Страница:
Китайгородский А & Мицкевич А
Что такое научный поиск
ЧТО ТАКОЕ НАУЧНЫЙ ПОИСК:
"ЗВЕЗДНЫЕ ЧАСЫ"
ИЛИ
"ОТКРЫТИЯ В РАБОЧЕМ ПОРЯДКЕ"?
Как рассказывать молодежи о науке? Возможны ли научные сенсации? Что имел в виду Нильс Бор, говоря о "безумных" идеях в физике?
Снова и снова приковывают к себе внимание ученых и популяризаторов науки эти вопросы; снова и снова вокруг них разгораются споры; снова и снова выходят на арену словесных сражений "классики" - педагоги и "романтики" популяризаторы. В этих спорах один из представителей первой точки зрения, профессор А. Китайгородский, развил мысль о том, что в науке не было, нет, не может быть никаких сенсаций, что наука делается в рабочем порядке. Такая точка зрения вызвала возражения прежде всего со стороны ученых - профессора А. Тяпкина и кандидата физико-математических наук А. Мицкевича. Публикуя статьи участников этой дискуссии, мы предоставляем читателям возможность самим решить, кто прав в этом споре. Ждем ваших мнений.
А. КИТАЙГОРОДСКИЙ, профессор, доктор физико-математических наук
БЕЗУМНЫЕ ИДЕИ=ГЛУПЫЕ ИДЕИ
Если бы Нильс Бор предполагал, какие последствия вызовет его невинная шутка: "Ваша теория недостаточно безумная, чтобы быть справедливой", то он наверняка воздержался бы от этой фразы вежливости, которой он хотел смягчить свое непризнание новых идей, содержавшихся в докладе Гейэенберга. Вот уже несколько лет, как беЗЗЗумные идеи в науке и РРРомантизм научного творчества, ниспровергающего основы, стали основными рельсами, по которым заскользили научно-популярные творения многих авторов. Впрочем, главным образом тех из них, которые имеют к науке косвенное отношение, которые работают при науке, около науки. Я постараюсь объяснить, почему в науке нет сенсаций, нет безумных идей и нет романтики разрушения. Прежде всего объясним, что такое научное слово, научное утверждение. Самый главный признак следующий: его можно проверить на опыте. Можно сказать, что научное утверждение есть указание на производство каких-то операций, в результате коих возникнет ощутимый результат. Скажем, если я говорю: произведение силы тока на сопротивление равно напряжению, то в расшифрованном виде эта фраза означает следующее: "Возьмите, пожалуйста, вот этот приборчик, подсоедините к нему провода. Нет, не сюда, а, будьте добры, вот к этим клеммам. Прекрасно, теперь берите проводник, сопротивление которого вам надо измерить. Соедините последовательно (не забудьте терпеливо объяснить, что такое последовательно). Прекрасно, теперь вот этот приборон называется вольтметр - присоедините проволочками сюда. Вот так, очень хорошо. А, да мы чуть не забыли источник тока (объясните, что это такое). Его надо включить таким-то образом. Ну вот так; теперь начали измерения. Ключ замкнули, прочитываем показания приборов. То, что показывает вольтметр, это напряжение, то, что показывает прибор, включенный последовательно, называется силой тока. А вот отношение напряжения к силе тока называется сопротивлением". Теперь приготовьте тетрадь и записывайте результаты измерений. Меняйте источник тока, по-прежнему измеряйте напряжение и силу тока и каждый раз делите одну цифру на другую. Что получается? Одно и то же? Поразительный факт!!! Продолжайте менять источники тока; еще опыты, десяток, сотня, тысячи. И все время отношение напряжения к силе -тока неизменно. Я надеюсь, что вы пришли в состояние романтического парения духа. Ведь мы с вами нашли замечательный закон природы. Правда, к сожалению, открытие не наше. Его давно уже сделал прекрасный физик Ом. Оказывается, любой проводник можно характеризовать определенным числом. Это число называется сопротивлением проводника. Независимо от условий прохождения тока отношение напряжения к силе тока равно сопротивлению этого проводника. Вот это закон природы. Его можно сформулировать на любом языке, при помощи телеграфной азбуки, вообще без слов - одними жестами. Этот закон установлен сотнями, тысячами, миллионами опытов. Этот закон есть обобщение нашего знания. На этом законе держится наша жизнь, он вплелся, в современную цивилизацию. Этот закон не может быть неверным. Не может быть потому, что этого не может быть. Теперь проследим за развитием науки, касающимся закона Ома. Проводя измерения сопротивления при разных температурах, исследователь обращает внимание на то, что отношение напряжения к силе тока разное при разных температурах. Исследователь пишет об этом научную статью и сообщает научному миру: "Формулируя закон Ома, надо не забыть фразу: "при постоянной температуре". Сопротивление не является константой проводника, а является функцией температуры. Ни один приличный исследователь не сообщает миру, что он ниспроверг закон Ома. Никаких сенсаций и воплей по поводу того, что закон Ома неверен, не последует. Разумный исследователь не скажет, что идея о зависимости сопротивления от температуры безумна. Сам же открыватель нового отнесется с полным уважением к великолепному наблюдению своего, предшественника. Он лишь укажет, какие новости появятся, если выйти за пределы тех условий, в которых был установлен закон. Эту схему развития науки можно проследить на любом научном предмете. Таким образом, развитие науки НИКОГДА не приводит к ниспровержению закона. Будущее может показать лишь, что надежды на универсальность закона не оправдались, и точно очертит границы применимости закона. Допустить, что закон природы может быть опровергнут дальнейшими исследователями, так же бессмысленно, как предположить, что завтра не зайдет Солнце, что корова родит осла, что тетя Маша из седьмой квартиры может ходить по воде, что соседский попугай решает интегральные уравнения. Короче говоря, допустить такое может лишь невежда или персона, верующая в господа бога. Действительно, поскольку господь бог всемогущ, то он вполне может изредка пойти на нарушение тех законов, которые он сам и выдумал. Из всего сказанного следует, что безумные идеи, противоречащие законам природы, просто глупые идеи. Если же новая идея не противоречит закону природы, то никто из ученых и не воспримет ее как безумную. К любой гипотезе, высказанной для той области знания, где законы природы не установлены (например, физика элементарных частиц), или для такого сочетания условий, при которых еще доселе не производились какие бы то ни было опыты, исследователь отнесется вполне спокойно. Законы природы незыблемы по той причине, что они являются обобщением опыта. Совершенно напрасно многие читатели, не занимающиеся наукой профессионально, полагают, что в основе науки лежат утверждения вроде "пространство абсолютно", или "электрон имеет волновую природу", или "электромагнитное поле распространяется в эфире". Ошибочно предполагая, что подобные утверждения являются. законами природы, перелистывая историю науки, эти читатели приходят к заключению, что история состоит из падения и становления законов. Нет ничего более ошибочного. Утверждения, подобные приведенным выше, характеризуют языковую схему, манеру говорить, принятый способ использования слов. Эти утверждения являются "обрамлением" закона природы, которое действительно зачастую меняется, и меняется весьма фундаментально. Но закон природы остается при этом нетронутым. Уравнения электродинамики Максвелла безупречно предсказывают электромагнитные явления, позволяют рассчитывать сложнейшие машины и эксперименты. И их пригодность, их ценность нисколько не зависит от споров об эфире. Уравнение Шредингера - основное уравнение квантовой механики - позволяет безупречно предсказывать явления, протекающие в мире электронов. С помощью этого уравнения можно с поразительной точностью предсказать расположение линий в спектре поглощения, объяснить сверхпроводимость, найти законы, по которым нейтроны движутся в кристалле. И это можно делать с одинаковым успехом, независимо от того, справедлива ли так называемая копенгагенская точка зрения на "природу" электрона или верна точка зрения небольшого числа исследователей, которые не желают принимать неопределенность траектории электрона. Я вовсе не хочу сказать, что эволюция в научном языке, в наших представлениях о допустимой и недопустимой наглядности моделей явления что все это не играет роли. Несомненно, играет, и немалую, хотя бы по той причине, что способствует очистке науки от мусора. Но все же надо ясно представлять себе, что в фундаменте науки лежат законы природы, являющиеся обобщением человеческого опыта. Что законы эти должны быть сформулированы так, чтобы их можно было бы проверить на опыте и чтобы с их помощью можно было предсказать еще не наблюдавшиеся явления. Последнее является главным содержанием и целью науки. Умение предсказывать есть овладение природой, умение предсказывать и означает совершенное понимание и познание. Я получаю на рецензию статью или письмо от товарища, который хочет порадовать мир откровениями, или слышу рассказ о потрясающих открытиях. Каковы условия, чтобы я отнесся со вниманием к сказанным или написанным словам и фразам? Два условия должны быть выполнены непременно. Во-первых, высказанные в работе или письме идеи не должны противоречить известным законам природы, и, во-вторых, они могут быть проверены на опыте. Если эти условия не выполнены, то слова и фразы для науки интереса не представляют и могут лишь фигурировать как предмет невинной болтовни для развлечения гостей. Новые идеи, удовлетворяющие поставленным требованиям, могут возникнуть далеко не во всех областях науки. Дело в том, что основные законы природы, касающиеся мира атомов и электронов, известны, и в этой области, представляющей основной интерес, во всяком случае для житейской практики, новых идей, касающихся фундамента знания, уже не возникнет. Действительно, законы квантовой механики и статистической физики в принципе описывают любые физические, химические и биологические явления, протекающие при обычных температурах и давлекиях в условиях Земли. Поэтому нет места гипотезам о каких-либо неизвестных науке "новых силах", действующих между электронами и атомами, или о неоткрытом до сих пор излучении, свойственном какой-либо системе атомов. Такого не может быть, потому что не может быть. Нежелание понять простые вещи, о которых сказано выше, ведет к досадным следствиям. В печати бурно обсуждаются "безопорное движение" (нарушающее, законы механики); "ошибка Ампера", позволяющая думать, что в законах электродинамики, на которых построена современная цивилизация, затаился недосмотр; "вода, испаряющаяся из закрытых бутылок" вопреки законам молекулярной физики, и многое, многое другое. Медленно сходит мода на чрезвычайно романтическую область человеческой деятельности, именуемую телепатией. Безумные идеи в этой области заключаются в том, что человеческие души, находящиеся как угодно далеко, способны общаться друг с другом. К какому классу утверждений относятся высказывания телепатов - к таким, которые надо проверять, или к таким, которые смело можно отбросить априорно? Ко вторым: ибо то, что противоречит законам природы, можно не проверять, а освободившимся временем воспользоваться для осуществления куда более симпатичной романтики - отправиться в горы, в путешествие на байдарке или на розыск пропавших писем Лермонтова. Почему же телепатия противоречит законам природы? На основании следующей логической цепочки. Биологическое вещество построено из тех же атомов и электронов, что и вещество неживой природы; законы движения и излучения атомов твердо установлены; излучение системы атомов, находящихся в условиях земных температур и давлений, представляет собой электромагнитные волны; законы распространения электромагнитных волн строго установлены, известно, как интенсивность излучения зависит от его частоты и как она падает с удалением от источника; как расчетом, так и непосредственным измерением можно показать, что интенсивность излучения, исходящего от живой особи, совершенно ничтожна и практически равна нулю на сколь-нибудь значительных расстояниях; допущение о существовании какого-либо "особого" источника или "особого" приемника, свойственного лишь живым организмам, противоречит законам природы, а потому бессмысленно. Существуют хорошие исследователи-экспериментаторы, владеющие логикой. Они посвятят свой труд опытному изучению взаимосвязей в природе лишь в том случае, если будут убеждены, что постановка задачи не противоречит законам природы. Эти исследователи не станут заниматься телепатией, проверкой "ошибки Ампера", испарением воды из закрытой бутылки. Существуют исследователи - хорошие экспериментаторы, не владеющие логикой Они могут посвятить свой труд проверке фактов, находящихся в противоречии с законами природы. Так как имеется множество людей, относящихся к законам природы без уважения, то иногда труд таких экспериментаторов можно считать полезным. Они на опыте обнаружат, что вода не испаряется из закрытой бутылки, что Ампер не ошибался, что законы Ньютона классической механики всегда справедливы и что мысли передаются на расстояние лишь с помощью радиопередатчиков. И наконец, существуют гореисследователи, не владеющие ни логикой, ни экспериментом. Вряд ли стоит предоставлять в их