Страница:
3 Необходимость и случайность
Пока что мы не касались третьей из категорий модальности - необходимости. Обращение к ней требует от нас дополнительных разъяснений, ибо возникает подозрение, что все предыдущее рассуждение содержит какую-то путаницу с категориями. В самом деле, разве доказательство теоремы устанавливает возможность суждения? Не лучше ли сказать, что она устанавливает его необходимость? Совершенно естественно и неоспоримо, в частности, что сумма внутренних углов треугольника необходимо равняется двум прямым. Утверждение, что упомянутая сумма возможно равна двум прямым, звучит по меньшей мере странно. Прежде всего, укажем на два различных (хотя и близких) понимания возможности. Допустимо (и вполне естественно) говорить о возможном, как о горизонте всех явлений, которые могут при определенных условиях возникнуть. Например, речь может идти о спектре различных свойств, которыми может обладать вещь (точнее о спектре признаков, которые могут быть присоединены к данному понятию). Треугольник может быть равнобедренным или вписанным в окружность. Но может и не быть. Но сумма его внутренних углов равна двум прямым всегда. Этого не может не быть. Это - необходимое свойство. В противоположность ему два других - случайные. Может так случиться, например, что треугольник вписан в окружность.
Как, однако, удостовериться в возможности, понимаемой в названном только что смысле? Как, уж если мы обратились к такому примеру, выяснить, что треугольник можно вписать в окружность. Процедура выяснения, оказывается, ничем не будет отличаться от той, которая выполнялась при установлении необходимого свойства. Мы должны будет установить, что понятие "треугольник, вписанный в окружность," согласуется с формальными условиями опыта, т.е. предъявить необходимый синтез настоящего понятия. Говоря более конкретно, нужно, сформулировав сначала общее суждение о возможности (protasis), мы должны будем затем начертить треугольник (ekqesis). После этого общее суждение о возможности будет переформулировано применительно к единичному предмету (diorismos - вокруг построенного треугольника ABC может быть описана окружность l). После этого мы проведем серединные перпендикуляры к двум сторонам треугольника (kataskeyh), докажем, что точка их пересечения - центр окружности, проходящей через вершины треугольника (apodeixis), и сделаем окончательный вывод об истинности исходного утверждения (sumperasma).
Таким образом, возможность и необходимость оказываются категориями достаточно близкими. Впрочем, речь пока что должна, по-видимому, идти о двух разных пониманиях возможности. Когда мы обсуждали категорию возможности в предыдущем параграфе, мы говорили о возможности в противопоставлении действительности. Мы указывали, что треугольник (с суммой внутренних углов равной p) является возможным понятием, поскольку может быть построен. Мы всегда можем предъявить соответствующее ему созерцание, т.е. создать конструкцию согласно определенной схеме. Этим названное понятие ничем не отличается от таких, как "равнобедренный треугольник", или "треугольник, вписанный в окружность". Каждое из них обнаруживает себя как реальное тогда, когда проведена процедура синтеза и предъявлена соответствующая актуализация. Здесь мы поэтому говорим о несколько иной интерпретации той же самой категории. Важно, впрочем, что для обеих интерпретаций требуется проведение всей полноты синтеза.
Так что устанавливая необходимость какого-либо положения дел, мы одновременно показываем возможность некоторого понятия. С другой стороны, выясняя возможность чего-либо, мы обнаруживаем необходимую связь актуализируемых при этом понятий. Так, когда мы проводим процедуру, призванную показать возможность понятия "треугольник, вписанный в окружность," мы одновременно доказываем, например, такое (необходимое) утверждение: "Точка пересечения серединных перпендикуляров, проведенных к сторонам треугольника, есть центр описанной вокруг него окружности".
Возможность и необходимость устанавливаются при одинаковых обстоятельствах, но относятся к разному. Возможность относится к одному понятию, тому, которое конструируется в синтетическом суждении. Необходимость относится к связи понятий. Понятие или предмет не могут быть необходимыми. Необходимым может быть какое-то положение дел: связь понятий или отношение объектов.
Говоря о возможном, мы всегда подразумеваем случайность. То, что возможно, может и не произойти. Треугольник может быть и не вписан в окружность, хотя такое возможно. К чему относится это указание на случайность? Оно относится к некоторому событию, а именно событию актуализации данного понятия, т.е. событию построения. Точнее, здесь нужно говорить о ряде событий, после которых появляются на свет какие-то новые конструкции. Что такое событие не одно, следует из структуры теоремы, в которой различены ekqesis и kataskeuh. Возможное возможно, поскольку оно может случиться. Но к этому моменту случайности относится и указание на необходимость. Некоторое положение дел необходимо, если возникает всякий раз, когда нечто случится. Всякий раз, когда треугольнику случится быть вписанным в окружность, центр этой описанной окружности совпадет с точкой пересечения серединных перпендикуляров. Установление необходимости требует указания случая.
Обратим внимание, что выражение возможности и необходимости требует, строго говоря, различных суждений. Возможность фиксируется категорическим суждением, конструирующим новое понятие. Необходимость фиксируется гипотетическим суждением, указывающим на условие, при котором неизбежно наступает некоторое положение дел.
Сказанное легко проследить на примере теоремы о сумме внутренних углов. Внутренние углы треугольника необходимо составляют в сумме два прямых, но для этого треугольнику еще нужно случиться. Треугольник - возможное понятие. Его можно нарисовать, а можно и не рисовать. Необходимость названного равенства обнаруживается лишь при условии наступления определенного события.
