Старый друг лучше
Автор: Козловский Евгений
Изобретение позапрошлого века (в нынешнем году ей исполняется ни много ни мало – 110 лет), детище немецкого физика Карла Фердинанда Брона, представляет собой колбу, из которой откачан воздух и передняя поверхность которой покрыта изнутри люминофором, светящимся при попадании на него электронов.
Испускает электроны нагреваемый нитью накала катод, покрытый специальным веществом с малой "работой выхода", после чего они с разной интенсивностью потока, которая регулируется напряжением на катоде (результат – разная яркость экрана), летят к люминофору, ускоряемые специальными анодами (в телевизорах их как минимум два – для ступенчатого разгона), напряжение на последнем из которых может достигать 50 киловольт. За остронаправленность электронного луча отвечает фокусирующая система электростатического типа (один или несколько электродов с высоким, в единицы киловольт, напряжением), а отклоняющая система в виде катушек заставляет луч вести себя так, как нужно нам с вами. Бомбардируемый люминофор сам начинает испускать электроны, порождая эффект так называемой вторичной эмиссии, для борьбы с которой поверхность люминофора покрывается специальным заземленным слоем на основе алюминия.
Луч электронной пушки весьма узок, и, чтобы засветить всю поверхность кинескопа, лучу приходится сканировать ее, проходя узкими – слева направо – полосками сверху донизу. Поскольку глаз обладает инерционностью, да и люминофор гаснет не в тот момент, когда электронный луч его покидает, а чуть позже, – мы не замечаем процесса сканирования, или так называемой развертки, и видим картинку целиком. Для этого, правда, частота развертки должна быть не менее 25 кадров в секунду (кино с пленки показывают нам с похожей частотой: 24 кадра в секунду). Однако традиционный телевизионный стандарт – для экономии передающего канала – предусматривает трансляцию кадров не целиком, а половинками: сперва нечетные строки, потом – четные (благодаря той же инерционности зрения, они сливаются в единые кадры уже в нашем мозгу), – так что, чтобы получить эти самые комфортные для мозга 25 полных кадров в секунду, частота обновления экрана устанавливается двойной: 50 Гц (60 – для американского стандарта NTSC). Все ухищрения "стогерцовости", которыми вот уже лет пятнадцать гордятся производители ЭЛТ-телевизоров, естественно, не могут изменить количество выводимой на экран информации, ибо оно стандартно, – но стараются обработать ее таким образом (в основном за счет интерполяции), чтобы картинка казалась глазу более гладкой и меньше утомляла и его, и мозг.
Как известно, Евгений Козловский – большой художник. И как любой большой художник, он терпеть не может заниматься нудной работой. Поэтому на предложение выражаться немного конкретнее и, скажем, пройтись по самым популярным телевизорам от 42 дюймов и выше Козловский с грустью ответил, что все эти телевизоры надо смотреть, а он к такому трудовому подвигу пока не готов. И не будет готов в ближайшие десять тысяч лет. "Вам бы какого мальчика найти, – сказал Козловский, – который все разузнает, посмотрит и расспросит. А так, по описаниям, я не буду. Вы уж как-нибудь сами".
Так что эти врезки были задуманы как мелкая, но приятная месть. Предполагалось, что благодаря им читатель поймет, какой телевизор ему нужен, а Козловскому станет стыдно, когда он поймет, что своими рассуждениями только вселял в читателя неуверенность, тогда как некий мальчик пришел, за пять минут во всем разобрался и еще за пять – рассказал. Отсюда и название врезок: "засады". Загвоздка только в том, что Козловский оказался прав. Смотреть нужно глазами. Больше никак. – В.Г.