пользование драгоценные бумажные страницы. Для публикации лженаучных измышлений одинаково непригоден и серьезный научный, и научно-популярный журналы. А ведь источником безумных идей, псевдоромантических бредней о крушении науки, научных сенсаций и экзотических проблем и являются эти псевдоученые третьего сорта. Нужна высокая плотина, преграждающая путь печатной продукции, воспитывающей у молодежи пренебрежительное отношение к "прозаической науке" и несерьезное отношение к труду ученых. Действительно, что тут еще обосновывать и объяснять? Не лучше ли просто ограничиться выводами, базирующимися на показаниях вольтметра и амперметра? Но если отказаться от поиска общего объяснения разрозненных эмпирических закономерностей, то "наука" превратилась бы только в собрание незыбл&мых количественных соотношений между непосредственно наблюдаемыми величинами. Такую "науку" можно было бы лишь постоянно пополнять вновь установленными эмпирическими закономерностями, не было бы нужды вносить коренные изменения и в языковую схему описания законов, так как она в этом случае включала бы только незыблемые понятия, относящиеся к самой операции измерения. Необходимый арсенал терминов для формулировки закона Ома действительно исчерпывался бы клеммами, проводниками, источниками напряжения и отклонениями стрелок вольтметра и амперметра. В такой замкнутой операционалнстской трактовке излишним оказалось бы понятие об электроне, а термину "электрический ток" с его претензией на объяснение явления отклонения стрелки амперметра мог быть приписан лишь весьма условный смысл. Но такая, с позволения сказать, голая эмпирическая наука не могла бы эффективно выполнять ту самую задачу предсказания еще не наблюдавшихся ранее явлений, которую и А. Китайгородский признал "главным содержанием и целью науки". Так что обобщение отдельных фактов и поиск единого количественного объяснения различных явлений вовсе не прихоть отдельных любителей теоретических систем, а составляют само существо научного познания законов природы. Физической науке, например, никогда не удавалось удержаться в рамках строго операционалистской формулировки ее незыблемого экспериментального фундамента. Правда, на каждом этапе выхода физики за эти рамки всегда раздавались голоса против слишком серьезного отношения к новым понятиям, являющимся будто бы всего-навсего символами языковой схемы упорядочения наших наблюдений и ощущений. В свое время именно на этом основании Мах отвергал реальность атомов, а сегодня некоторые пытаются снять с повестки дня проблему выяснения существа корпускулярно-волнового дуализма микрочастиц. Результаты наблюдений и обобщающие их эмпирические закономерности составляют лишь незыблемую экспериментальную основу всякой теоретической науки. Ее же основное содержание и цель состоит всегда в строгом количественном объяснении по возможности более широкого круга наблюдаемых явлений. Для этого и приходится вводить некоторые общие физические понятия и соответствующие им физические величины, которые лишь косвенно связаны с наблюдаемыми на опыте результатами. О захватывающей истории формирования представлений современной физики, о том, как небольшая группа физиков буквально взламывала устои классической физики, читатели журнала "Техника - молодежи" могут подробно узнать из книги американской журналистки Б. Клайн, русский перевод которой под названием "В поисках" подготовлен в Атомиздате. В этой книге хорошо показано, что объективные трудности создания теоретического обобщения совершенно новой области физических явлений всякий раз самими же исследователями превращались в непреодолимые преграды из-за непременного желания решить их на основе фундаментальных представлений ранее изученной области явлений. Хорошо известно, что наиболее трудяой и мучительной частью творчества основоположников новых концепций в физике было всегда освобождение от некоторых представлений, уже сыгравших фундаментальную роль в развитии физики. Те же оковы укоренившихся мнений нередко задерживали процесс признания и освоения широкой научной общественностью уже найденных гениальных теоретических обобщений, поражающих "безумной" новизной своих концепций. Можно ли подобные коренные преобразования физических представлений связать с романтикой разрушения? Конечно, речь должна идти прежде всего о романтике творческого созидания, но созидания, возникшего на основе разрушения оков прежних представлений, апробированных в другой области физических явлений, о неожиданных сенсационных теоретических открытиях, завоевывающих призвание в борьбе с естественным догматизмом большинства ученых. Конечно, невозможно полностью избавиться от всех нежелательных явлений, сдерживающих процесс формирования совершенно новых физических представлений. Приступая к теоретическому обобщению новой области физических явлении, ученые пользуются представлениями, возникшими при исследовании других областей, прежде всего в силу отсутствия у них каких-либо иных представлении. Теперь нам кажутся весьма наивными первоначальные попытки объяснения электрических явлении на основе механических моделей. Никто не знает, в какой мере оправдает будущее сегодняшние усилия использовать в теории элементарных частиц аппарат квантовой механики и представления теории относительности, возникшие в результате обобщения закономерностей совершенно другой области явлений. Полностью отвергать применение в новой области ранее сложившихся представлений также нет оснований. Поэтому критический анализ уже сложившихся физических представлений и дальнейшее развитие толкования уже существующих физических теорий, так же как создание общей атмосферы терпимости к инакомыслящим, не могут не иметь первостепенного значения для решения трудностей теоретического обобщения физики элементарных частиц. Нужно бороться против невежественных, лженаучных взглядов, маскирующихся под новаторские преобразования ныне достигнутых научных знаний. Но для этого нет необходимости изображать науку тихой заводью, свободной от закономерных периодических потрясений ее основных концепций. Не стоит ради борьбы со лженоваторами изображать радикальные преобразования фундаментальных научных представлений лишь сменой обрамления экспериментально установленных закономерностей. Фундаментальность таких основных представлений доказывается уже тем, что они цементируют в единую теоретическую систему целый ряд наблюдаемых на опыте закономерностей. Необходимость же смены этих представлений проистекает из ограниченности, невозможности распространения их на все явления реального мира.