В нашем рассмотрении сейчас оказалось задействовано три элемента математического дискурса. (Впрочем, по-видимому, не только математического.) Эти элементы суть понятие, единичный предмет и событие. Рассматриваемые нами категории модальности относятся, вообще говоря к разным из названных элементов. Возможность (по крайней мере, до сих пор) всегда подразумевала понятие. Действительность - единичный предмет. Необходимость описывает отношение понятий, а случайность - событие. Последнее представляет собой единичность иного рода, чем предмет (или объект). В нашем рассуждении в качестве событий выступали экспозиция и построение. Именно они случаются. Именно относительно них не может быть предъявлено никаких гарантий - они могут и не произойти. Познание необходимости требует, таким образом довольно тонкого перехода от общего к единичному, поскольку в необходимом суждении фиксируется связь общих понятий, но как условие этой связи выступает единичное (случайное) событие. Смысл этого перехода раскрывается Кантом в кратком замечании о схеме необходимости (B184): "Схема необходимости есть существование предмета во всякое время" (курсив наш). Необходимость, таким образом, устанавливается вследствие произвольности момента события. Она состоит в том, что когда бы ни произошло событие, ему обязательно будет сопутствовать некоторое (причем всегда одно и то же) положение дел.
Эта одинаковость при многократном повторении, собственно, составляет определение общности. Понятие является общим потому, что задает схему, согласно которой строятся многие единичные объекты. Оно - общее для многих разных объектов. Оно много раз актуализируется, будучи возможным. Актуализация есть событие появления единичного объекта и это событие всякий раз случайно.
Случившееся действительно. Действительное появляется в результате происшедшего события. Прежде всего, в результате экспозиции, а затем и построения. Необходимость, как мы видели, указывает на положение дел, которое неизбежно устанавливается вследствие этого построения, т.е. проведенного сообразно условиям опыта синтеза. Так, видимо, нужно понимать последний из постулатов эмпирического мышления: "То, связь чего с действительностью определяется согласно общим условиям опыта, существует необходимо." (B266).
В Главе 1 нами была использована еще одна категория - факт. По сути это то же самое, что мы назвали здесь "положением дел". Связь факта с объектом коррелятивна связи необходимости с действительностью. Установление факта есть установление связи элементов в данной конструкции. Иными словами факт выражается общим суждением, которое формулируется, например, в качестве утверждения теоремы. Но установить необходимость факта можно лишь построив ту конструкцию, связь элементов которой он обозначает. Иными словами факту должен соответствовать объект. Установление факта и построение объекта это одна и та же процедура - точно также, как выяснение возможности понятия и необходимости связи понятий.
Завершая наше рассуждение о необходимости, мы должны вернуться к тому выводу, которым заключили предыдущий параграф. Там мы заметили, что переход от единичного суждения к общему при доказательстве теоремы допустим потому, что таким образом осуществляется переход от более сильной модальности к более слабой (от действительности к возможности). Здесь вполне можно увидеть ошибку, состоящую в том, что произведена подмена различных категорий. Можно сказать, что в заключительной части теоремы делается переход от действительности к необходимости, т.е. к более сильной модальности, а потому такой переход все же неправомерен. Ответом на такое возражение может служить обнаруженное нами разграничение сферы действия категорий возможности и необходимости. Все рассуждения предыдущего параграфа касались только понятий и единичных объектов и не касались их отношений. Поэтому там не могло идти речи о необходимости. Мы указали, что symperasma теоремы устанавливает возможность понятия, тогда как apodeixis приводит к выводу о действительности соответствующего этому понятию предмета. В таком переходе нет ничего незаконного. Единственное, о чем не было сказано, это о произвольности момента построения названного предмета, которая и обуславливает необходимость отношения понятий, устанавливаемую теоремой. Мы уже упоминали, что обнаружение возможности обязательно оказывается сопряжено с установлением необходимости. Чтобы установить возможность, нужно построить действительный объект. Но построение действительного объекта (сообразно общим условиям опыта) подразумевает необходимость связи его элементов.
Здесь возникает еще одно недоразумение. Можно нарисовать на бумаге какой-нибудь завиток совершенно произвольной конфигурации. Коль скоро он построен, он, несомненно, возможен. Не могли же мы изобразить невозможный предмет. Но никакой необходимой связи элементов в нашей конструкции нет. Здесь налицо явное несовпадение категорий возможности и необходимости. Следует, однако, помнить, что мы говорили о возможности понятия. Уместно задать вопрос: какое понятие было актуализировано при рисовании лишенной всякой регулярности загагулины? Даже, если мы и имели нечто в виду, прежде, чем изобразили ее, совершенно невозможно выяснить в какой мере действительный предмет соответствует нашему замыслу. Если же такая возможность есть, то значит есть возможность и многократного воспроизведения, т.е. можно уже говорить о существовании некоторой схемы. Последнее же означает необходимую связь элементов.
4 Возможное и действительное в отношении ко времени
В главе "О схематизме чистых понятий рассудка" Кант, рассматривая условия применения категорий к явлениям, установил, что таковое возможно при посредстве "трансцендентального определения времени". Определение времени есть схема категорий, с помощью которой явление подводится под понятия рассудка (B178). Ниже мы попытаемся подробнее рассмотреть, что означает определение времени в математическом рассуждении. Разъяснения самого Канта по этому поводу кажутся чрезмерно краткими. Особенно это относится к категориям модальности. По поводу действительности он ограничивается единственной фразой: "Схема действительности есть существование в определенное время" (B184). Не претендуя на подробный комментарий кантовского текста, попробуем все же ответить на вопрос: как и чем определено время существования действительного предмета?
