Страница:
6) Основная идея галилеевской физики: природа как математический Универсум
Относительно высокий уровень геометрии, взятой, согласно Галилею, уже не только в земном, но и в более широком, даже астрономическом, приложении, был для Галилея тем традиционным способом мысли, который позволил соотнести эмпирию и предельные математические идеи. Для него эта традиция была столь же естественна, как и традиция геодезии, интенция которой ко все большей точности измерения и ко все более объективному определению самих форм была задана уже геометрией. Если бы эмпирическая, весьма узкая постановка задач, обусловленных технической практикой, с самого начала была движущей силой выдвижения задач перед чистой геометрией, то чистая геометрия давно бы уже стала "прикладной" геометрией, средством для развития техники, средством построения ее концепций и реализации ее задач, прежде всего задачи систематического развертывания методов измерения для объективного определения форм, достигаемого лишь в постоянной "аппроксимации" к геометрическим идеалам, к предельным формам.
Итак, Галилей, не сознавая этого, поставил вопрос о том, как же возникает исходная идеализирующая процедура (как она возникает на базе догеометрического, чувственного мира и присущих ему практических искусств). Он попытался углубить его до вопроса о том, каково происхождение аподиктической математической очевидности. При геометрической установке потребность в обсуждении этих вопросов и не возникает: тот, кто изучает геометрию, тот должен "понять" геометрические понятия и принципы, должен быть знаком с операциями как с методами обращения специфически определяемых форм, причем должен найти применение соответствующим фигурам, начертанным на бумаге ("моделям"). То, что для геометрии, понятой как отрасль универсального знания о сущем (философии), было бы релевантным и весьма значительным, - все это было чуждо Галилею; обсуждение проблемы геометрической очевидности, того, "как" она возникла, ему было чуждо. Темой наших дальнейших исторических исследований, начиная с физики Галилея, и будет то, каким же образом произошел этот столь важный сдвиг в точках зрения и почему проблема "генезиса" познания стала позднее главной.
Здесь мы хотим отметить, что именно геометрия, с присущей ей наивной априорной очевидностью, которая оказывается движущей силой любой нормальной геометрической деятельности, определила мышление Галилея и привела его к выдвижению идеи физики, ставшей делом всей его жизни. Так, исходя из практического понимания пути, которым геометрия содействует однозначному определению чувственного мира, ставшего традицией, Галилей заявляет: там, где такая методика создана, мы можем преодолеть относительность субъективных взглядов, существенных лишь для эмпирически созерцаемого мира. На этом пути мы открываем тождественную, безотносительную истину, в которой каждый может убедиться, каждый, кто в состоянии понять и применять эти методы. Следовательно, здесь мы постигаем истинно сущее, правда, в форме эмпирически данного сущего, которое все более и более приближается к геометрически идеальной форме, действующей как руководящая сила.
Между тем вся чистая математика имеет дело лишь с абстракциями тел и физического мира, а именно только с абстрактными формами, существующими в пространстве-времени и тем самым с абстрактными формами как с "чистыми", "идеальными", предельными формами. Они становятся конкретными для нас в эмпирически чувственном созерцании, где действительные и возможные эмпирические формы даны просто как "формы" некоей материи в своей чувственной наполненности, как то, что обычно называли "специфическими" чувственными качествами1 (цвет, звук, запах и т.п.) и как те качества, которые выразимы в количественных различиях.
Конкретность чувственно воспринимаемых тел, их бытия в действительном и возможном опыте связана с их изменчивостью. Изменение их места в пространстве и времени, их формы и полноты свойств отнюдь не произвольны или случайны, но в своих чувственно-типологических способах проявления эмпирически зависимы друг от друга. Подобная соотнесенность изменений тел друг с другом является уже моментом повседневного опыта; она позволяет воспринять в опыте связность симуль-танно и сукцессивно сосуществующих тел. Иначе говоря, связует друг с другом их бытие и так-бытие (Sosein). Нередко, но отнюдь не всегда, компоненты этих реально-каузальных связей в опыте явно противопо
1 Постоянное отождествление чувственных качеств тел, реально воспринимаемых в опыте, нашего повседневно созерцаемого мира, таких, как цвет, осязаемость, запах, теплота, тяжесть и т.д., с самими телами, как с их свойствами, с чувственно данными, - все это дурное наследие той психологической традиции, которая берет свое начало с Локка. "Данные ощущений" также называют чувственными качествами и вообще не отличают от них. Там же, где начинают проводить различие (не описывая, что весьма необходимо, его подробно) важную роль играет то заблуждение (о нем мы еще будем говорить в дальнейшем), что "данные ощущений" непосредственны. С этим же связано и отождествление тел с физико-математическими телами, смысловые истоки которого мы должны исследовать. Здесь мы говорим, оставаясь на почве действительного опыта, о качествах, свойствах тел, действительно воспринимаемых нами. И если мы говорим о них как о полноте всех форм, то мы рассматриваем эти формы как "качества" самих тел, причем как чувственно воспринимаемые, т.е. как то, что дано не в соотнесенности с определенными органами чувств, подобно (XlOVYfCO, KOIVCC, а есть ШОУГ]ГО, 101.0..