А. МИЦКЕВИЧ, кандидат физико-математических наук, научный обозреватель журнала
АЗБУЧНЫЕ ИСТИНЫ - ВЧЕРАШНИЕ БЕЗУМНЫЕ ИДЕИ
Статья профессора Китайгородского производит странное впечатление. Известный ученый изо всех сил силится доказать одну-единственную азбучную истину: законы природы непогрешимы. Трудно сейчас найти даже среди так называемых "третьесортных" популяризаторов науки таких, которые не знали бы этого еще со школьной скамьи. Но в отличие от профессора эти популяризаторы прекрасно знают, что слова "фундаментальные законы природы" нуждаются в глубоком осмыслении. Ученым типа профессора Китайгородского не правится почему-то слово "сенсация", особенно когда дело касается новых научных открытий. Нильс Бор, видите ли, из вежливости назвал теорию поля Гейзенберга "недостаточно безумной". А ведь история науки учит, что все поистине великие открытия состоят именно из "безумных" идей, из идей, лежащих далеко в стороне от официальных, проторенных путей. Средневековая инквизиция, обожествив учение Аристотеля и геоцентрическую систему вселенной, задержала развитие науки на триста лет. И понадобились "безумные идеи" Коперника, Джордано Бруно и Галилея, чтобы проломить ту "плотину", за которую ратует А. Китайгородский. Специальная теория относительности Эйнштейна - это сгусток "безумных" идей. Лоренц, который впервые ввел в электродинамику свои знаменитые преобразования, отдал должное Эйнштейну именно за нелепое с точки зрения классической физики утверждение: скорость света не зависит от скорости источника или наблюдателя. Сергей Иванович Вавилов потратил немало труда, чтобы ниспровергнуть закон, гласивший: коэффициент поглощения света веществом не зависит от интенсивности света. В те годы закон Бугера считался "незыблемым", "фундаментальным". Вавилову не довелось дожить до появления лазеров, подтвердивших его взгляды. Но, поставив эту проблему, он оказался прав, хотя и в его время находились скептики, в меру своего природного остроумия хихикавшие над опытами ученого. "Безумная" идея - это прежде всего переосмысление известных фактов. Считается: "Факты говорят сами за себя". Ничего подобного. О фактах говорят люди, думающие люди, труд которых заключается в том, чтобы снова и снова переосмыслить то, что кажется хорошо известным. Миллионы лет считалось фактом: Солнце восходит на востоке, делает пол-оборота вокруг Земли и заходит на западе. Факт до неприличия тривиальный. И понадобились "безумцы", вывернувшие все эти представления наизнанку. Профессор Китайгородский неоднократно противоречит самому себе. Отвергая "безумные" идеи, он пишет: "Уравнение Шредингера - основное уравнение квантовой механики - позволяет безупречно предсказать явления, протекающие в мире электронов. С помощью этого уравнения можно с поразительной точностью предсказать расположение в спектре поглощения, объяснить сверхпроводимость, найти законы, по которым нейтроны движутся в кристалле". Здесь, по крайней мере, две неточности. Вопервых, уравнение Шредингера не позволяет предсказать безупречно явления, протекающие в мире электронов. Это линейное уравнение, и такие ученые, как Паули, Дирак, Ландау, немало потрудились, чтобы ввести в уравнение нелинейные члены, способные приблизить теоретические результаты к наблюдаемым на опыте. Скажем, уравнение Шредингера ни в какой степени не освобождает квантовую механику от "сумасшедших" бесконечностей, которые возникают при решении уравнения "в лоб", для точечного электрона. Во-вторых, и это самое существенное, Шредингер ниоткуда не вывел свое уравнение. На основе идей де Бройля (кстати, тоже достаточно "безумных") он просто написал волновое уравнение по аналогии с классическим уравнением распространения волн и, как он сам как-то заявил, "не ожидал из этого ничего путного". А вот как пишет об уравнении Шредингера американский теоретик Фейнман (его имя хорошо известно в нашей стране по его блестящим лекциям по физике): "Откуда это (то есть уравнение Шредингера) получается? Это невозможно вывести из чего-либо нам уже известного. Это рождено в голове Шредингера, это выдумано им в битве за понимание экспериментальных наблюдений реального мира" (Фейнман, т. 9, стр. 95). Трудно себе лучше сформулировать процесс рождения "глупых идей"! А. Китайгородский трижды повторил фразу известного чеховского "ученого соседа": "Не может быть потому, что этого не может быть никогда". Я думаю, что такое пристрастие к этой глубокомысленной формуле не случайно. Автор чувствует слабость своей аргументации, сводящейся к трем положениям: 1. Безумные идеи - глупые идеи. 2. Наука развивается по цепочке формальной логики. 3. Законы природы незыблемы. Первые два положения просто неверны. Третье свидетельствует о том, что автор статьи никогда не предложит ничего нового в науке, он никогда не продвинется к пониманию фундаментальных законов природы ближе, чем это можно сделать, читая курс классической физики или химии. Что касается его интерпретации слова "сенсация", то он просто в плену тех газетчиков и журналистов, которые любят писать о скандальных историях, называя их "сенсациями". В словаре иностранных слов есть точное определение, что такое "сенсация": а) Сильное впечатление, произведенное на общество каким-либо событием, известием; б) Событие, сообщение, вызывающее шум, возбуждение, широкий интерес; в) Шумиха; в капиталистических странах буржуазная печать намеренно возбуждает сенсацию как средство увеличения тиража газет и журналов... Как видно, А. Китайгородский понимает "сенсацию" в последнем смысле, совершенно не свойственном советской печати вообще и научно-популярной в частности.