Действительный предмет явлен нам при экспозиции или при построении. Экспозиция неизменно сопровождается фразой типа: "Пусть ABC - треугольник". Поскольку речь идет о единичном треугольнике должно быть совершенно ясно какой именно треугольник назван ABC. Ответ на этот вопрос может быть только один: "Вот этот, здесь и сейчас нарисованный треугольник". Даже, если треугольник был нарисован раньше, указание на него происходит сейчас, в тот самый момент дискурса, когда возникла потребность (или желание) предъявить его как существующий, действительный объект. Поэтому время, определяемое схемой действительности, есть настоящее время. Конечно, действительный объект, будучи один раз построен, продолжает существовать и дальше. Но узнать о его действительности можно только при актуализации, т.е. при определенном событии дискурса. Актуально событие, происходящее сейчас. Точнее, актуален (действителен) объект, являющийся в происходящем ныне событии. Событие, происшедшее в прошлом, не сохраняет своей действительности, но оставляет след.
Важно иметь в виду, что время определяется (в данном случае как настоящее время, как теперь) именно дискурсом. Проводимое (актуально) построение и сопровождающее его высказывание ("Вот этот треугольник") выделяют настоящее по отношению к прошлому. Это выделение настоящего происходит благодаря наличности прошлого. Прежде всего это обнаруживается тогда, когда мы приступаем к описанию объекта, как это делается, например, при проведении доказательства (apodeixis). Произнося определенное суждение, мы адресуемся к чертежу, как результату проведенного построения. Суждение, произносимое при доказательстве, также произносится теперь, но для него есть нечто, к чему оно относится как к уже происшедшему. Это происшедшее есть событие, оставившее след и поскольку мы имеем возможность обратится к нему снова, т.е. вторично после построения, мы определяем его как прошлое по отношению к произносимому ныне суждению. Объект при этом должен быть вновь воспринят, т.е. вновь стать действительным. Будучи впервые актуализирован при построении, он повторно актуализируется при доказательстве. Ясно, что такая актуализация может происходить многократно. То, что остается после построения, т.е. то, что подлежит актуализации при доказательстве мы и называем следом.
Выше мы говорили, что многократность воспроизведения собственно и означает общность. След, таким образом, есть общее для многих актуализаций. Он также есть возможное - он может быть актуализирован и поэтому находится в согласии с формальными условиями опыта. Но он не совпадает с понятием, хотя бы потому, что понятие может актуализироваться при другом построении и произвести еще один след. Впрочем, актуализация следа требует обращения к понятию, поскольку при ней должна быть задействована та же самая схема, сообразно с которой происходило построение. Поэтому математический дискурс носит отчасти герменевтический характер: глядя на данную графическую конфигурацию, мы воспроизводим ее смыслы, т.е. пытаемся прочесть ее. Под смыслом здесь подразумевается именно понятие. Каждый раз увидеть в следе одно и то же значит воспроизвести одно и то же построение, т.е. актуализировать общее для всех этих построений понятие, действуя сообразной одной и той же схеме.
5 Дискретность и непрерывность в структуре дискурса
Теперь мы можем рассмотреть как устроен дискурс, проводимый в геометрии. В нем, прежде всего, можно увидеть последовательность событий, сопряженных с актуализацией чего-либо (понятия или следа). Но всякая актуализация есть синтез, в котором определенное (понятием) построение сопровождается произнесением соответствующего синтетического суждения. Последнее может быть и единичным суждением, но произносится всегда, хотя бы в качестве указания на проведенное построение ("пусть ABC - треугольник"). В доказательстве, как мы видели, производится то же самое действие: суждение сопрягается с построением, хотя, в данном случае, и неявным. Это, конечно, не построение, предъявляющее новый объект, а воспроизведение прежнего. Однако действие, производимое при этом, также является синтезом, соотнесением некоторой конструкции с формальными условиями опыта. Благодаря такому действию, конструкция, пребывавшая в виде следа, вновь становится действительной.
Таким образом дискурс есть ряд следующих один за другим синтетических актов. Каждый из них сопряжен с определенным событием и определят некоторый момент теперь. Совершение синтетического акта предполагает наличие действий, совершенных ранее, т.е. некоторых моментов прошлого. Как мы уже говорили ранее, статус прошлого создается наличием следа, с которым так или иначе сопряжено совершение нынешнего синтетического акта. Последовательность дискурса дискретна, поскольку каждое совершаемое действие (равно как и каждое событие) завершимо и все действия различимы, т.е. отделены друг от друга. Последовательность и дискретность дискурса определяет последовательность времени, как ряд отличимых друг от друга моментов 'теперь'. Каждый акт, отнесенный к моменту прошлого, может быть актуализирован, т.е. воспроизведен в настоящем.
Различимость синтетических актов и связанных с ними моментов времени подразумевает, что, следуя один за другим, они должны быть чем-то разделены. Предполагается некоторое между, т.е. какой-то промежуток, отделяющий один момент от другого. Проще всего этот промежуток обнаруживается в процедуре деления отрезка прямой. Рассмотрим подробнее эту незамысловатое, на первый взгляд, действие.
Заметим, прежде всего, что, прочертив отрезок прямой, мы, несомненно, произвели некий синтез, т.е. совершили некоторый синтетический акт. Однако - и в последующем мы еще изучим все следствия этого наблюдения - этот акт нельзя свести к одному моменту времени. В нем должно выделить по крайней мере два ясно различимых события: начало и конец прочерчивания отрезка. Мы ставим две точки, совершая тем самым два последовательных синтетических акта. Но отрезок - это не две точки. Отрезок - это то, что их разделяет, т.е. лежит между ними. Однако с этим "между" еще не связано никакого синтеза. Можно удовлетвориться первым постулатом Евклида, чтобы удостовериться в обоснованности нашего действия, но этого недостаточно, чтобы связать построенный предмет с каким-либо понятием. В частности у нас пока отсутствует критерий для опознания прямой, т.е. для обнаружения ее отличия от любой другой линии, соединяющей две точки. Чтобы изучить структуру прямой, нам нужно исследовать различные лежащие на ней точечные конфигурации. Именно это, между прочим, было сделано при попытках исследовать геометрию прямой линии и построить аксиоматику прямой. Вариант такой аксиоматики, а также историю проблемы можно найти книгах [25] и [26].
