслью экономики во многих странах.
   С возникновением в 1970-х гг. генной и клеточной инженерии, совершенствованием методов культивирования клеток и тканей в развитии биотехнологии начался новый этап. В это время появился и сам термин «биотехнология», употребляемый обычно только по отношению к промышленным технологиям, основанным на применении молекулярно-генетических подходов и методов.
   К нач. 21 в. в биотехнологии сложилось несколько направлений. Относительно «старое» – крупнотоннажный микробиологический синтез – обогатилось новыми методами, повышающими его эффективность (получение и отбор продуктивных мутантов, использование генно-инженерных способов и др.). Напр., для увеличения производства незаменимой аминокислоты треонина в клетки продуцента – кишечной палочки – вводят дополнительные гены, ответственные за синтез этой аминокислоты.
   Самостоятельным направлением в биотехнологии стало использование иммобилизованных ферментов, т.е. ферментов, закреплённых на каком-либо твёрдом носителе. При этом их эффективность и длительность использования возрастают многократно.
   Развитие методов генной инженерии позволило создавать желаемое сочетание генов, клонировать их и вводить этот чужеродный генетический материал в клетки и целые организмы. Так, гены человека, ответственные за синтез определённых белков, встраивали в ДНК бактерий, которые приобретали способность синтезировать этот белок. Таким способом в 1980-х гг. был получен (с помощью кишечной палочки) препарат гормона углеводного обмена – человеческий инсулин. Чужеродные гены встраивают в геномы растительных и животных организмов, получая трансгенные растения и трансгенные животные с нужными человеку свойствами и признаками, напр. высокие урожайность и продуктивность, устойчивость к болезням, высоким и низким температурам, бо́льшая технологичность, упрощающая содержание животных и уборку урожая.
   Клеточная инженерия обеспечила возможность получения высокопродуктивных культур растительных клеток, вырабатывающих биологически активные вещества для медицины. Клеточные гибриды между лимфоцитами крови и опухолевыми клетками (гибридомы) используют для получения антител (иммуноглобулинов) одного определённого вида (т.н. моноклональные антитела).
   Клонирование, издавна широко применяющееся в растениеводстве и известное как вегетативное размножение, с кон. 20 в. стало использоваться и для размножения с.-х. животных (овечка Долли, полученная в Великобритании в 1997 г.).
   Значение биотехнологии велико. Биологически активные вещества (антибиотики, витамины, ферменты и др.), полученные микробиологическим синтезом, находят широкое применение в медицине, сельском хозяйстве, в пищевой, лёгкой и др. отраслях промышленности. С помощью микроорганизмов из растительных отходов получают топливный биогаз (смесь метана и диоксида углерода), осуществляют обезвреживание и разложение промышленных и бытовых отходов, очистку сточных вод, выщелачивание металлов (золота, меди) из горных пород и отвалов. Полагают, что в недалёком будущем биотехнология способна решить основные проблемы человечества – охрану здоровья и окружающей среды, обеспечение пищей и источниками энергии.
 
   БИОТИ́ЧЕСКАЯ СРЕДА́, совокупность живых организмов, которые своей жизнедеятельностью оказывают то или иное влияние на другие организмы. Одни растения (животные) создают биотическую среду для других растений и животных. Проявляется это во взаимном влиянии организмов разных видов, выражающемся в самых различных формах (пищевые цепи, симбиоз, паразитизм, хищничество, конкуренция и др.). Организмы могут влиять друг на друга не только прямо, но и опосредованно, изменяя в процессе жизнедеятельности абиотическую среду (напр., изменение микроклимата и гидрологического режима лесными растениями).
 
   БИОТО́П, участок суши или водоёма, занятый определённым биоценозом, видовой состав которого определяется комплексом абиотических факторов (условиями рельефа, климата и др.). В более узком смысле биотоп рассматривается как среда существования комплекса животных и растений, входящих в биоценоз. Напр., биотопом можно считать открытый пресноводный водоём и его мелководье, где щуки охотятся, мечут икру и нагуливаются, или же участок со старыми деревьями, где грачи устраивают гнездовые колонии и находят пищу.
 
   БИОФИ́ЗИКА, наука, изучающая физические процессы, протекающие в живых организмах, а также воздействие физических факторов (различных излучений, магнитного поля и др.) на отдельные организмы и их сообщества. Зарождение биофизики относят к 17 в., когда были сделаны первые попытки по применению законов механики (гидродинамики) к изучению кровообращения. В кон. 18 в. итальянский анатом Л. Гальвани открыл «животное электричество», положив начало электрофизиологии. В дальнейшем быстро развивались исследования физических основ восприятия звука и света (биоакустика и биооптика), превращения и обмена энергией в организмах и их сообществах (биоэнергетика). Применение современных физико-химических и математических методов к изучению широкого круга биологических объектов и явлений привело к формированию в биофизике многих новых направлений и выделению из неё самостоятельных наук – радиобиологии, фотобиологии, магнитобиологии, физики биополимеров и др. Результаты биофизических исследований широко используются в медицине (физиотерапия, ультразвуковая диагностика, применение лазеров в хирургии и т.д.).
 