"ЗВЕЗДНЫЕ ЧАСЫ"
ИЛИ
"ОТКРЫТИЯ В РАБОЧЕМ ПОРЯДКЕ"?
Как рассказывать молодежи о науке? Возможны ли научные сенсации? Что имел в виду Нильс Бор, говоря о "безумных" идеях в физике?
Снова и снова приковывают к себе внимание ученых и популяризаторов науки эти вопросы; снова и снова вокруг них разгораются споры; снова и снова выходят на арену словесных сражений "классики" - педагоги и "романтики" популяризаторы. В этих спорах один из представителей первой точки зрения, профессор А. Китайгородский, развил мысль о том, что в науке не было, нет, не может быть никаких сенсаций, что наука делается в рабочем порядке. Такая точка зрения вызвала возражения прежде всего со стороны ученых - профессора А. Тяпкина и кандидата физико-математических наук А. Мицкевича. Публикуя статьи участников этой дискуссии, мы предоставляем читателям возможность самим решить, кто прав в этом споре. Ждем ваших мнений.
А. КИТАЙГОРОДСКИЙ, профессор, доктор физико-математических наук
БЕЗУМНЫЕ ИДЕИ=ГЛУПЫЕ ИДЕИ
Если бы Нильс Бор предполагал, какие последствия вызовет его невинная шутка: "Ваша теория недостаточно безумная, чтобы быть справедливой", то он наверняка воздержался бы от этой фразы вежливости, которой он хотел смягчить свое непризнание новых идей, содержавшихся в докладе Гейэенберга. Вот уже несколько лет, как беЗЗЗумные идеи в науке и РРРомантизм научного творчества, ниспровергающего основы, стали основными рельсами, по которым заскользили научно-популярные творения многих авторов. Впрочем, главным образом тех из них, которые имеют к науке косвенное отношение, которые работают при науке, около науки. Я постараюсь объяснить, почему в науке нет сенсаций, нет безумных идей и нет романтики разрушения. Прежде всего объясним, что такое научное слово, научное утверждение. Самый главный признак следующий: его можно проверить на опыте. Можно сказать, что научное утверждение есть указание на производство каких-то операций, в результате коих возникнет ощутимый результат. Скажем, если я говорю: произведение силы тока на сопротивление равно напряжению, то в расшифрованном виде эта фраза означает следующее: "Возьмите, пожалуйста, вот этот приборчик, подсоедините к нему провода. Нет, не сюда, а, будьте добры, вот к этим клеммам. Прекрасно, теперь берите проводник, сопротивление которого вам надо измерить. Соедините последовательно (не забудьте терпеливо объяснить, что такое последовательно). Прекрасно, теперь вот этот приборон называется вольтметр - присоедините проволочками сюда. Вот так, очень хорошо. А, да мы чуть не забыли источник тока (объясните, что это такое). Его надо включить таким-то образом. Ну вот так; теперь начали измерения. Ключ замкнули, прочитываем показания приборов. То, что показывает вольтметр, это напряжение, то, что показывает прибор, включенный последовательно, называется силой тока. А вот отношение напряжения к силе тока называется сопротивлением". Теперь приготовьте тетрадь и записывайте результаты измерений. Меняйте источник тока, по-прежнему измеряйте напряжение и силу тока и каждый раз делите одну цифру на другую. Что получается? Одно и то же? Поразительный факт!!! Продолжайте менять источники тока; еще опыты, десяток, сотня, тысячи. И все время отношение напряжения к силе -тока неизменно. Я надеюсь, что вы пришли в состояние романтического парения духа. Ведь мы с вами нашли замечательный закон природы. Правда, к сожалению, открытие не наше. Его давно уже сделал прекрасный физик Ом. Оказывается, любой проводник можно характеризовать определенным числом. Это число называется сопротивлением проводника. Независимо от условий прохождения тока отношение напряжения к силе тока равно сопротивлению этого проводника. Вот это закон природы. Его можно сформулировать на любом языке, при помощи телеграфной азбуки, вообще без слов - одними жестами. Этот закон установлен сотнями, тысячами, миллионами опытов. Этот закон есть обобщение нашего знания. На этом законе держится наша жизнь, он вплелся, в современную цивилизацию. Этот закон не может быть неверным. Не может быть потому, что этого не может быть. Теперь проследим за развитием науки, касающимся закона Ома. Проводя измерения сопротивления при разных температурах, исследователь обращает внимание на то, что отношение напряжения к силе тока разное при разных температурах. Исследователь пишет об этом научную статью и сообщает научному миру: "Формулируя закон Ома, надо не забыть фразу: "при постоянной температуре". Сопротивление не является константой проводника, а является функцией температуры. Ни один приличный исследователь не сообщает миру, что он ниспроверг закон Ома. Никаких сенсаций и воплей по поводу того, что закон Ома неверен, не последует. Разумный исследователь не скажет, что идея о зависимости сопротивления от температуры безумна. Сам же открыватель нового отнесется с полным уважением к великолепному наблюдению своего, предшественника. Он лишь укажет, какие новости появятся, если выйти за пределы тех условий, в которых был установлен закон. Эту схему развития науки можно проследить на любом научном предмете. Таким образом, развитие науки НИКОГДА не приводит к ниспровержению закона. Будущее может показать лишь, что надежды на универсальность закона не оправдались, и точно очертит границы применимости закона. Допустить, что закон природы может быть опровергнут дальнейшими исследователями, так же бессмысленно, как предположить, что завтра не зайдет Солнце, что корова родит осла, что тетя Маша из седьмой квартиры может ходить по воде, что соседский попугай решает интегральные уравнения. Короче говоря, допустить такое может лишь невежда или персона, верующая в господа бога. Действительно, поскольку господь бог всемогущ, то он вполне может изредка пойти на нарушение тех законов, которые он сам и выдумал. Из всего сказанного следует, что безумные идеи, противоречащие законам природы, просто глупые идеи. Если же новая идея не противоречит закону природы, то никто из ученых и не воспримет ее как безумную. К любой гипотезе, высказанной для той области знания, где законы природы не установлены (например, физика элементарных частиц), или для такого сочетания условий, при которых еще доселе не производились какие бы то ни было опыты, исследователь отнесется вполне спокойно. Законы природы незыблемы по той причине, что они являются обобщением опыта. Совершенно напрасно многие читатели, не занимающиеся наукой профессионально, полагают, что в основе науки лежат утверждения вроде "пространство абсолютно", или "электрон имеет волновую