ставляются. Там же, где этого не происходит и возникает нечто совершенно новое, мы задаемся вопросом "Почему оно возникло?" и рассматриваем его в определенных условиях места и времени. Вещи чувственно воспринимаемого мира (всегда воспринимаемые так, как они воспринимаются в нашей повседневной жизни и оцениваемые нами как некая действительность) обладают, так сказать, "привычностью", сохраняясь в типичных, схожих друг с другом обстоятельствах. Если взять чувственно воспринимаемый мир в целом, лишь в его изменчивой данности, то он как целое обладает своей "привычностью", а именно быть столь же привычным сегодня, каким привычным он был вчера. Итак, эмпирически воспринимаемый нами мир обладает общим эмпирическим стилем. Изменяя этот мир в фантазии или предсказывая будущий ход мирового процесса во всей его неизведанности, но все же "как то, чем он может быть", именно в его возможностях, мы неизбежно представляем мир тем же образом, что и раньше. В рефлексии и свободной вариации фантазии мы можем лишь осознавать эти возможности. Итак, мы можем лишь тематизировать инвариантный всеобщий стиль, с помощью которого созерцаемый мир сохраняется в потоке всего опыта. Вместе с тем мы видим, что вещи и процессы появляются и протекают не произвольно, а априорно связаны с этим стилем, инвариантными формами созерцаемого мира. Иными словами, связаны универсальной, каузальной регуляцией всего того, что сосуществует в мире ,и формированием благодаря этому всеобщей, непосредственной или опосредованной связности, в которой мир оказывается уже не просто вселенной (Allheit), но и всеединством (Alleinheit), чем-то целостным. Априори очевидно, сколь мало мы действительно постигаем в опыте, исходя из специфических причинных связей, сколь мало нам известно что-либо из прошлого опыта и может быть использовано в будущем опыте.
Этот универсально каузальный подход к созерцаемому миру позволяет выдвигать гипотезы, индуктивные заключения, предвидения относительно того, что неизвестно в настоящем, прошлом и будущем. Но в донаучном познании жизни мы сталкиваемся с чем-то приблизительным, с типическим. Как же возможна "философия", научное познание мира, если неопределенное осознание тотальности имеет свои истоки, в которых мир осознается как горизонт при любой смене сиюминутных интересов и познавательных тем? Конечно, как уже было сказано, в своей рефлексии мы можем тематизировать целостность мира и постичь ее каузальным образом. При этом, правда, мы приходим лишь к очевидности пустой абстракции: все воспринимаемые события независимо от места и времени определены каузально. В каком же отношении находится она к наличной каузальности мира, которая будучи определенной сетью каузальных связей, делает конкретными все реальные события независимо от времени? "Философское", подлинное научное познание мира лишь тогда имеет смысл и лишь тогда возможно, когда открыты методы, которые позволяют конструировать систематически и заранее бесконечность его каузальных связей от самых неустойчивых, данных в непосредственном опыте, до относительно устойчивых. И эта конструкция при всей ее бесконечности должна быть доказательной. Как же это мыслимо?
Здесь наставницей нам служит математика. Она уже указала нам путь относительно пространственно-временных форм двояким образом. Во-первых, она создала идеальную объективность с помощью идеализации физического мира и его пространственно-временной оформленности. Из неопределенных, всеобщих форм пространства и времени, присущих жизненному миру, из свойственных ему эмпирически созерцаемых форм она создала объективный мир в подлинном смысле слова, а именно бесконечную тотальность идеальных предметностей, определяемых методически и всегда и для любого человека однозначно. Тем самым она впервые показала, что бесконечность предметов, субъективно-релятивных и данных лишь в неопределенных, всеобщих представлениях, объективно определяема лишь благодаря априорному всеохватывающему методу и мыслима как действительно определенная сама по себе. Точнее говоря, определяемая как существующая сама по себе и в своих предметах, и в их свойствах, и в своих отношениях. Говоря "мыслима", я имею в виду, что бесконечность конструируема ex datis в своем объективно истинном бытии-самом-по-себе с помощью не просто постулируемого, но действительно созданного, аподиктически воспроизводимого метода.
Во-вторых, математика, вступающая в контакт с искусством измерения и руководящая им, нисходя от мира идеальных сущностей (Idealitat) к эмпирически созерцаемому миру, показывает, что может быть достигнут универсальный, действительно созерцаемый мир 6 самих вещах, хотя она, будучи математикой форм, и проявляет интерес лишь к одной его стороне (правда, необходимым образом присутствующей во всех вещах), все же в состоянии достичь объективно реального познания совершенно нового рода, а именно аппроксимативно приближающегося к миру ее собственных идеальных сущностей. Вещи эмпирически созерцаемого мира в соответствии с образом действия мира (Weltstil) обладают телесностью и суть "res extensae", воспринимаются в своих изменчивых связях и, будучи рассмотрены как целое, представляют собой совокупность, где каждое отдельное тело занимает свое относительное место и т.д. С помощью чистой математики и практического искусства измерения можно построить для всего физического мира совершенно новое индуктивное предсказание, а именно на основе уже данных и измеренных характеристик форм "рассчитать" неизбежные характеристики, еще неизвестные и недоступные для непосредственного измерения. Так идеальная геометрия, отчужденная от мира, становится "прикладной" и вместе с тем в известном смысле всеобщим методом познания реальности.
Но не позволяет ли этот способ объективации мышления, делающий акцент на абстрактном аспекте мира, приблизиться к решению следующих вопросов?
Нельзя ли допустить существование чего-то подобного и для конкретного мира как такового? Может быть, обращение мыслителей Ренессанса, в частности, Галилея, к античной философии со всей очевидностью раскрывает возможность философии как эпистемы, управляющей всей наукой об объективном мире? Если чистая математика, примененная к природе, полностью осуществила, как уже было показано, постулат эпистемы в сфере форм, то не предвосхитил ли Галилей и идею природы, конструктивно и во всех своих аспектах определяемой в этом способе объективации мышления?