В цветном кинескопе три пушки, каждая – для одного из основных цветов: красного, зеленого и синего, – и луч каждой попадает на зернышки люминофора своего цвета, которые располагаются на экране кинескопа в разном порядке – в зависимости от технологии и поддерживающего ее производителя. А чтобы луч «красной» пушки не задевал зеленых зернышек, а «синей» – красных, перед экраном в цветных кинескопах устанавливается специальная металлическая решетка, или маска. В "импортном обозначении" есть три типа технологий и порядков расположения зерен люминофора: Shadow Mask, Aperture Grill, Slot Mask, что по-русски выглядит как "теневая маска", "апертурная решетка" и "щелевая маска". По сути все три технологии – это теневые маски, просто первое название появилось, когда остальных двух еще не было. Но коль уж переводим на русский дословно, пусть так. Итак: теневая маска – треугольная триада точек люминофора, плохая яркость, хорошая четкость, нет ступенек диагональных линий. Апертурная решетка – вертикальные линии люминофора, заметные на экране горизонтальные нити поддержки решетки, диагональные ступеньки, хорошая яркость [Выпускались Trinitron и Mitsubishi Diamondtron, которые сравнительно давно уже не выпускаются]. Щелевая маска – нечто промежуточное: люминофор – по вертикальным линиям, но нитей нет, зато есть заметный муар [LG Flatron]. Насыщенность цветов определяется лишь точностью совмещения маски с люминофором (и самим люминофором), и от типа маски не зависит. Чем больше на поверхности кинескопа зернышек люминофора, тем глаже и лучше картинка, так что одним из главных показателей качества кинескопа можно считать расстояние между зернами одного цвета, или шаг маски, который для разных ее типов определяется по-разному: у теневой маски – по диагонали, у двух остальных – по горизонтали, то есть сравнивать их напрямую нельзя. У современных ЭЛТ-телевизоров этот показатель вертится вокруг значения 0,25 мм.
Сделав несложные математические расчеты, мы выясним, что при таком шаге уместить нужные для HDTV 1920 точек (столбцов) можно на совсем не рекордной ширине кинескопа – около 50 сантиметров. Однако тут таится засада: разрешение соответствовало бы шагу маски, если б удалось сфокусировать электронный луч до размера каждого отверстия маски. Реально же он заметно шире и засвечивает сразу несколько отверстий. Так что надо либо сильно сужать луч (что мало реально, ибо технологии кинескопов выбраны практически до предела), либо – так же заметно расширять шаг решетки, что должно приводить к гигантским диагоналям, которые не смогут выпускаться из-за неподъемно-непроходимых объемов и веса. Впрочем, внимательный просмотр на девятнадцатидюймовом компьютерном ЭЛТ-мониторе (правда, весьма дорогом и хорошем) Видео Высокого Разрешения показывает, что отличие от видео стандартного вполне замечается, хотя, наверное, реально разграниченных 1920 точек углядеть все равно не удается. Итожим: теоретически принцип позапрошлого века вполне совместим с новейшим стандартом, – но хотя ЭЛТ-телевизоры, способные понимать HDTV, уже несколько лет можно встретить на прилавках, ЭЛТ-телевизоров, способных HDTV адекватно воспроизводить, нет и, боюсь, уже не будет. (Хотя до меня доносились смутные слухи, будто в Японии кто-то такие телевизоры видел.) То есть надо предполагать, что эпоха HDTV выведет за скобки и эти «понимающие» модели: хоть постепенно, но окончательно. Трудно сказать, что станет тому главной причиной: мода на плоские ли панели, падение ли затрат на их производство, развращенность ли покупателей сравнительно большими, за метр, диагоналями (как замечено выше, изготовление кинескопов с такими диагоналями не только непросто технологически, но и приводит к пропорциональному росту объемов кинескопов и громоздкости телевизоров) или, возможно, аналоговость принципа кинескопа: разумеется, цифровой сигнал Высокого Видео при подаче на кинескоп приходится ухудшать (что прежде, в эпоху стандартного традиционного телевидения, было ровно наоборот: аналоговый сигнал раскидывался по ячейкам цифровых мониторов с явно заметными дефектами), а проблемы сведения лучей на таких больших логических поверхностях становятся трудноразрешимыми. К тому же у кинескопов добиться идеального сведения лучей "по цветам" и идеальной «геометрии» не удавалось никогда, и в случае с HD-картинкой несведение и геометрические искажения могут оказаться заметнее. Еще один непреодолимый недостаток ЭЛТ – ограничение тока луча: средний катодный ток не может превышать определенного значения, так что при выводе на экран больших белых полей их абсолютная яркость падает. Этот эффект на некоторых моделях телевизоров может еще и заметно усилиться из-за некоторой связи тока луча с ускоряющим напряжением, то есть с размером картинки.