природу", или "электромагнитное поле распространяется в эфире". Ошибочно предполагая, что подобные утверждения являются. законами природы, перелистывая историю науки, эти читатели приходят к заключению, что история состоит из падения и становления законов. Нет ничего более ошибочного. Утверждения, подобные приведенным выше, характеризуют языковую схему, манеру говорить, принятый способ использования слов. Эти утверждения являются "обрамлением" закона природы, которое действительно зачастую меняется, и меняется весьма фундаментально. Но закон природы остается при этом нетронутым. Уравнения электродинамики Максвелла безупречно предсказывают электромагнитные явления, позволяют рассчитывать сложнейшие машины и эксперименты. И их пригодность, их ценность нисколько не зависит от споров об эфире. Уравнение Шредингера - основное уравнение квантовой механики - позволяет безупречно предсказывать явления, протекающие в мире электронов. С помощью этого уравнения можно с поразительной точностью предсказать расположение линий в спектре поглощения, объяснить сверхпроводимость, найти законы, по которым нейтроны движутся в кристалле. И это можно делать с одинаковым успехом, независимо от того, справедлива ли так называемая копенгагенская точка зрения на "природу" электрона или верна точка зрения небольшого числа исследователей, которые не желают принимать неопределенность траектории электрона. Я вовсе не хочу сказать, что эволюция в научном языке, в наших представлениях о допустимой и недопустимой наглядности моделей явления что все это не играет роли. Несомненно, играет, и немалую, хотя бы по той причине, что способствует очистке науки от мусора. Но все же надо ясно представлять себе, что в фундаменте науки лежат законы природы, являющиеся обобщением человеческого опыта. Что законы эти должны быть сформулированы так, чтобы их можно было бы проверить на опыте и чтобы с их помощью можно было предсказать еще не наблюдавшиеся явления. Последнее является главным содержанием и целью науки. Умение предсказывать есть овладение природой, умение предсказывать и означает совершенное понимание и познание. Я получаю на рецензию статью или письмо от товарища, который хочет порадовать мир откровениями, или слышу рассказ о потрясающих открытиях. Каковы условия, чтобы я отнесся со вниманием к сказанным или написанным словам и фразам? Два условия должны быть выполнены непременно. Во-первых, высказанные в работе или письме идеи не должны противоречить известным законам природы, и, во-вторых, они могут быть проверены на опыте. Если эти условия не выполнены, то слова и фразы для науки интереса не представляют и могут лишь фигурировать как предмет невинной болтовни для развлечения гостей. Новые идеи, удовлетворяющие поставленным требованиям, могут возникнуть далеко не во всех областях науки. Дело в том, что основные законы природы, касающиеся мира атомов и электронов, известны, и в этой области, представляющей основной интерес, во всяком случае для житейской практики, новых идей, касающихся фундамента знания, уже не возникнет. Действительно, законы квантовой механики и статистической физики в принципе описывают любые физические, химические и биологические явления, протекающие при обычных температурах и давлекиях в условиях Земли. Поэтому нет места гипотезам о каких-либо неизвестных науке "новых силах", действующих между электронами и атомами, или о неоткрытом до сих пор излучении, свойственном какой-либо системе атомов. Такого не может быть, потому что не может быть. Нежелание понять простые вещи, о которых сказано выше, ведет к досадным следствиям. В печати бурно обсуждаются "безопорное движение" (нарушающее, законы механики); "ошибка Ампера", позволяющая думать, что в законах электродинамики, на которых построена современная цивилизация, затаился недосмотр; "вода, испаряющаяся из закрытых бутылок" вопреки законам молекулярной физики, и многое, многое другое. Медленно сходит мода на чрезвычайно романтическую область человеческой деятельности, именуемую телепатией. Безумные идеи в этой области заключаются в том, что человеческие души, находящиеся как угодно далеко, способны общаться друг с другом. К какому классу утверждений относятся высказывания телепатов - к таким, которые надо проверять, или к таким, которые смело можно отбросить априорно? Ко вторым: ибо то, что противоречит законам природы, можно не проверять, а освободившимся временем воспользоваться для осуществления куда более симпатичной романтики - отправиться в горы, в путешествие на байдарке или на розыск пропавших писем Лермонтова. Почему же телепатия противоречит законам природы? На основании следующей логической цепочки. Биологическое вещество построено из тех же атомов и электронов, что и вещество неживой природы; законы движения и излучения атомов твердо установлены; излучение системы атомов, находящихся в условиях земных температур и давлений, представляет собой электромагнитные волны; законы распространения электромагнитных волн строго установлены, известно, как интенсивность излучения зависит от его частоты и как она падает с удалением от источника; как расчетом, так и непосредственным измерением можно показать, что интенсивность излучения, исходящего от живой особи, совершенно ничтожна и практически равна нулю на сколь-нибудь значительных расстояниях; допущение о существовании какого-либо "особого" источника или "особого" приемника, свойственного лишь живым организмам, противоречит законам природы, а потому бессмысленно. Существуют хорошие исследователи-экспериментаторы, владеющие логикой. Они посвятят свой труд опытному изучению взаимосвязей в природе лишь в том случае, если будут убеждены, что постановка задачи не противоречит законам природы. Эти исследователи не станут заниматься телепатией, проверкой "ошибки Ампера", испарением воды из закрытой бутылки. Существуют исследователи - хорошие экспериментаторы, не владеющие логикой Они могут посвятить свой труд проверке фактов, находящихся в противоречии с законами природы. Так как имеется множество людей, относящихся к законам природы без уважения, то иногда труд таких экспериментаторов можно считать полезным. Они на опыте обнаружат, что вода не испаряется из закрытой бутылки, что Ампер не ошибался, что законы Ньютона классической механики всегда справедливы и что мысли передаются на расстояние лишь с помощью радиопередатчиков. И наконец, существуют гореисследователи, не владеющие ни логикой, ни экспериментом. Вряд ли стоит предоставлять в их пользование драгоценные бумажные