Первое действие, которое должно быть произведено, состоит, следовательно, в делении отрезка на две части. Ясно, что, строя новые точки на отрезке прямой, мы можем связывать с этими точками определенные суждения. Более того, по поводу выстраиваемых точечных конструкций должен быть развернут доказательный дискурс, содержащий те же самые части, которые были рассмотрены нами ранее, при изучении структуры античной теоремы. Но всякая новая точка, появляющаяся на отрезке, будет появляться между двумя ранее построенными точками. Этот акт несколько отличен от тех, которые мы обсуждали. Это не есть актуализация следа - происходит новое построение, в результате которого возникает не существовавший ранее объект. Однако оно все же не вполне новое, потому что присутствующий здесь след некоего построения (прочерченный отрезок) существенно определяет то, как будет поставлена точка. Ставя третью точку между двумя построенными, мы, с одной стороны, совершаем действие, следующее за двумя уже совершенными. Но с другой стороны мы вроде бы возвращаемся к прошлому по отношению по крайней мере к одному из двух названных событий. Если две точки определяют начало и конец отрезка, то точка, поставленная между ними, как бы извлекает нечто из предшествующего концу, но следующему после начала. В нашем дискурсе всякое событие связано с поставленной точкой. Но поставить точку между двумя другими, значит обратиться ко времени, когда ничего не происходило. Мы словно извлекаем событие из чистой потенциальности следа и определяем еще один момент между двумя уже бывшими моментами.
Таким образом, наряду с дискретной структурой времени, определяемой дискретной последовательностью событий дискурса, мы обнаруживаем еще и непрерывную его составляющую, то что "протекает" между событиями. Если дискретное время, состоящее из последовательных моментов, наполнено событиями или синтетическими актами (пока мы не различили одно от другого, но обязательно сделаем это в последующем), то непрерывное время есть время чисто потенциального пребывания следа, такого следа, который еще не был связан ни с какой актуализацией. Поэтому след, подобно времени, имеет как непрерывную, так и дискретную часть. Воспроизведение (чистый повтор) возможен лишь по отношению к дискретной части следа. Непрерывная его часть оказывается некой средой, в которой происходят иные события и которая "заполняет" промежутки между дискретными точками, составляющими следы синтетических действий.
Не только деление отрезка на части позволяет различить непрерывную и дискретную составляющие в дискурсе. Для любых двух событий всегда найдется какое-то разделяющее их непроясненное "между", определяющее однако ход событий дискурса. В теореме о внутренних углах треугольника, мы можем (хотя это и не вполне точно) указать два события: построение треугольника (в экспозиции) и проведение прямой (в дополнительном построении). Между двумя этими действиями ничего не происходит. Но можем ли мы говорить, что их ничего не разделяет? Проведение прямой на определенном расстоянии от основания (которому она параллельна) означает определенность временного промежутка между двумя событиями. Если бы прямая была проведена ближе к основанию, промежуток был бы иным. Можно апеллировать к простому психо-физиологическому обстоятельству: чем дальше друг от друга расположены две изображаемые на бумаге фигуры, тем больше времени нужно, чтобы перенести карандаш или проследить это расстояние глазами. Даже если считать такой аргумент неуместным в философском рассуждении, то все же надо согласиться, что структура расстояний, определяющая взаимное расположение различных элементов конфигурации, коррелятивна длительностям временных промежутков, разделяющих моменты построения этих элементов. Расстояния отсчитываются по прямой. Поэтому, определяя удаленность одного объекта от другого, мы так или иначе должны, хотя бы мысленно соединить их отрезком прямой линии. Но чем длиннее отрезок, тем больше времени проходит между событиями построения его начала и конца - естественно в масштабе одного дискурса. Точка, поставленная на отрезке при его проведении, была раньше, чем конец этого отрезка.
Вернемся теперь к нашему рассуждению об отрезке прямой. Мы видели, что его построение с самого начала подразумевает два синтетических акта, в результате которых появляется начало и конец отрезка. То, что происходит между этими двумя действиями не есть вполне синтетический акт, поскольку не прояснено понятие прямой. Оно проясняется по мере построения новых точечных конфигураций между началом и концом отрезка. Но тогда подлинным событием построения мы можем считать лишь поставленную точку. Только такое действие может быть связано с моментом 'теперь', т.е. с настоящим. Иными словами, только точка действительна. Любая непрерывная линия, а значит и любая геометрическая фигура, всегда есть след, то непроясненное нечто, что находится между точками, производится между событиями. Можно, конечно, увидеть в непрерывном прочерчивании линии синтез, проводимый согласно определенной схеме, т.е. сообразно некоторому понятию. Именно это предлагает сделать Кант, разъясняя понятие экстенсивной величины (B203): "Экстенсивной я называю всякую величину, в которой представление целого делается возможным благодаря представлению частей (которое поэтому необходимо предшествует представлению целого). Я не могу представить линии, как бы мала она ни была, не проводя ее мысленно, т.е. не проводя последовательно всех ее частей, начиная с определенной точки и таким образом впервые начертая наглядное представление ее".