Заканчивая раздел об ЭЛТ-телевизорах, не могу не сделать еще двух замечаний: в последнее время разные производители (начал эту тенденцию, кажется, Samsung, хотя она существует уже не меньше десятка лет) стали производить ЭЛТ-телевизоры с заметно укороченными кинескопами, что позволяет сравнивать их с жидкокристаллическими и плазменными панелями. Конечно, такой "тонины", как у ЖК или "плазмы", не достичь никаким технологиями, однако при половинной цене за ЭЛТ не слишком заметной разницей в толщине можно и пренебречь. Другой разговор, что, укорачивая кинескопы, производители ставят перед собой особо трудные задачи, связанные с заметно большими углами отклонения луча, и идеальное их решение получается не всегда. Хотя, если сравнить впечатления от первых, десятилетней давности, «мелких» мониторов и теперешних «плоских» ЭЛТ-телевизоров, возникает ощущение, что эти задачи все-таки успешно разрешены.
Второе замечание касается ЭЛТ-проекторов: они представляют собою собранные в один корпус три ярких кинескопа с диагоналями в районе десяти дюймов, каждый из которых генерирует картинку своего цвета, – то есть электронные пушки разнесены по кинескопам. Таким образом, сведение из вопроса чисто внутреннего (еще на очень давних ЭЛТ-телевизорах блок сведения содержал порядка двадцати-тридцати регулировок, предназначавшихся по преимуществу профессионалам) превращается в вопрос внешний: в процессе эксплуатации правильное сведение трех картинок разных цветов начинает сбиваться, и для его восстановления приходится прибегать к услугам недешевых специалистов.
Последнее замечание вызывает вопрос: почему же, коль существует столько сложностей, ЭЛТ-телевизоры все еще не сходят с рынка, подобно тому, как сошли с него любительские пленочные кинокамеры, да и пленочные же фотоаппараты. И если в случае с традиционными телевизорами ответ простой: они дешевле, – в случае с ЭЛТ-проекторами такой ответ не годится, ибо они заметно, часто – на порядок, дороже большинства проекторов цифровых.
Я полагаю, что во всяком случае часть ответа лежит в плоскости качества изображения. Дело в том, что у нынешних, доступных на рынке цифровых дисплеев есть несколько «родовых» дефектов картинки, на которые большинство покупателей просто не обращает внимания за их "неброскостью в глаза", но которые для подлинного перфекциониста становятся буквально бревном в глазу. В соответствующих местах мы рассмотрим эти недостатки подробно, – здесь же лишь упомянем, что ни одно сегодняшнее цифровое устройство изображения не способно передать подлинно черный цвет (а у кинескопов свечение возникает только в момент удара электронов по соответствующему зерну люминофора; в остальное время он черен, особенно если находится под специальным «учерняющим» фильтром; борьба же с паразитными засветками и вторичной эмиссией не слишком сложна и весьма успешна); что только у некоторых цифровых дисплеев и только в последнее время стала появляться достаточная (в районе шестнадцати миллионов оттенков) цветовая глубина (в силу аналоговости принципа кинескопа яркость того или иного зернышка легко регулируется, что называется, вплоть до одного электрона) и что, наконец, если цифровой дисплей имеет недостаточное разрешение, – изображение на нем картинки, строго не соответствующей его разрешению (а такое в области видеопросмотра случается сплошь и рядом; можно даже сказать – иного не случается; в кинескопах, конечно, тоже присутствует дискретность – дискретность ячеек маски и самих зернышек люминофора, но поскольку луч до величины каждой отдельной ячейки все равно не фокусируется, то он в той или иной степени засвечивает и соседние, что, впрочем, можно считать и помехой, эдакой размазкой, но размазкой очень мягкой, "аналоговой"), вызывает хорошо заметные артефакты, побороть которые принципиально невозможно.
Современные телевизоры с преобразователем HDTV-сигнала, со специально «зачерненным» экраном пропорциями 16:9, со 100-герцовой разверткой и с диагональю, слегка не догоняющей метр, хотя безусловно являются артефактами уходящего века, – могут дать придирчивому ценителю картинку качества, недостижимого на сегодня ни на одном цифровом дисплее.