страницы. Для публикации лженаучных измышлений одинаково непригоден и серьезный научный, и научно-популярный журналы. А ведь источником безумных идей, псевдоромантических бредней о крушении науки, научных сенсаций и экзотических проблем и являются эти псевдоученые третьего сорта. Нужна высокая плотина, преграждающая путь печатной продукции, воспитывающей у молодежи пренебрежительное отношение к "прозаической науке" и несерьезное отношение к труду ученых. Действительно, что тут еще обосновывать и объяснять? Не лучше ли просто ограничиться выводами, базирующимися на показаниях вольтметра и амперметра? Но если отказаться от поиска общего объяснения разрозненных эмпирических закономерностей, то "наука" превратилась бы только в собрание незыбл&мых количественных соотношений между непосредственно наблюдаемыми величинами. Такую "науку" можно было бы лишь постоянно пополнять вновь установленными эмпирическими закономерностями, не было бы нужды вносить коренные изменения и в языковую схему описания законов, так как она в этом случае включала бы только незыблемые понятия, относящиеся к самой операции измерения. Необходимый арсенал терминов для формулировки закона Ома действительно исчерпывался бы клеммами, проводниками, источниками напряжения и отклонениями стрелок вольтметра и амперметра. В такой замкнутой операционалнстской трактовке излишним оказалось бы понятие об электроне, а термину "электрический ток" с его претензией на объяснение явления отклонения стрелки амперметра мог быть приписан лишь весьма условный смысл. Но такая, с позволения сказать, голая эмпирическая наука не могла бы эффективно выполнять ту самую задачу предсказания еще не наблюдавшихся ранее явлений, которую и А. Китайгородский признал "главным содержанием и целью науки". Так что обобщение отдельных фактов и поиск единого количественного объяснения различных явлений вовсе не прихоть отдельных любителей теоретических систем, а составляют само существо научного познания законов природы. Физической науке, например, никогда не удавалось удержаться в рамках строго операционалистской формулировки ее незыблемого экспериментального фундамента. Правда, на каждом этапе выхода физики за эти рамки всегда раздавались голоса против слишком серьезного отношения к новым понятиям, являющимся будто бы всего-навсего символами языковой схемы упорядочения наших наблюдений и ощущений. В свое время именно на этом основании Мах отвергал реальность атомов, а сегодня некоторые пытаются снять с повестки дня проблему выяснения существа корпускулярно-волнового дуализма микрочастиц. Результаты наблюдений и обобщающие их эмпирические закономерности составляют лишь незыблемую экспериментальную основу всякой теоретической науки. Ее же основное содержание и цель состоит всегда в строгом количественном объяснении по возможности более широкого круга наблюдаемых явлений. Для этого и приходится вводить некоторые общие физические понятия и соответствующие им физические величины, которые лишь косвенно связаны с наблюдаемыми на опыте результатами. О захватывающей истории формирования представлений современной физики, о том, как небольшая группа физиков буквально взламывала устои классической физики, читатели журнала "Техника - молодежи" могут подробно узнать из книги американской журналистки Б. Клайн, русский перевод которой под названием "В поисках" подготовлен в Атомиздате. В этой книге хорошо показано, что объективные трудности создания теоретического обобщения совершенно новой области физических явлений всякий раз самими же исследователями превращались в непреодолимые преграды из-за непременного желания решить их на основе фундаментальных представлений ранее изученной области явлений. Хорошо известно, что наиболее трудяой и мучительной частью творчества основоположников новых концепций в физике было всегда освобождение от некоторых представлений, уже сыгравших фундаментальную роль в развитии физики. Те же оковы укоренившихся мнений нередко задерживали процесс признания и освоения широкой научной общественностью уже найденных гениальных теоретических обобщений, поражающих "безумной" новизной своих концепций. Можно ли подобные коренные преобразования физических представлений связать с романтикой разрушения? Конечно, речь должна идти прежде всего о романтике творческого созидания, но созидания, возникшего на основе разрушения оков прежних представлений, апробированных в другой области физических явлений, о неожиданных сенсационных теоретических открытиях, завоевывающих призвание в борьбе с естественным догматизмом большинства ученых. Конечно, невозможно полностью избавиться от всех нежелательных явлений, сдерживающих процесс формирования совершенно новых физических представлений. Приступая к теоретическому обобщению новой области физических явлении, ученые пользуются представлениями, возникшими при исследовании других областей, прежде всего в силу отсутствия у них каких-либо иных представлении. Теперь нам кажутся весьма наивными первоначальные попытки объяснения электрических явлении на основе механических моделей. Никто не знает, в какой мере оправдает будущее сегодняшние усилия использовать в теории элементарных частиц аппарат квантовой механики и представления теории относительности, возникшие в результате обобщения закономерностей совершенно другой области явлений. Полностью отвергать применение в новой области ранее сложившихся представлений также нет оснований. Поэтому критический анализ уже сложившихся физических представлений и дальнейшее развитие толкования уже существующих физических теорий, так же как создание общей атмосферы терпимости к инакомыслящим, не могут не иметь первостепенного значения для решения трудностей теоретического обобщения физики элементарных частиц. Нужно бороться против невежественных, лженаучных взглядов, маскирующихся под новаторские преобразования ныне достигнутых научных знаний. Но для этого нет необходимости изображать науку тихой заводью, свободной от закономерных периодических потрясений ее основных концепций. Не стоит ради борьбы со лженоваторами изображать радикальные преобразования фундаментальных научных представлений лишь сменой обрамления экспериментально установленных закономерностей. Фундаментальность таких основных представлений доказывается уже тем, что они цементируют в единую теоретическую систему целый ряд наблюдаемых на опыте закономерностей. Необходимость же смены этих представлений проистекает из ограниченности, невозможности распространения их на все явления реального мира.