Возможно ли, что с помощью методов измерения, процедур аппроксимации и конструктивных определений охватываются все реальные свойства и каузальные связи созерцаемого реального мира, опытно исследуемого во всех аспектах? Оправдано ли это всеохватывающее предсказание и может ли оно стать практическим методом конкретного познания природы?
Трудность состоит в том, что материальная полнота "специфических" чувственных качеств не может восполнить конкретность пространственно-временных характеристик физического мира, а в своем степенном различии (Gradualitat) эти характеристики не могут рассматриваться непосредственно как сами эти формы. Однако эти качества и все, что образует конкретность чувственно воспринимаемого мира, необходимо понять как выражение "объективного" мира. И более того, они должны сохранить это значение. Если во всех изменениях субъективных интерпретаций остается несокрушимой достоверность одного и того же мира, связующего нас, самой по себе сущей действительности - именно таков способ мысли, приведшей к выдвижению идеи новой физики, - то все моменты опытного знания открывают нам тот же самый мир. Объективное знание о действительности достижимо, если те стороны, от которых чистая математика абстрагируется, например, от чувственных качеств, стороны пространственно-временных форм и их возможных конфигураций , если они были математизируемы не непосредственно, а лишь косвенным путем.
с) Проблема математизируемости "полноты" <качеств>
Здесь встает вопрос о том, что же такое косвенная математизация? Прежде всего обратимся к той глубокой причине, из-за которой непосредственная математизация (или какой-то аналог аппроксимативного конструирования) специфических чувственных качеств 6 принципе невозможна.
Эти качества обнаруживаются в градациях степени, в соответствии с определенным способом измерения эти качества принадлежат всем градациям степени - "измерению" "величины" холода и тепла, шероховатости и гладкости, освещенности и затемненности и т.д. Но здесь еще не существует точного измерения, нет повышения точности ни измерения, ни методов измерения. Сегодня, говоря об измерении, о единицах измерения, о методах измерения или о величинах, мы обычно понимаем "точное" как то, что уже соотнесено с идеальными сущностями; сколь ни трудно, но все же необходимо осуществить изолирующее абстрагирование полноты: рассмотрев физический мир, так сказать, опытно, под углом зрения тех свойств, которые принято называть "специфическими чувственными качествами", необходимо с помощью универсальных абстракций, противопоставляемых этим качествам, создать универсальный мир форм.
Что же такое "точность"? Очевидно, не что иное, как то, что уже было сказано выше: эмпирическое измерение при повышении своей точности и руководствующееся миром идеальных сущностей, объективируемого с помощью процедур идеализации и конструирования, или миром особых идеальных структур, подчиняющихся шкалам измерения. Здесь следует прояснить эту противоположность. Мы имеем не две, а лишь одну универсальную форму мира, не две, и лишь одну геометрию, а именно геометрию такого рода форм, одну, а не две полноты <чувственных качеств>. Итак, тела эмпирически воспринимаемого мира в соответствии со структурой мира, априорно принадлежащей самому миру, таковы, что каждое тело при расширении себя, говоря абстрактно, становится протяженностью, а протяженность всех этих форм оказывается некоей, совокупной, бесконечной протяженностью мира. В качестве мира, универсальной конфигурации всех тел протяженность - это тотальная форма, охватывающая все формы, а эта форма идеализируема с помощью аналитических процедур и становится господствующей благодаря процедуре конструирования.
Конечно, к структуре мира принадлежат все тела, обладающие специфическими чувственными качествами. Однако в основе качественных конфигураций нет какого-либо аналога пространственно-временным формам; они не включены в форму мира, специфическую для них. Предельные формы этих качеств не идеализируемы в аналогичном смысле, измерение их ("оценка") не соотносимо с соответствующими идеальными сущностями в конструируемом мире, хотя и соотносимо с идеальными сущностями объективируемого мира. Поэтому и аппроксимация по своему смыслу не аналогична тому действию, которое присуще математизируемым формам, - объективирующему действию.
Что же касается "косвенной математизации" тех аспектов мира, которые сами по себе не имеют математизируемой формы мира, то такая математизация мыслима лишь в том смысле, что специфические чувственные качества ("полнота" их), опытно воспринимаемые в телах, соединены с упорядоченными формами, которые по своей сути принадлежат телам.
Если спросить, чем же предопределены априори универсальная форма мира с ее универсальной каузальностью, т.е. если задаться вопросом об инвариантном и всеобщем способе бытия (Seinsstil), который сохраняется в воспринимаемом нами мире во всех непрерывных изменениях, то, с одной стороны, предопределена форма пространства-времени и каждое тело определено относительно этой формы, причем определено априори (до идеализации); кроме того, предопределено и то, что в каждом реально существующем теле эмпирически данные формы требуют эмпирической полноты и наоборот; поэтому эта всеобщая каузальность связует в конкретное те моменты, которые были оторваны друг от друга, лишь абстрактно, а не реально. Далее, вообще-то говоря, существует универсальная конкретная каузальность. Благодаря ей можно предсказать, что воспринимаемый мир может быть воспринимаем как мир в бесконечно открытом горизонте, а бесконечное многообразие особенных причин может быть предсказано лишь благодаря этому горизонту и только в нем. Итак, в любом случае нам априори известно то, что физический мир, взятый со стороны любой формы .требует полноты сторон, пронизывающих все формы, а также известно, что любое изменение, независимо от того, относится ли оно к форме или к полноте сторон, осуществлялось в соответствии с каузальной связью, непосредственной или опосредствованной. Столь далеко простирается неопределенное, всеобщее, априорное предвосхищение.