Ровно то же относится и к ЭЛТ-проекторам, последним (одним из последних?) могиканином в производстве которых остается знаменитая по профессиональным мониторам фирма BARCO (например, BarcoReality 909, www barco com/corporate/en/products/product asp?gennr=440).
Впрочем, Canon и Toshiba обещают нам в начале 2008 года возродить ЭЛТ на следующем витке спирали. Компании собираются начать совместное массовое производство ультратонких плоских телевизоров на принципе SED: surface-conduction electron-emitter display – то есть дисплеев с электронной эмиссией на основе поверхностной проводимости. В самом грубом виде это означает, что SED-телвизоры будут иметь невообразимое множество электронно-лучевых трубок: по одной на каждый пиксел. Идея захватывающая и обещающая идеал, – однако отсутствие сэмплов SED-панелей на мировых выставках заставляет относиться к обещанию двух гигантов с определенной долей скепсиса.
Прошло уже около двадцати лет с тех пор, как на СССР упала относительная свобода и стали то здесь, то там появляться видеосалоны, в которых с первых привезенных из-за бугра видеомагнитофонов, а то и с нелепых отечественных демонстрировали ранее недоступные широкой публике западные фильмы вроде "Истории любви" или "Однажды в Америке". (История в скобках: один мой знакомый даже сел ненадолго в тюрьму за "публичную демонстрацию" вредного фильма "Однажды в Америке"; каково же было его веселье, когда, выйдя, он увидел на кинотеатре "Россия", ныне "Пушкинский", афишу этого самого вредного фильма во всю стену!) Салоны поменьше (эдакие комнатки в полуподвалах) показывали кино на телевизорах с пятидесятисантиметровыми диагоналями, салоны покруче – чаще всего на крымских и кавказских курортах – позволяли себе даже проекторы. Поскольку цифровых проекторов в те незапамятные времена еще не существовало, – это как раз и были те самые ЭЛТ-проекторы разной, конечно, крутизны, дожившие до сих дней, – правда, подобно ламповым усилителям и виниловым вертушкам, только для и у перфекционистов самого крутого разбора.
ГОСТИНАЯ: Взрыв в замкнутом пространстве
Автор: Губайловский Владимир
В марте 2007 года компания IDC опубликовала глобальный прогноз роста цифровой информации до 2010 года [The Expanding Digital Universe: A Forecast of Worldwide Information Growth Through 2010]. Согласно отчету, объем цифровой информации, созданной в 2006 году, составил 161 экзабайт (1 экзабайт = 1018 байт). В 2010 году объем цифрового мира достигнет 988 экзабайт, то есть приблизится к 1 зеттабайту (1021 байт). Для сравнения: объем мирового океана составляет около одного зетталитра (точнее, 1,3х1021). Так что, если верить IDC, к 2010 году море мы вычерпаем, правда, пока не ложкой, а литровой кружкой, но и это впечатляет.
В минувшем марте число пользователей Интернета оценивалось в 1,1 млрд. (17% населения Земли, которое, по данным ООН, составляет 6,5 млрд. человек). В 2010 году число пользователей Интернета достигнет 1,6 млрд. (23% населения Земли, которое, опять же по прогнозу ООН, составит 6,9 млрд.). Причем 1,2 млрд. (17% населения) будут выходить в Сеть по широкополосному каналу.
К началу нынешнего года число абонентов сотовой связи превысило 2,5 млрд. (около 40% населения планеты). По прогнозу iSupply, к 2010 году число абонентов достигнет 4 млрд. (почти 60% землян). Если на число пользователей Интернета демография еще не будет оказывать решающего влияния, то рост числа абонентов сотовой связи уже будет «сдерживаться населением Земли». А значит, уже в 2010 году сотовым компаниям придется повсеместно перенести акцент с передачи голоса на передачу данных – снижение цен на трубки и минуты не будет играть существенной роли, поскольку неохваченных рынков не останется. Придется скрести по сусекам – обеспечивать мобильной связью слабовидящих и плохослышащих, домашних животных и младенцев, людей, живущих в бразильской сельве, в Гималаях, в приполярной тундре и на дне морском, – и интенсивно продвигать мобильный Интернет.