Пока что мы не касались третьей из категорий модальности - необходимости. Обращение к ней требует от нас дополнительных разъяснений, ибо возникает подозрение, что все предыдущее рассуждение содержит какую-то путаницу с категориями. В самом деле, разве доказательство теоремы устанавливает возможность суждения? Не лучше ли сказать, что она устанавливает его необходимость? Совершенно естественно и неоспоримо, в частности, что сумма внутренних углов треугольника необходимо равняется двум прямым. Утверждение, что упомянутая сумма возможно равна двум прямым, звучит по меньшей мере странно. Прежде всего, укажем на два различных (хотя и близких) понимания возможности. Допустимо (и вполне естественно) говорить о возможном, как о горизонте всех явлений, которые могут при определенных условиях возникнуть. Например, речь может идти о спектре различных свойств, которыми может обладать вещь (точнее о спектре признаков, которые могут быть присоединены к данному понятию). Треугольник может быть равнобедренным или вписанным в окружность. Но может и не быть. Но сумма его внутренних углов равна двум прямым всегда. Этого не может не быть. Это - необходимое свойство. В противоположность ему два других - случайные. Может так случиться, например, что треугольник вписан в окружность.
Как, однако, удостовериться в возможности, понимаемой в названном только что смысле? Как, уж если мы обратились к такому примеру, выяснить, что треугольник можно вписать в окружность. Процедура выяснения, оказывается, ничем не будет отличаться от той, которая выполнялась при установлении необходимого свойства. Мы должны будет установить, что понятие "треугольник, вписанный в окружность," согласуется с формальными условиями опыта, т.е. предъявить необходимый синтез настоящего понятия. Говоря более конкретно, нужно, сформулировав сначала общее суждение о возможности (protasis), мы должны будем затем начертить треугольник (ekqesis). После этого общее суждение о возможности будет переформулировано применительно к единичному предмету (diorismos - вокруг построенного треугольника ABC может быть описана окружность l). После этого мы проведем серединные перпендикуляры к двум сторонам треугольника (kataskeyh), докажем, что точка их пересечения - центр окружности, проходящей через вершины треугольника (apodeixis), и сделаем окончательный вывод об истинности исходного утверждения (sumperasma).
Таким образом, возможность и необходимость оказываются категориями достаточно близкими. Впрочем, речь пока что должна, по-видимому, идти о двух разных пониманиях возможности. Когда мы обсуждали категорию возможности в предыдущем параграфе, мы говорили о возможности в противопоставлении действительности. Мы указывали, что треугольник (с суммой внутренних углов равной p) является возможным понятием, поскольку может быть построен. Мы всегда можем предъявить соответствующее ему созерцание, т.е. создать конструкцию согласно определенной схеме. Этим названное понятие ничем не отличается от таких, как "равнобедренный треугольник", или "треугольник, вписанный в окружность". Каждое из них обнаруживает себя как реальное тогда, когда проведена процедура синтеза и предъявлена соответствующая актуализация. Здесь мы поэтому говорим о несколько иной интерпретации той же самой категории. Важно, впрочем, что для обеих интерпретаций требуется проведение всей полноты синтеза.
Так что устанавливая необходимость какого-либо положения дел, мы одновременно показываем возможность некоторого понятия. С другой стороны, выясняя возможность чего-либо, мы обнаруживаем необходимую связь актуализируемых при этом понятий. Так, когда мы проводим процедуру, призванную показать возможность понятия "треугольник, вписанный в окружность," мы одновременно доказываем, например, такое (необходимое) утверждение: "Точка пересечения серединных перпендикуляров, проведенных к сторонам треугольника, есть центр описанной вокруг него окружности".
Возможность и необходимость устанавливаются при одинаковых обстоятельствах, но относятся к разному. Возможность относится к одному понятию, тому, которое конструируется в синтетическом суждении. Необходимость относится к связи понятий. Понятие или предмет не могут быть необходимыми. Необходимым может быть какое-то положение дел: связь понятий или отношение объектов.
Говоря о возможном, мы всегда подразумеваем случайность. То, что возможно, может и не произойти. Треугольник может быть и не вписан в окружность, хотя такое возможно. К чему относится это указание на случайность? Оно относится к некоторому событию, а именно событию актуализации данного понятия, т.е. событию построения. Точнее, здесь нужно говорить о ряде событий, после которых появляются на свет какие-то новые конструкции. Что такое событие не одно, следует из структуры теоремы, в которой различены ekqesis и kataskeuh. Возможное возможно, поскольку оно может случиться. Но к этому моменту случайности относится и указание на необходимость. Некоторое положение дел необходимо, если возникает всякий раз, когда нечто случится. Всякий раз, когда треугольнику случится быть вписанным в окружность, центр этой описанной окружности совпадет с точкой пересечения серединных перпендикуляров. Установление необходимости требует указания случая.
Обратим внимание, что выражение возможности и необходимости требует, строго говоря, различных суждений. Возможность фиксируется категорическим суждением, конструирующим новое понятие. Необходимость фиксируется гипотетическим суждением, указывающим на условие, при котором неизбежно наступает некоторое положение дел.
Сказанное легко проследить на примере теоремы о сумме внутренних углов. Внутренние углы треугольника необходимо составляют в сумме два прямых, но для этого треугольнику еще нужно случиться. Треугольник - возможное понятие. Его можно нарисовать, а можно и не рисовать. Необходимость названного равенства обнаруживается лишь при условии наступления определенного события.