Все же нельзя сказать, что все изменения полноты качеств, все их превращения и их неизменность осуществляются по каузальным правилам так, что вся абстрактная сторона мира исключительно зависит от того, что каузально осуществляется в формах как определенной стороне мира. Иначе говоря, априори нельзя считать, что любое изменение специфических качеств воспринимаемых тел, которые становятся предметом действительного и возможного опыта, причинным образом указывает на абстрактный слой мира слой форм, т.е. что каждое такое изменение имеет своего двойника в царстве форм, а совокупное изменение их полноты имеет своего каузального двойника в сфере форм.
Эта мысль может показаться прямо-таки фантастической. Ведь мы тем самым принимаем давно уже известную и широко осуществлявшуюся тысячелетия тому назад, правда, отнюдь не во всех областях, идеализацию пространства-времени со всеми их формами, со всеми изменениями пространства и времени и со всеми изменениями их форм. В этом и заключалась, как мы уже знаем, идеализация, осуществленная искусством измерения не просто как искусством измерения, а как искусством создания эмпирически каузальных конструкций (причем, само собой разумеется, как и любое искусство, оно использует и дедуктивные выводы). Теоретическая установка и тематизация чистых сущностей и конструкций ведет к чистой геометрии (под ней здесь понимается и математика чистых форм вообще); а позднее - вместе с поворотом, который нами уже был описан, - возникает, как мы помним, прикладная геометрия: практическое искусство измерения, осуществляющееся на основе идеальных сущностей и идеальных конструкций, построенных с их помощью. Следовательно, возникает практическое искусство измерения в соответствующих, весьма узких областях конкретно-причинной объективации физического мира. Коль скоро все это можно сделать явным, то выдвинутая уже давно и казавшаяся странной мысль перестала казаться странной, а благодаря научному воспитанию в школе, начинающемуся уже в детском возрасте, эта мысль обрела, наоборот, характер чего-то само собой разумеющегося. То, что в донаучном опыте мы воспринимаем как цвет, звук, тепло, вес тел, оказывается при каузальном подходе, например, тепловым излучением тел, которое делает теплым все окружающие тела и тем самым обнаруживается "физически" - как колебания звуковые, тепловые, следовательно, только как процессы мира форм. Ныне этот способ универсальной индикации рассматривается как нечто само собой разумеющееся. Однако если возвратиться к Галилею, то для него - создателя концепции, впервые сделавшей возможной создание физики,- все это не было чем-то само собой разумеющимся, каким оно стало благодаря его деятельности. Для Галилея само собой разумеющейся была лишь чистая математика и обычный способ ее применения.
Если задуматься о мотивации Галилея, решающей для формирования идеи новой физики, то необходимо отметить, что в его эпоху ход его мысли казался странным и задаться вопросом, как он пришел к мысли, согласно которой все специфические чувственные качества должны рассматриваться как реальное обнаружение математических индикаторов процессов, присущих идеальным формам, всегда принимаемых как нечто .само собой разумеющееся. Из этого вытекает возможность косвенной математизации в полном смысле слова, поскольку возможны конструирование и объективное определение (хотя и опосредствованно и с помощью индуктивных методов) всех процессов с точки зрения полноты ex datis. Бесконечная природа - этот конкретный универсум каузальности стала своеобразной прикладной математикой - таково утверждение этой странной концепции.
Все же вначале следует ответить на вопрос, что же вызвало к жизни в этом традиционно данном мире, математизация которого весьма ограниченна и осуществляется так, как было указано греками, что же вызвало к жизни мысль Галилея?
d) Движущие мотивы, галилеевской концепции природы
Уже здесь налицо повод, еще весьма слабый, для того чтобы более внимательно отнестись к многообразным, но все же лишенным внутренней связи формам опыта, которые существовали в совокупном преднаучном опыте, позволяли достичь опосредствованной квантификации чувственных качеств и выражения их через величины и числовые меры. Уже пифагорейцы в древности заметили зависимость высоты звука от длины натянутой и колеблющейся струны. Конечно, были хорошо известны и иные причинные зависимости аналогичного рода. В их основе лежит зависимость конкретно воспринимаемых процессов окружающего мира от полноты событий и процессов в сфере форм, зависимость легко выявляемая. Однако здесь еще, вообще-то, не существует мотива для анализа сплетений каузальных зависимостей. Они не возбуждают какого-либо интереса, будучи смутными и неопределенными. Совершенно иначе обстоит дело там, где они становятся определенными по характеру, что позволяет применить определяющую индукцию и вынуждает нас прибегнуть к измерению полноты. Отнюдь не все, что изменяется вместе с такой стороной, как форма, может быть измерено с помощью традиционных методов. От этих опытных наблюдений еще длинный путь к выдвижению универсальной идеи и гипотезы, согласно которой все специфически чувственные качества - это лишь индикаторы, указывающие на определенную констелляцию фигур и процессов, присущих сфере форм. К этому вплотную подошли мыслители Возрождения, которые делали смелые обобщения и выдвигали нередко чрезмерные гипотезы, находившие поддержку у публики. Математика как царство подлинно объективного знания (и техника под ее руководством) была и для Гали-лея, и для "современного" человека, центром интересов, направленных на философское познание мира и рациональную практику. Должны быть найдены методы измерения всего того, что охватывает геометрия, математика форм в их идеальности и априорности. Весь конкретный мир должен раскрыть себя как математически-объективный, если мы, осуществляя отдельные опыты, исходим из того, что все в них измеримо с помощью прикладной геометрии и, следовательно, создаем соответствующие методы измерения. Если мы действуем таким образом, то мы опосредствованно математизируем все специфические качественные события.