Будет ли население Земли расти в долгосрочной перспективе? По-видимому, нет. И это касается не только Европы, где снижение рождаемости уже отчетливо проявилось, но и мира в целом. Согласно отчету ООН за март 2007 года [World Population Prospects: The 2006 Revision], наибольший относительный прирост населения приходится на 1965–70 годы – тогда он составлял 2,02% в год. В дальнейшем темпы роста населения на планете постоянно и быстро падали и составили в 2005 году 1,24%. Если мы посмотрим «умеренный» прогноз ООН, то увидим, что население Земли достигнет в 2050 году 9 191 287 000 человек, а темпы роста снизятся до 0,36%, то есть нулевой рост (или максимум населения на Земле) будет практически достигнут. По-видимому, десятимиллиардный житель планеты не родится никогда.
Но это «умеренный» прогноз, а есть еще и "низкий", согласно которому максимум населения придется на 2040 году и составит 7 871 770 000 человек. Дальше население начнет сокращаться. Есть основания полагать, что «низкий» прогноз окажется вполне реальным, и повлияет на это рост цифрового мира.
Российские демографы [Коротаев А. В., Комарова Н. Л., Халтурина Д. А. Законы истории. Вековые циклы и тысячелетние тренды. Демография, экономика, войны. 2007] обратили внимание на тесную корреляцию между падением темпов роста населения и ростом грамотности женщин: чем выше процент грамотных женщин, тем медленнее растет население. Тотальная «мобилизация» приводит к неизбежному росту грамотности среди прекрасной половины человечества независимо от места проживания и национальной принадлежности: если есть мобильный телефон, нужно как минимум уметь набрать номер, заплатить по счету, сменить тариф, обменяться SMS. (Можно предложить российским властям, озабоченным медленным ростом населения страны, радикальный вариант стимулирования рождаемости: запретить девочкам посещать школу и материально поддерживать ранние браки. Только вот не знаю, устроит ли такой вариант россиянок.)
Мы видим два устойчивых тренда – стабилизация населения планеты и взрывной рост цифрового мира. Рассматривая эти процессы совместно, можно предсказать, что уже в первой половине XXI века развитие цифрового мира из экстенсивного станет интенсивным. Это взрыв в замкнутом пространстве. Число людей (пользователей) не только конечно, но и вполне обозримо, а вот на количество и качество различных онлайновых сервисов – инструментов и баз данных – никаких ограничений нет.
Благодаря беспроводной связи, миниатюризации и удешевлению устройств доступа, подавляющее большинство людей сможет находиться в онлайне двадцать четыре часа в сутки семь дней в неделю. Это может привести не только к глобальному изменению процессов производства и потребления, но и к возникновению новых – коллективных – форм мышления, где совместно с кремниевым процессором постоянно и целенаправленно будет работать биологический – человеческий мозг.
Такой симбиоз уже можно назвать искусственным интеллектом. Это не особый алгоритм, стартующий на отдельном компьютере, это распределенная сеть, которая включает людей, базы данных и самые разные сервисы, обслуживающие как человека, так и другие сервисы. Это разнообразные методы концентрации интеллектуальных усилий на выбранной цели. Это проблемно-ориентированная сеть, наложенная на глобальный публичный Интернет и постоянно взаимодействующая с другими сетями.
Такой интеллект сможет задуматься не только о постоянной экспансии (даже если это продвижение к горизонту познания), но и о собственной природе, и выводы, к которым он придет, предсказать сегодня принципиально невозможно.
ТЕМА НОМЕРА: Жидкое лидерство
Автор: Козловский Евгений
Жидкокристаллические телевизоры стали самой модной и распространенной разновидностью телевизоров: качество их картинки достигло довольно высокого уровня и постоянно повышается, размеры диагонали растут, едва ли не догоняя размеры «плазм», а цены стремительно падают.
ЖК-телевизоры обладают большинством достоинств цифровых дисплеев: безупречностью геометрии, отсутствием необходимости преобразовывать (а значит, частично терять) данные, записанные в цифровом виде – на дисках и передаваемые по разного рода кабельным и спутниковым каналам; оцифровка же аналогового сигнала, поступающего по традиционным телевизионным каналам, хоть это и кажется парадоксальным, к видимому ухудшению картинки не приводит, более того – после оцифровки аналоговая картинка выглядит даже лучше. Вдобавок ЖК-телевизоры сравнительно легки и плоски, что привлекает к ним домашних зрителей.