В нашем рассмотрении сейчас оказалось задействовано три элемента математического дискурса. (Впрочем, по-видимому, не только математического.) Эти элементы суть понятие, единичный предмет и событие. Рассматриваемые нами категории модальности относятся, вообще говоря к разным из названных элементов. Возможность (по крайней мере, до сих пор) всегда подразумевала понятие. Действительность - единичный предмет. Необходимость описывает отношение понятий, а случайность - событие. Последнее представляет собой единичность иного рода, чем предмет (или объект). В нашем рассуждении в качестве событий выступали экспозиция и построение. Именно они случаются. Именно относительно них не может быть предъявлено никаких гарантий - они могут и не произойти. Познание необходимости требует, таким образом довольно тонкого перехода от общего к единичному, поскольку в необходимом суждении фиксируется связь общих понятий, но как условие этой связи выступает единичное (случайное) событие. Смысл этого перехода раскрывается Кантом в кратком замечании о схеме необходимости (B184): "Схема необходимости есть существование предмета во всякое время" (курсив наш). Необходимость, таким образом, устанавливается вследствие произвольности момента события. Она состоит в том, что когда бы ни произошло событие, ему обязательно будет сопутствовать некоторое (причем всегда одно и то же) положение дел.
Эта одинаковость при многократном повторении, собственно, составляет определение общности. Понятие является общим потому, что задает схему, согласно которой строятся многие единичные объекты. Оно - общее для многих разных объектов. Оно много раз актуализируется, будучи возможным. Актуализация есть событие появления единичного объекта и это событие всякий раз случайно.
Случившееся действительно. Действительное появляется в результате происшедшего события. Прежде всего, в результате экспозиции, а затем и построения. Необходимость, как мы видели, указывает на положение дел, которое неизбежно устанавливается вследствие этого построения, т.е. проведенного сообразно условиям опыта синтеза. Так, видимо, нужно понимать последний из постулатов эмпирического мышления: "То, связь чего с действительностью определяется согласно общим условиям опыта, существует необходимо." (B266).
В Главе 1 нами была использована еще одна категория - факт. По сути это то же самое, что мы назвали здесь "положением дел". Связь факта с объектом коррелятивна связи необходимости с действительностью. Установление факта есть установление связи элементов в данной конструкции. Иными словами факт выражается общим суждением, которое формулируется, например, в качестве утверждения теоремы. Но установить необходимость факта можно лишь построив ту конструкцию, связь элементов которой он обозначает. Иными словами факту должен соответствовать объект. Установление факта и построение объекта это одна и та же процедура - точно также, как выяснение возможности понятия и необходимости связи понятий.
Завершая наше рассуждение о необходимости, мы должны вернуться к тому выводу, которым заключили предыдущий параграф. Там мы заметили, что переход от единичного суждения к общему при доказательстве теоремы допустим потому, что таким образом осуществляется переход от более сильной модальности к более слабой (от действительности к возможности). Здесь вполне можно увидеть ошибку, состоящую в том, что произведена подмена различных категорий. Можно сказать, что в заключительной части теоремы делается переход от действительности к необходимости, т.е. к более сильной модальности, а потому такой переход все же неправомерен. Ответом на такое возражение может служить обнаруженное нами разграничение сферы действия категорий возможности и необходимости. Все рассуждения предыдущего параграфа касались только понятий и единичных объектов и не касались их отношений. Поэтому там не могло идти речи о необходимости. Мы указали, что symperasma теоремы устанавливает возможность понятия, тогда как apodeixis приводит к выводу о действительности соответствующего этому понятию предмета. В таком переходе нет ничего незаконного. Единственное, о чем не было сказано, это о произвольности момента построения названного предмета, которая и обуславливает необходимость отношения понятий, устанавливаемую теоремой. Мы уже упоминали, что обнаружение возможности обязательно оказывается сопряжено с установлением необходимости. Чтобы установить возможность, нужно построить действительный объект. Но построение действительного объекта (сообразно общим условиям опыта) подразумевает необходимость связи его элементов.
Здесь возникает еще одно недоразумение. Можно нарисовать на бумаге какой-нибудь завиток совершенно произвольной конфигурации. Коль скоро он построен, он, несомненно, возможен. Не могли же мы изобразить невозможный предмет. Но никакой необходимой связи элементов в нашей конструкции нет. Здесь налицо явное несовпадение категорий возможности и необходимости. Следует, однако, помнить, что мы говорили о возможности понятия. Уместно задать вопрос: какое понятие было актуализировано при рисовании лишенной всякой регулярности загагулины? Даже, если мы и имели нечто в виду, прежде, чем изобразили ее, совершенно невозможно выяснить в какой мере действительный предмет соответствует нашему замыслу. Если же такая возможность есть, то значит есть возможность и многократного воспроизведения, т.е. можно уже говорить о существовании некоторой схемы. Последнее же означает необходимую связь элементов.
4 Возможное и действительное в отношении ко времени
В главе "О схематизме чистых понятий рассудка" Кант, рассматривая условия применения категорий к явлениям, установил, что таковое возможно при посредстве "трансцендентального определения времени". Определение времени есть схема категорий, с помощью которой явление подводится под понятия рассудка (B178). Ниже мы попытаемся подробнее рассмотреть, что означает определение времени в математическом рассуждении. Разъяснения самого Канта по этому поводу кажутся чрезмерно краткими. Особенно это относится к категориям модальности. По поводу действительности он ограничивается единственной фразой: "Схема действительности есть существование в определенное время" (B184). Не претендуя на подробный комментарий кантовского текста, попробуем все же ответить на вопрос: как и чем определено время существования действительного предмета?