Относительно высокий уровень геометрии, взятой, согласно Галилею, уже не только в земном, но и в более широком, даже астрономическом, приложении, был для Галилея тем традиционным способом мысли, который позволил соотнести эмпирию и предельные математические идеи. Для него эта традиция была столь же естественна, как и традиция геодезии, интенция которой ко все большей точности измерения и ко все более объективному определению самих форм была задана уже геометрией. Если бы эмпирическая, весьма узкая постановка задач, обусловленных технической практикой, с самого начала была движущей силой выдвижения задач перед чистой геометрией, то чистая геометрия давно бы уже стала "прикладной" геометрией, средством для развития техники, средством построения ее концепций и реализации ее задач, прежде всего задачи систематического развертывания методов измерения для объективного определения форм, достигаемого лишь в постоянной "аппроксимации" к геометрическим идеалам, к предельным формам.
Итак, Галилей, не сознавая этого, поставил вопрос о том, как же возникает исходная идеализирующая процедура (как она возникает на базе догеометрического, чувственного мира и присущих ему практических искусств). Он попытался углубить его до вопроса о том, каково происхождение аподиктической математической очевидности. При геометрической установке потребность в обсуждении этих вопросов и не возникает: тот, кто изучает геометрию, тот должен "понять" геометрические понятия и принципы, должен быть знаком с операциями как с методами обращения специфически определяемых форм, причем должен найти применение соответствующим фигурам, начертанным на бумаге ("моделям"). То, что для геометрии, понятой как отрасль универсального знания о сущем (философии), было бы релевантным и весьма значительным, - все это было чуждо Галилею; обсуждение проблемы геометрической очевидности, того, "как" она возникла, ему было чуждо. Темой наших дальнейших исторических исследований, начиная с физики Галилея, и будет то, каким же образом произошел этот столь важный сдвиг в точках зрения и почему проблема "генезиса" познания стала позднее главной.
Здесь мы хотим отметить, что именно геометрия, с присущей ей наивной априорной очевидностью, которая оказывается движущей силой любой нормальной геометрической деятельности, определила мышление Галилея и привела его к выдвижению идеи физики, ставшей делом всей его жизни. Так, исходя из практического понимания пути, которым геометрия содействует однозначному определению чувственного мира, ставшего традицией, Галилей заявляет: там, где такая методика создана, мы можем преодолеть относительность субъективных взглядов, существенных лишь для эмпирически созерцаемого мира. На этом пути мы открываем тождественную, безотносительную истину, в которой каждый может убедиться, каждый, кто в состоянии понять и применять эти методы. Следовательно, здесь мы постигаем истинно сущее, правда, в форме эмпирически данного сущего, которое все более и более приближается к геометрически идеальной форме, действующей как руководящая сила.
Между тем вся чистая математика имеет дело лишь с абстракциями тел и физического мира, а именно только с абстрактными формами, существующими в пространстве-времени и тем самым с абстрактными формами как с "чистыми", "идеальными", предельными формами. Они становятся конкретными для нас в эмпирически чувственном созерцании, где действительные и возможные эмпирические формы даны просто как "формы" некоей материи в своей чувственной наполненности, как то, что обычно называли "специфическими" чувственными качествами1 (цвет, звук, запах и т.п.) и как те качества, которые выразимы в количественных различиях.
Конкретность чувственно воспринимаемых тел, их бытия в действительном и возможном опыте связана с их изменчивостью. Изменение их места в пространстве и времени, их формы и полноты свойств отнюдь не произвольны или случайны, но в своих чувственно-типологических способах проявления эмпирически зависимы друг от друга. Подобная соотнесенность изменений тел друг с другом является уже моментом повседневного опыта; она позволяет воспринять в опыте связность симуль-танно и сукцессивно сосуществующих тел. Иначе говоря, связует друг с другом их бытие и так-бытие (Sosein). Нередко, но отнюдь не всегда, компоненты этих реально-каузальных связей в опыте явно противопо
1 Постоянное отождествление чувственных качеств тел, реально воспринимаемых в опыте, нашего повседневно созерцаемого мира, таких, как цвет, осязаемость, запах, теплота, тяжесть и т.д., с самими телами, как с их свойствами, с чувственно данными, - все это дурное наследие той психологической традиции, которая берет свое начало с Локка. "Данные ощущений" также называют чувственными качествами и вообще не отличают от них. Там же, где начинают проводить различие (не описывая, что весьма необходимо, его подробно) важную роль играет то заблуждение (о нем мы еще будем говорить в дальнейшем), что "данные ощущений" непосредственны. С этим же связано и отождествление тел с физико-математическими телами, смысловые истоки которого мы должны исследовать. Здесь мы говорим, оставаясь на почве действительного опыта, о качествах, свойствах тел, действительно воспринимаемых нами. И если мы говорим о них как о полноте всех форм, то мы рассматриваем эти формы как "качества" самих тел, причем как чувственно воспринимаемые, т.е. как то, что дано не в соотнесенности с определенными органами чувств, подобно (XlOVYfCO, KOIVCC, а есть ШОУГ]ГО, 101.0..