Однако сам принцип формирования картинки на жидкокристаллическом экране заключает в себе несколько… мягко скажем, неидеальностей, которые, с одной стороны, в той или иной мере преодолеваются, с другой – не особенно взыскательными зрителями либо не замечаются вовсе, либо – считаются не важными. Прежде чем классифицировать жидкокристаллические телевизоры по принципу построения экранов, пробежимся по этим самым родовым недостаткам.
Первый – дискретная структура экрана. Сигнал в ЖК-экранах подается к каждой точке, и если число точек не совпадает с числом точек источника, мы наблюдаем искажение. Если какая-нибудь точка источника попадает между ячейками панели, она может потеряться или, если соответствует полутора, скажем, ячейкам, – отобразиться только одной или сразу двумя. На компьютерных мониторах, куда подается строго детерминированный по логическому размеру видеосигнал, этот эффект особенно заметен: попробуйте подать на монитор с физическим разрешением, например, 800х600 картинку 640х480. Или, напротив, – 1024х786. С телевизорами дело обстоит еще сложнее, ибо аналоговый эфирный сигнал мало что различается по логическому размеру в зависимости от стандарта (PAL со 625 строками в кадре и NTSC – с 525), так еще и не весь отдан картинке, и, если вы смотрите записанный на аналоговой видеокамере, а потом оцифрованный видеоролик на компьютере, – вы непременно замечаете внизу кадра полоску "шума", который на деле не шум вовсе, а некие сигналы. То есть, наверное, можно было бы сделать отдельные ЖК-телевизоры, рассчитанные на PAL, и отдельные – на NTSC (не факт, что и у них можно было бы добиться абсолютно адекватной сигналу картинки), – однако после многодесятилетнего царствования мультисистемных аналоговых телевизоров, боюсь, такое решение не пришлось бы покупателям по вкусу. Тут ведь еще надо иметь в виду, что видео, записанное на диски, DVD, VideoCD, – тоже, как правило, выдает картинку, соответствующую разрешению PAL или NTSC, а когда фильмы записываются в их первоначальном формате 2,35:1, 1,78:1 или еще в каком-нибудь "нестандарте", – телевизору приходится растягивать их на весь экран (или обрезать, радикально уменьшая диагональ), – и тут уж точно никак не подстроиться. Выпуск же отдельных телевизоров подо все существующие форматы фильмов – это, полагаю, из области фантастики.
Конечно, производители ЖК-телевизоров пытаются бороться с этим дефектом, устанавливая разные умные микросхемы, которые приводят в соответствие логический размер принимаемой картинки с логическим размером матрицы, и успехов на этом поприще добились замечательных (эффектов, вроде описанного компьютерного, я практически ни на одном ЖК-телевизоре в полной мере не встречал), – однако единственным поистине эффектным методом борьбы мне видится значительное увеличение числа пикселов ЖК-панелей, дабы погрешность попадания оказалась меньше разрешения нашего зрения. Например, нынешние продвинутые ЖК-телевизоры с подлинным HDTV-разрешением (так называемые Full HDTV): 1920х1080 (около двух мегапикселов) уже вполне удовлетворительно показывают стандартные телевизионные картинки (под «стандартными» я и здесь, и далее буду иметь в виду сигналы PAL или NTSC, а также, в противоположность аббревиатуре HDTV, употреблять аббревиатуру STV), – как раз в силу достаточного количества экранных пикселов. (Другой разговор, что на таких панелях особенно заметной становится принципиальная убогость стандартного сигнала.) Когда же на Full HDTV-аппарат подается цифровой видеосигнал Высокой Четкости, он – в случае 1920х1080 укладывается точка в точку, – зато при подаче сигнала другого разрешения – например, 1920х720 или, того пуще, – 1440х1080, когда картинку приходится уже в телевизоре растягивать, – дефект «несовпадения» снова начинает проявляться. Скажу правду, он заметен и раздражает только людей особо придирчивых – тем не менее, он имеет место, о чем надо хотя бы знать.