Действительный предмет явлен нам при экспозиции или при построении. Экспозиция неизменно сопровождается фразой типа: "Пусть ABC - треугольник". Поскольку речь идет о единичном треугольнике должно быть совершенно ясно какой именно треугольник назван ABC. Ответ на этот вопрос может быть только один: "Вот этот, здесь и сейчас нарисованный треугольник". Даже, если треугольник был нарисован раньше, указание на него происходит сейчас, в тот самый момент дискурса, когда возникла потребность (или желание) предъявить его как существующий, действительный объект. Поэтому время, определяемое схемой действительности, есть настоящее время. Конечно, действительный объект, будучи один раз построен, продолжает существовать и дальше. Но узнать о его действительности можно только при актуализации, т.е. при определенном событии дискурса. Актуально событие, происходящее сейчас. Точнее, актуален (действителен) объект, являющийся в происходящем ныне событии. Событие, происшедшее в прошлом, не сохраняет своей действительности, но оставляет след.
Важно иметь в виду, что время определяется (в данном случае как настоящее время, как теперь) именно дискурсом. Проводимое (актуально) построение и сопровождающее его высказывание ("Вот этот треугольник") выделяют настоящее по отношению к прошлому. Это выделение настоящего происходит благодаря наличности прошлого. Прежде всего это обнаруживается тогда, когда мы приступаем к описанию объекта, как это делается, например, при проведении доказательства (apodeixis). Произнося определенное суждение, мы адресуемся к чертежу, как результату проведенного построения. Суждение, произносимое при доказательстве, также произносится теперь, но для него есть нечто, к чему оно относится как к уже происшедшему. Это происшедшее есть событие, оставившее след и поскольку мы имеем возможность обратится к нему снова, т.е. вторично после построения, мы определяем его как прошлое по отношению к произносимому ныне суждению. Объект при этом должен быть вновь воспринят, т.е. вновь стать действительным. Будучи впервые актуализирован при построении, он повторно актуализируется при доказательстве. Ясно, что такая актуализация может происходить многократно. То, что остается после построения, т.е. то, что подлежит актуализации при доказательстве мы и называем следом.
Выше мы говорили, что многократность воспроизведения собственно и означает общность. След, таким образом, есть общее для многих актуализаций. Он также есть возможное - он может быть актуализирован и поэтому находится в согласии с формальными условиями опыта. Но он не совпадает с понятием, хотя бы потому, что понятие может актуализироваться при другом построении и произвести еще один след. Впрочем, актуализация следа требует обращения к понятию, поскольку при ней должна быть задействована та же самая схема, сообразно с которой происходило построение. Поэтому математический дискурс носит отчасти герменевтический характер: глядя на данную графическую конфигурацию, мы воспроизводим ее смыслы, т.е. пытаемся прочесть ее. Под смыслом здесь подразумевается именно понятие. Каждый раз увидеть в следе одно и то же значит воспроизвести одно и то же построение, т.е. актуализировать общее для всех этих построений понятие, действуя сообразной одной и той же схеме.
5 Дискретность и непрерывность в структуре дискурса
Теперь мы можем рассмотреть как устроен дискурс, проводимый в геометрии. В нем, прежде всего, можно увидеть последовательность событий, сопряженных с актуализацией чего-либо (понятия или следа). Но всякая актуализация есть синтез, в котором определенное (понятием) построение сопровождается произнесением соответствующего синтетического суждения. Последнее может быть и единичным суждением, но произносится всегда, хотя бы в качестве указания на проведенное построение ("пусть ABC - треугольник"). В доказательстве, как мы видели, производится то же самое действие: суждение сопрягается с построением, хотя, в данном случае, и неявным. Это, конечно, не построение, предъявляющее новый объект, а воспроизведение прежнего. Однако действие, производимое при этом, также является синтезом, соотнесением некоторой конструкции с формальными условиями опыта. Благодаря такому действию, конструкция, пребывавшая в виде следа, вновь становится действительной.
Таким образом дискурс есть ряд следующих один за другим синтетических актов. Каждый из них сопряжен с определенным событием и определят некоторый момент теперь. Совершение синтетического акта предполагает наличие действий, совершенных ранее, т.е. некоторых моментов прошлого. Как мы уже говорили ранее, статус прошлого создается наличием следа, с которым так или иначе сопряжено совершение нынешнего синтетического акта. Последовательность дискурса дискретна, поскольку каждое совершаемое действие (равно как и каждое событие) завершимо и все действия различимы, т.е. отделены друг от друга. Последовательность и дискретность дискурса определяет последовательность времени, как ряд отличимых друг от друга моментов 'теперь'. Каждый акт, отнесенный к моменту прошлого, может быть актуализирован, т.е. воспроизведен в настоящем.
Различимость синтетических актов и связанных с ними моментов времени подразумевает, что, следуя один за другим, они должны быть чем-то разделены. Предполагается некоторое между, т.е. какой-то промежуток, отделяющий один момент от другого. Проще всего этот промежуток обнаруживается в процедуре деления отрезка прямой. Рассмотрим подробнее эту незамысловатое, на первый взгляд, действие.
Заметим, прежде всего, что, прочертив отрезок прямой, мы, несомненно, произвели некий синтез, т.е. совершили некоторый синтетический акт. Однако - и в последующем мы еще изучим все следствия этого наблюдения - этот акт нельзя свести к одному моменту времени. В нем должно выделить по крайней мере два ясно различимых события: начало и конец прочерчивания отрезка. Мы ставим две точки, совершая тем самым два последовательных синтетических акта. Но отрезок - это не две точки. Отрезок - это то, что их разделяет, т.е. лежит между ними. Однако с этим "между" еще не связано никакого синтеза. Можно удовлетвориться первым постулатом Евклида, чтобы удостовериться в обоснованности нашего действия, но этого недостаточно, чтобы связать построенный предмет с каким-либо понятием. В частности у нас пока отсутствует критерий для опознания прямой, т.е. для обнаружения ее отличия от любой другой линии, соединяющей две точки. Чтобы изучить структуру прямой, нам нужно исследовать различные лежащие на ней точечные конфигурации. Именно это, между прочим, было сделано при попытках исследовать геометрию прямой линии и построить аксиоматику прямой. Вариант такой аксиоматики, а также историю проблемы можно найти книгах [25] и [26].