ставляются. Там же, где этого не происходит и возникает нечто совершенно новое, мы задаемся вопросом "Почему оно возникло?" и рассматриваем его в определенных условиях места и времени. Вещи чувственно воспринимаемого мира (всегда воспринимаемые так, как они воспринимаются в нашей повседневной жизни и оцениваемые нами как некая действительность) обладают, так сказать, "привычностью", сохраняясь в типичных, схожих друг с другом обстоятельствах. Если взять чувственно воспринимаемый мир в целом, лишь в его изменчивой данности, то он как целое обладает своей "привычностью", а именно быть столь же привычным сегодня, каким привычным он был вчера. Итак, эмпирически воспринимаемый нами мир обладает общим эмпирическим стилем. Изменяя этот мир в фантазии или предсказывая будущий ход мирового процесса во всей его неизведанности, но все же "как то, чем он может быть", именно в его возможностях, мы неизбежно представляем мир тем же образом, что и раньше. В рефлексии и свободной вариации фантазии мы можем лишь осознавать эти возможности. Итак, мы можем лишь тематизировать инвариантный всеобщий стиль, с помощью которого созерцаемый мир сохраняется в потоке всего опыта. Вместе с тем мы видим, что вещи и процессы появляются и протекают не произвольно, а априорно связаны с этим стилем, инвариантными формами созерцаемого мира. Иными словами, связаны универсальной, каузальной регуляцией всего того, что сосуществует в мире ,и формированием благодаря этому всеобщей, непосредственной или опосредованной связности, в которой мир оказывается уже не просто вселенной (Allheit), но и всеединством (Alleinheit), чем-то целостным. Априори очевидно, сколь мало мы действительно постигаем в опыте, исходя из специфических причинных связей, сколь мало нам известно что-либо из прошлого опыта и может быть использовано в будущем опыте.
Этот универсально каузальный подход к созерцаемому миру позволяет выдвигать гипотезы, индуктивные заключения, предвидения относительно того, что неизвестно в настоящем, прошлом и будущем. Но в донаучном познании жизни мы сталкиваемся с чем-то приблизительным, с типическим. Как же возможна "философия", научное познание мира, если неопределенное осознание тотальности имеет свои истоки, в которых мир осознается как горизонт при любой смене сиюминутных интересов и познавательных тем? Конечно, как уже было сказано, в своей рефлексии мы можем тематизировать целостность мира и постичь ее каузальным образом. При этом, правда, мы приходим лишь к очевидности пустой абстракции: все воспринимаемые события независимо от места и времени определены каузально. В каком же отношении находится она к наличной каузальности мира, которая будучи определенной сетью каузальных связей, делает конкретными все реальные события независимо от времени? "Философское", подлинное научное познание мира лишь тогда имеет смысл и лишь тогда возможно, когда открыты методы, которые позволяют конструировать систематически и заранее бесконечность его каузальных связей от самых неустойчивых, данных в непосредственном опыте, до относительно устойчивых. И эта конструкция при всей ее бесконечности должна быть доказательной. Как же это мыслимо?
Здесь наставницей нам служит математика. Она уже указала нам путь относительно пространственно-временных форм двояким образом. Во-первых, она создала идеальную объективность с помощью идеализации физического мира и его пространственно-временной оформленности. Из неопределенных, всеобщих форм пространства и времени, присущих жизненному миру, из свойственных ему эмпирически созерцаемых форм она создала объективный мир в подлинном смысле слова, а именно бесконечную тотальность идеальных предметностей, определяемых методически и всегда и для любого человека однозначно. Тем самым она впервые показала, что бесконечность предметов, субъективно-релятивных и данных лишь в неопределенных, всеобщих представлениях, объективно определяема лишь благодаря априорному всеохватывающему методу и мыслима как действительно определенная сама по себе. Точнее говоря, определяемая как существующая сама по себе и в своих предметах, и в их свойствах, и в своих отношениях. Говоря "мыслима", я имею в виду, что бесконечность конструируема ex datis в своем объективно истинном бытии-самом-по-себе с помощью не просто постулируемого, но действительно созданного, аподиктически воспроизводимого метода.
Во-вторых, математика, вступающая в контакт с искусством измерения и руководящая им, нисходя от мира идеальных сущностей (Idealitat) к эмпирически созерцаемому миру, показывает, что может быть достигнут универсальный, действительно созерцаемый мир 6 самих вещах, хотя она, будучи математикой форм, и проявляет интерес лишь к одной его стороне (правда, необходимым образом присутствующей во всех вещах), все же в состоянии достичь объективно реального познания совершенно нового рода, а именно аппроксимативно приближающегося к миру ее собственных идеальных сущностей. Вещи эмпирически созерцаемого мира в соответствии с образом действия мира (Weltstil) обладают телесностью и суть "res extensae", воспринимаются в своих изменчивых связях и, будучи рассмотрены как целое, представляют собой совокупность, где каждое отдельное тело занимает свое относительное место и т.д. С помощью чистой математики и практического искусства измерения можно построить для всего физического мира совершенно новое индуктивное предсказание, а именно на основе уже данных и измеренных характеристик форм "рассчитать" неизбежные характеристики, еще неизвестные и недоступные для непосредственного измерения. Так идеальная геометрия, отчужденная от мира, становится "прикладной" и вместе с тем в известном смысле всеобщим методом познания реальности.
Но не позволяет ли этот способ объективации мышления, делающий акцент на абстрактном аспекте мира, приблизиться к решению следующих вопросов?
Нельзя ли допустить существование чего-то подобного и для конкретного мира как такового? Может быть, обращение мыслителей Ренессанса, в частности, Галилея, к античной философии со всей очевидностью раскрывает возможность философии как эпистемы, управляющей всей наукой об объективном мире? Если чистая математика, примененная к природе, полностью осуществила, как уже было показано, постулат эпистемы в сфере форм, то не предвосхитил ли Галилей и идею природы, конструктивно и во всех своих аспектах определяемой в этом способе объективации мышления?