А. МИЦКЕВИЧ, кандидат физико-математических наук, научный обозреватель журнала
АЗБУЧНЫЕ ИСТИНЫ - ВЧЕРАШНИЕ БЕЗУМНЫЕ ИДЕИ
Статья профессора Китайгородского производит странное впечатление. Известный ученый изо всех сил силится доказать одну-единственную азбучную истину: законы природы непогрешимы. Трудно сейчас найти даже среди так называемых "третьесортных" популяризаторов науки таких, которые не знали бы этого еще со школьной скамьи. Но в отличие от профессора эти популяризаторы прекрасно знают, что слова "фундаментальные законы природы" нуждаются в глубоком осмыслении. Ученым типа профессора Китайгородского не правится почему-то слово "сенсация", особенно когда дело касается новых научных открытий. Нильс Бор, видите ли, из вежливости назвал теорию поля Гейзенберга "недостаточно безумной". А ведь история науки учит, что все поистине великие открытия состоят именно из "безумных" идей, из идей, лежащих далеко в стороне от официальных, проторенных путей. Средневековая инквизиция, обожествив учение Аристотеля и геоцентрическую систему вселенной, задержала развитие науки на триста лет. И понадобились "безумные идеи" Коперника, Джордано Бруно и Галилея, чтобы проломить ту "плотину", за которую ратует А. Китайгородский. Специальная теория относительности Эйнштейна - это сгусток "безумных" идей. Лоренц, который впервые ввел в электродинамику свои знаменитые преобразования, отдал должное Эйнштейну именно за нелепое с точки зрения классической физики утверждение: скорость света не зависит от скорости источника или наблюдателя. Сергей Иванович Вавилов потратил немало труда, чтобы ниспровергнуть закон, гласивший: коэффициент поглощения света веществом не зависит от интенсивности света. В те годы закон Бугера считался "незыблемым", "фундаментальным". Вавилову не довелось дожить до появления лазеров, подтвердивших его взгляды. Но, поставив эту проблему, он оказался прав, хотя и в его время находились скептики, в меру своего природного остроумия хихикавшие над опытами ученого. "Безумная" идея - это прежде всего переосмысление известных фактов. Считается: "Факты говорят сами за себя". Ничего подобного. О фактах говорят люди, думающие люди, труд которых заключается в том, чтобы снова и снова переосмыслить то, что кажется хорошо известным. Миллионы лет считалось фактом: Солнце восходит на востоке, делает пол-оборота вокруг Земли и заходит на западе. Факт до неприличия тривиальный. И понадобились "безумцы", вывернувшие все эти представления наизнанку. Профессор Китайгородский неоднократно противоречит самому себе. Отвергая "безумные" идеи, он пишет: "Уравнение Шредингера - основное уравнение квантовой механики - позволяет безупречно предсказать явления, протекающие в мире электронов. С помощью этого уравнения можно с поразительной точностью предсказать расположение в спектре поглощения, объяснить сверхпроводимость, найти законы, по которым нейтроны движутся в кристалле". Здесь, по крайней мере, две неточности. Вопервых, уравнение Шредингера не позволяет предсказать безупречно явления, протекающие в мире электронов. Это линейное уравнение, и такие ученые, как Паули, Дирак, Ландау, немало потрудились, чтобы ввести в уравнение нелинейные члены, способные приблизить теоретические результаты к наблюдаемым на опыте. Скажем, уравнение Шредингера ни в какой степени не освобождает квантовую механику от "сумасшедших" бесконечностей, которые возникают при решении уравнения "в лоб", для точечного электрона. Во-вторых, и это самое существенное, Шредингер ниоткуда не вывел свое уравнение. На основе идей де Бройля (кстати, тоже достаточно "безумных") он просто написал волновое уравнение по аналогии с классическим уравнением распространения волн и, как он сам как-то заявил, "не ожидал из этого ничего путного". А вот как пишет об уравнении Шредингера американский теоретик Фейнман (его имя хорошо известно в нашей стране по его блестящим лекциям по физике): "Откуда это (то есть уравнение Шредингера) получается? Это невозможно вывести из чего-либо нам уже известного. Это рождено в голове Шредингера, это выдумано им в битве за понимание экспериментальных наблюдений реального мира" (Фейнман, т. 9, стр. 95). Трудно себе лучше сформулировать процесс рождения "глупых идей"! А. Китайгородский трижды повторил фразу известного чеховского "ученого соседа": "Не может быть потому, что этого не может быть никогда". Я думаю, что такое пристрастие к этой глубокомысленной формуле не случайно. Автор чувствует слабость своей аргументации, сводящейся к трем положениям: 1. Безумные идеи - глупые идеи. 2. Наука развивается по цепочке формальной логики. 3. Законы природы незыблемы. Первые два положения просто неверны. Третье свидетельствует о том, что автор статьи никогда не предложит ничего нового в науке, он никогда не продвинется к пониманию фундаментальных законов природы ближе, чем это можно сделать, читая курс классической физики или химии. Что касается его интерпретации слова "сенсация", то он просто в плену тех газетчиков и журналистов, которые любят писать о скандальных историях, называя их "сенсациями". В словаре иностранных слов есть точное определение, что такое "сенсация": а) Сильное впечатление, произведенное на общество каким-либо событием, известием; б) Событие, сообщение, вызывающее шум, возбуждение, широкий интерес; в) Шумиха; в капиталистических странах буржуазная печать намеренно возбуждает сенсацию как средство увеличения тиража газет и журналов... Как видно, А. Китайгородский понимает "сенсацию" в последнем смысле, совершенно не свойственном советской печати вообще и научно-популярной в частности.