   БИОХИ́МИЯ, наука, изучающая химический состав живых организмов и химические процессы, лежащие в основе их жизнедеятельности. Исследование веществ органического происхождения, а также таких процессов, как брожение или пищеварение, началось давно, но как самостоятельная наука биохимия сложилась лишь к нач. 20 в. К этому времени были накоплены сведения о строении и биологической роли белков, жиров и углеводов, возникли представления о принципиальном сходстве химических превращений в клетках всех живых существ. Вместе с тем были выяснены характерные особенности обмена веществ у животных, растений и микроорганизмов.
   К сер. 20 в. были открыты многие витамины и гормоны, установлены метаболические пути (последовательность реакций синтеза и распада) основных классов природных соединений, изучены реакции, обеспечивающие клетки энергией. Успехи в исследовании ферментов сформировали энзимологию как самостоятельное направление. Открытие в 1950-х гг. исключительной роли нуклеиновых кислот в явлениях наследственности и изменчивости, стремление понять функции биополимеров и других биологически важных молекул в связи с их строением, а также внедрение в биохимию физических методов исследования привели к выделению из биохимии молекулярной биологии.
   Результаты, полученные биохимией, широко используются в медицине, в биотехнологии, в пищевой и микробиологической промышленности, в сельском хозяйстве.
 
   БИОЦЕНО́З, совокупность организмов – популяций растений, животных, грибов, микроорганизмов, населяющих однородный участок суши или водоёма и характеризующихся определёнными взаимоотношениями (пищевые цепи, симбиоз и т.д.) и приспособленностью к условиям окружающей среды. Каждая группа организмов занимает в биоценозе определённую ступень экологической пирамиды (продуценты, консументы и редуценты). Примерами биоценозов могут служить совокупность организмов пруда, дубравы, соснового или берёзового леса и т.д. Во многих случаях границы биоценозов размыты и условны: напр., дубрава, сосновый или берёзовый лес постепенно через опушку переходят соответственно в суходольный луг, смешанный сосново-еловый лес, болото. Биоценозы, развиваясь, либо самообновляются (в сосновом лесу вырастает новое поколение сосен), либо стареют и сменяются другими биоценозами (сосна сменяется ельником, пруд заболачивается и т.п.), в результате могут происходить некоторые изменения и в абиотической среде (освещённость, влажность, тепло и т.д.). Наиболее сложно устроены и устойчивы биоценозы с высоким биологическим разнообразием организмов. В океане – это биоценозы коралловых рифов и водорослевых мелководий. На суше – биоценозы тропического леса и лесные биоценозы умеренного климата. Так, дубрава может быть образована более чем 100 видами растений, несколькими тысячами видов животных, сотнями видов грибов и микроорганизмов, в совокупности дающими плотность населения в десятки и сотни тысяч организмов на 1 м². При этом сухая биомасса дубравы составляет 4—5 кг/м², а биологическая продуктивность – 1,5 кг/м² в год. Биоценоз – функциональная часть более сложной системы – биогеоценоза.
   БЛАДХА́УНД, порода гончих собак. Благодаря оригинальной внешности часто используются как декоративные. Родина – Англия. Крупные, массивные собаки (выс. в холке 60—67 см, масса 40—48 кг). Голова длинная, череп с сильно развитым затылочным бугром. Кожа на скулах и на лбу образует характерные толстые складки, морщины, которые отличают эту породу от всех других. Глаза округлые, с нависающим верхним и отвисающим нижним веком (видна красная конъюнктива). Уши очень длинные. Хвост длинный и толстый, на нижней стороне удлинённая шерсть образует подвес, который к концу хвоста сходит на нет. Шерсть короткая. Окрас чёрный с коричневыми подпалами или однотонный тёмно-коричневый. Разводят породу в Европе; в России малочисленна.
   БЛА́СТУЛА, зародыш многоклеточных животных в заключительной фазе периода дробления оплодотворённого яйца. Строение бластулы зависит от строения яйца и характера дробления. Как правило, это шаровидное тело, состоящее из одного слоя клеток, окружающих наполненную жидкостью полость – бластоцель. Процесс образования бластулы называется бластуляцией. Следующая стадия развития зародыша – гаструла.
 
   БЛЕ́ДНАЯ ПОГА́НКА, гриб рода мухоморов. Распространена в Северной Америке, Евразии. В России – в европейской части, на Алтае. Шляпка диам. 5—14 см, вначале полушаровидная, затем распростёртая, оливково-, серо-, жёлто-, бледно-зелёная, с радиальными жёлто-коричневыми волокнами. Пластинки белые. Мякоть белая со сладковатым запахом. Ножка цилиндрическая, дл. 8—15 см, диам. 1—2 см, книзу клубневидно расширенная. Как и у мухомора, есть кольцо на ножке и чашечка при основании из остатков покрывала. Встречается в августе—сентябре в лиственных и смешанных лесах. Самый ядовитый из грибов. Симптомы отравления проявляются лишь после того, как в организме начинаются необратимые изменения в печени и почках.