Возможно ли, что с помощью методов измерения, процедур аппроксимации и конструктивных определений охватываются все реальные свойства и каузальные связи созерцаемого реального мира, опытно исследуемого во всех аспектах? Оправдано ли это всеохватывающее предсказание и может ли оно стать практическим методом конкретного познания природы?
Трудность состоит в том, что материальная полнота "специфических" чувственных качеств не может восполнить конкретность пространственно-временных характеристик физического мира, а в своем степенном различии (Gradualitat) эти характеристики не могут рассматриваться непосредственно как сами эти формы. Однако эти качества и все, что образует конкретность чувственно воспринимаемого мира, необходимо понять как выражение "объективного" мира. И более того, они должны сохранить это значение. Если во всех изменениях субъективных интерпретаций остается несокрушимой достоверность одного и того же мира, связующего нас, самой по себе сущей действительности - именно таков способ мысли, приведшей к выдвижению идеи новой физики, - то все моменты опытного знания открывают нам тот же самый мир. Объективное знание о действительности достижимо, если те стороны, от которых чистая математика абстрагируется, например, от чувственных качеств, стороны пространственно-временных форм и их возможных конфигураций , если они были математизируемы не непосредственно, а лишь косвенным путем.
с) Проблема математизируемости "полноты" <качеств>
Здесь встает вопрос о том, что же такое косвенная математизация? Прежде всего обратимся к той глубокой причине, из-за которой непосредственная математизация (или какой-то аналог аппроксимативного конструирования) специфических чувственных качеств 6 принципе невозможна.
Эти качества обнаруживаются в градациях степени, в соответствии с определенным способом измерения эти качества принадлежат всем градациям степени - "измерению" "величины" холода и тепла, шероховатости и гладкости, освещенности и затемненности и т.д. Но здесь еще не существует точного измерения, нет повышения точности ни измерения, ни методов измерения. Сегодня, говоря об измерении, о единицах измерения, о методах измерения или о величинах, мы обычно понимаем "точное" как то, что уже соотнесено с идеальными сущностями; сколь ни трудно, но все же необходимо осуществить изолирующее абстрагирование полноты: рассмотрев физический мир, так сказать, опытно, под углом зрения тех свойств, которые принято называть "специфическими чувственными качествами", необходимо с помощью универсальных абстракций, противопоставляемых этим качествам, создать универсальный мир форм.
Что же такое "точность"? Очевидно, не что иное, как то, что уже было сказано выше: эмпирическое измерение при повышении своей точности и руководствующееся миром идеальных сущностей, объективируемого с помощью процедур идеализации и конструирования, или миром особых идеальных структур, подчиняющихся шкалам измерения. Здесь следует прояснить эту противоположность. Мы имеем не две, а лишь одну универсальную форму мира, не две, и лишь одну геометрию, а именно геометрию такого рода форм, одну, а не две полноты <чувственных качеств>. Итак, тела эмпирически воспринимаемого мира в соответствии со структурой мира, априорно принадлежащей самому миру, таковы, что каждое тело при расширении себя, говоря абстрактно, становится протяженностью, а протяженность всех этих форм оказывается некоей, совокупной, бесконечной протяженностью мира. В качестве мира, универсальной конфигурации всех тел протяженность - это тотальная форма, охватывающая все формы, а эта форма идеализируема с помощью аналитических процедур и становится господствующей благодаря процедуре конструирования.
Конечно, к структуре мира принадлежат все тела, обладающие специфическими чувственными качествами. Однако в основе качественных конфигураций нет какого-либо аналога пространственно-временным формам; они не включены в форму мира, специфическую для них. Предельные формы этих качеств не идеализируемы в аналогичном смысле, измерение их ("оценка") не соотносимо с соответствующими идеальными сущностями в конструируемом мире, хотя и соотносимо с идеальными сущностями объективируемого мира. Поэтому и аппроксимация по своему смыслу не аналогична тому действию, которое присуще математизируемым формам, - объективирующему действию.
Что же касается "косвенной математизации" тех аспектов мира, которые сами по себе не имеют математизируемой формы мира, то такая математизация мыслима лишь в том смысле, что специфические чувственные качества ("полнота" их), опытно воспринимаемые в телах, соединены с упорядоченными формами, которые по своей сути принадлежат телам.
Если спросить, чем же предопределены априори универсальная форма мира с ее универсальной каузальностью, т.е. если задаться вопросом об инвариантном и всеобщем способе бытия (Seinsstil), который сохраняется в воспринимаемом нами мире во всех непрерывных изменениях, то, с одной стороны, предопределена форма пространства-времени и каждое тело определено относительно этой формы, причем определено априори (до идеализации); кроме того, предопределено и то, что в каждом реально существующем теле эмпирически данные формы требуют эмпирической полноты и наоборот; поэтому эта всеобщая каузальность связует в конкретное те моменты, которые были оторваны друг от друга, лишь абстрактно, а не реально. Далее, вообще-то говоря, существует универсальная конкретная каузальность. Благодаря ей можно предсказать, что воспринимаемый мир может быть воспринимаем как мир в бесконечно открытом горизонте, а бесконечное многообразие особенных причин может быть предсказано лишь благодаря этому горизонту и только в нем. Итак, в любом случае нам априори известно то, что физический мир, взятый со стороны любой формы .требует полноты сторон, пронизывающих все формы, а также известно, что любое изменение, независимо от того, относится ли оно к форме или к полноте сторон, осуществлялось в соответствии с каузальной связью, непосредственной или опосредствованной. Столь далеко простирается неопределенное, всеобщее, априорное предвосхищение.