Первое действие, которое должно быть произведено, состоит, следовательно, в делении отрезка на две части. Ясно, что, строя новые точки на отрезке прямой, мы можем связывать с этими точками определенные суждения. Более того, по поводу выстраиваемых точечных конструкций должен быть развернут доказательный дискурс, содержащий те же самые части, которые были рассмотрены нами ранее, при изучении структуры античной теоремы. Но всякая новая точка, появляющаяся на отрезке, будет появляться между двумя ранее построенными точками. Этот акт несколько отличен от тех, которые мы обсуждали. Это не есть актуализация следа - происходит новое построение, в результате которого возникает не существовавший ранее объект. Однако оно все же не вполне новое, потому что присутствующий здесь след некоего построения (прочерченный отрезок) существенно определяет то, как будет поставлена точка. Ставя третью точку между двумя построенными, мы, с одной стороны, совершаем действие, следующее за двумя уже совершенными. Но с другой стороны мы вроде бы возвращаемся к прошлому по отношению по крайней мере к одному из двух названных событий. Если две точки определяют начало и конец отрезка, то точка, поставленная между ними, как бы извлекает нечто из предшествующего концу, но следующему после начала. В нашем дискурсе всякое событие связано с поставленной точкой. Но поставить точку между двумя другими, значит обратиться ко времени, когда ничего не происходило. Мы словно извлекаем событие из чистой потенциальности следа и определяем еще один момент между двумя уже бывшими моментами.
Таким образом, наряду с дискретной структурой времени, определяемой дискретной последовательностью событий дискурса, мы обнаруживаем еще и непрерывную его составляющую, то что "протекает" между событиями. Если дискретное время, состоящее из последовательных моментов, наполнено событиями или синтетическими актами (пока мы не различили одно от другого, но обязательно сделаем это в последующем), то непрерывное время есть время чисто потенциального пребывания следа, такого следа, который еще не был связан ни с какой актуализацией. Поэтому след, подобно времени, имеет как непрерывную, так и дискретную часть. Воспроизведение (чистый повтор) возможен лишь по отношению к дискретной части следа. Непрерывная его часть оказывается некой средой, в которой происходят иные события и которая "заполняет" промежутки между дискретными точками, составляющими следы синтетических действий.
Не только деление отрезка на части позволяет различить непрерывную и дискретную составляющие в дискурсе. Для любых двух событий всегда найдется какое-то разделяющее их непроясненное "между", определяющее однако ход событий дискурса. В теореме о внутренних углах треугольника, мы можем (хотя это и не вполне точно) указать два события: построение треугольника (в экспозиции) и проведение прямой (в дополнительном построении). Между двумя этими действиями ничего не происходит. Но можем ли мы говорить, что их ничего не разделяет? Проведение прямой на определенном расстоянии от основания (которому она параллельна) означает определенность временного промежутка между двумя событиями. Если бы прямая была проведена ближе к основанию, промежуток был бы иным. Можно апеллировать к простому психо-физиологическому обстоятельству: чем дальше друг от друга расположены две изображаемые на бумаге фигуры, тем больше времени нужно, чтобы перенести карандаш или проследить это расстояние глазами. Даже если считать такой аргумент неуместным в философском рассуждении, то все же надо согласиться, что структура расстояний, определяющая взаимное расположение различных элементов конфигурации, коррелятивна длительностям временных промежутков, разделяющих моменты построения этих элементов. Расстояния отсчитываются по прямой. Поэтому, определяя удаленность одного объекта от другого, мы так или иначе должны, хотя бы мысленно соединить их отрезком прямой линии. Но чем длиннее отрезок, тем больше времени проходит между событиями построения его начала и конца - естественно в масштабе одного дискурса. Точка, поставленная на отрезке при его проведении, была раньше, чем конец этого отрезка.
Вернемся теперь к нашему рассуждению об отрезке прямой. Мы видели, что его построение с самого начала подразумевает два синтетических акта, в результате которых появляется начало и конец отрезка. То, что происходит между этими двумя действиями не есть вполне синтетический акт, поскольку не прояснено понятие прямой. Оно проясняется по мере построения новых точечных конфигураций между началом и концом отрезка. Но тогда подлинным событием построения мы можем считать лишь поставленную точку. Только такое действие может быть связано с моментом 'теперь', т.е. с настоящим. Иными словами, только точка действительна. Любая непрерывная линия, а значит и любая геометрическая фигура, всегда есть след, то непроясненное нечто, что находится между точками, производится между событиями. Можно, конечно, увидеть в непрерывном прочерчивании линии синтез, проводимый согласно определенной схеме, т.е. сообразно некоторому понятию. Именно это предлагает сделать Кант, разъясняя понятие экстенсивной величины (B203): "Экстенсивной я называю всякую величину, в которой представление целого делается возможным благодаря представлению частей (которое поэтому необходимо предшествует представлению целого). Я не могу представить линии, как бы мала она ни была, не проводя ее мысленно, т.е. не проводя последовательно всех ее частей, начиная с определенной точки и таким образом впервые начертая наглядное представление ее".