Все же нельзя сказать, что все изменения полноты качеств, все их превращения и их неизменность осуществляются по каузальным правилам так, что вся абстрактная сторона мира исключительно зависит от того, что каузально осуществляется в формах как определенной стороне мира. Иначе говоря, априори нельзя считать, что любое изменение специфических качеств воспринимаемых тел, которые становятся предметом действительного и возможного опыта, причинным образом указывает на абстрактный слой мира слой форм, т.е. что каждое такое изменение имеет своего двойника в царстве форм, а совокупное изменение их полноты имеет своего каузального двойника в сфере форм.
Эта мысль может показаться прямо-таки фантастической. Ведь мы тем самым принимаем давно уже известную и широко осуществлявшуюся тысячелетия тому назад, правда, отнюдь не во всех областях, идеализацию пространства-времени со всеми их формами, со всеми изменениями пространства и времени и со всеми изменениями их форм. В этом и заключалась, как мы уже знаем, идеализация, осуществленная искусством измерения не просто как искусством измерения, а как искусством создания эмпирически каузальных конструкций (причем, само собой разумеется, как и любое искусство, оно использует и дедуктивные выводы). Теоретическая установка и тематизация чистых сущностей и конструкций ведет к чистой геометрии (под ней здесь понимается и математика чистых форм вообще); а позднее - вместе с поворотом, который нами уже был описан, - возникает, как мы помним, прикладная геометрия: практическое искусство измерения, осуществляющееся на основе идеальных сущностей и идеальных конструкций, построенных с их помощью. Следовательно, возникает практическое искусство измерения в соответствующих, весьма узких областях конкретно-причинной объективации физического мира. Коль скоро все это можно сделать явным, то выдвинутая уже давно и казавшаяся странной мысль перестала казаться странной, а благодаря научному воспитанию в школе, начинающемуся уже в детском возрасте, эта мысль обрела, наоборот, характер чего-то само собой разумеющегося. То, что в донаучном опыте мы воспринимаем как цвет, звук, тепло, вес тел, оказывается при каузальном подходе, например, тепловым излучением тел, которое делает теплым все окружающие тела и тем самым обнаруживается "физически" - как колебания звуковые, тепловые, следовательно, только как процессы мира форм. Ныне этот способ универсальной индикации рассматривается как нечто само собой разумеющееся. Однако если возвратиться к Галилею, то для него - создателя концепции, впервые сделавшей возможной создание физики,- все это не было чем-то само собой разумеющимся, каким оно стало благодаря его деятельности. Для Галилея само собой разумеющейся была лишь чистая математика и обычный способ ее применения.
Если задуматься о мотивации Галилея, решающей для формирования идеи новой физики, то необходимо отметить, что в его эпоху ход его мысли казался странным и задаться вопросом, как он пришел к мысли, согласно которой все специфические чувственные качества должны рассматриваться как реальное обнаружение математических индикаторов процессов, присущих идеальным формам, всегда принимаемых как нечто .само собой разумеющееся. Из этого вытекает возможность косвенной математизации в полном смысле слова, поскольку возможны конструирование и объективное определение (хотя и опосредствованно и с помощью индуктивных методов) всех процессов с точки зрения полноты ex datis. Бесконечная природа - этот конкретный универсум каузальности стала своеобразной прикладной математикой - таково утверждение этой странной концепции.
Все же вначале следует ответить на вопрос, что же вызвало к жизни в этом традиционно данном мире, математизация которого весьма ограниченна и осуществляется так, как было указано греками, что же вызвало к жизни мысль Галилея?
d) Движущие мотивы, галилеевской концепции природы
Уже здесь налицо повод, еще весьма слабый, для того чтобы более внимательно отнестись к многообразным, но все же лишенным внутренней связи формам опыта, которые существовали в совокупном преднаучном опыте, позволяли достичь опосредствованной квантификации чувственных качеств и выражения их через величины и числовые меры. Уже пифагорейцы в древности заметили зависимость высоты звука от длины натянутой и колеблющейся струны. Конечно, были хорошо известны и иные причинные зависимости аналогичного рода. В их основе лежит зависимость конкретно воспринимаемых процессов окружающего мира от полноты событий и процессов в сфере форм, зависимость легко выявляемая. Однако здесь еще, вообще-то, не существует мотива для анализа сплетений каузальных зависимостей. Они не возбуждают какого-либо интереса, будучи смутными и неопределенными. Совершенно иначе обстоит дело там, где они становятся определенными по характеру, что позволяет применить определяющую индукцию и вынуждает нас прибегнуть к измерению полноты. Отнюдь не все, что изменяется вместе с такой стороной, как форма, может быть измерено с помощью традиционных методов. От этих опытных наблюдений еще длинный путь к выдвижению универсальной идеи и гипотезы, согласно которой все специфически чувственные качества - это лишь индикаторы, указывающие на определенную констелляцию фигур и процессов, присущих сфере форм. К этому вплотную подошли мыслители Возрождения, которые делали смелые обобщения и выдвигали нередко чрезмерные гипотезы, находившие поддержку у публики. Математика как царство подлинно объективного знания (и техника под ее руководством) была и для Гали-лея, и для "современного" человека, центром интересов, направленных на философское познание мира и рациональную практику. Должны быть найдены методы измерения всего того, что охватывает геометрия, математика форм в их идеальности и априорности. Весь конкретный мир должен раскрыть себя как математически-объективный, если мы, осуществляя отдельные опыты, исходим из того, что все в них измеримо с помощью прикладной геометрии и, следовательно, создаем соответствующие методы измерения. Если мы действуем таким образом, то мы опосредствованно математизируем все специфические качественные события.