Страница:
Атомное зеркало
Сотрудники швейцарского Федерального технологического института Эдвард Виген (Edward Wiegen) и Фредерик Меркт (Frederic Merkt) успешно опробовали прибор, способный осуществлять отражение и фокусировку ридберговских атомов. Так называют метастабильные атомы, у которых один или несколько внешних электронов очень сильно возбуждены (иначе говоря, переброшены на высокие энергетические уровни с большими главными квантовыми числами) и потому слабо связаны с ядром. Чаще всего атомы в таком состоянии (названном в честь классика спектроскопии шведского физика Юханнеса Роберта Ридберга) изготовляют с помощью лазерного возбуждения одноэлектронных атомов водорода либо атомов щелочных элементов, имеющих на внешней оболочке опять-таки по одному электрону. В этих экспериментах удается получить ридберговские атомы с главным квантовым числом возбужденного электрона порядка тысячи; такие электроны могут удаляться от ядра на вполне макроскопические расстояния, доходящие до 0,1 мм.Поскольку возбужденные электроны ридберговских атомов слабо связаны с ядром и потому очень сильно реагируют на внешние электрические и магнитные поля, они могут служить основой для создания чрезвычайно чувствительных датчиков. Эксперименты с ридберговскими атомами также позволяют изучать квантовые объекты с почти классическими свойствами. Однако для этого ими надо манипулировать, что представляет собой труднейшую задачу.
Виген и Меркт впервые создали достаточно качественное «зеркало» для ридберговских атомов. Сначала они сгенерировали пучок ультрахолодных атомов водорода, движущихся со скоростью 720 м/с, и направили его в полость с четырьмя электродами, создающими неоднородное электрическое поле. Там атомы были возбуждены с помощью ультрафиолетовых лазерных импульсов, которые перевели их в состояние с главным квантовым числом 27. Радиус электронных орбит в этом состоянии составил 37 нм, тогда как в основном состоянии водородного атома он не превышает 0,1 нм. Меняя потенциалы на электродах, экспериментаторы заставили атомы погасить скорость и отразиться в направлении, противоположном первоначальному движению. Атомы продолжали оставаться в ридберговских состояниях, несмотря на двадцатимиллионную перегрузку. Оказалось, что этот прибор не просто отражает атомы, но и фокусирует их, работая в качестве цилиндрического зеркала. — А.Л.
Французская кухня
Неожиданно дешевую и простую основу для суперконденсаторов нашли французские специалисты Национального центра научных исследований в Орлеане. Правильно «запеченные» морские водоросли позволяют приготовить суперконденсатор, который выдерживает вдвое большее напряжение и заметно меньше размерами, чем его современные аналоги на активированном угле.Супер— или ультраконденсаторы, которые у нас называют ионисторами, были предложены в шестидесятые годы. По своим электрическим параметрам они занимают промежуточное положение между конденсаторами и аккумуляторами. При том же весе ионистор запасает примерно на порядок меньше энергии, чем аккумулятор, но зато может развить на два порядка большую мощность и вновь зарядиться всего за несколько секунд.
В последнее время интерес к ионисторам заметно возрос. Они идеально подходят для работы в паре с топливными элементами гибридных автомобилей, поскольку позволяют эффективно разгонять и тормозить машину. Кроме того, прогресс нанотехнологий обещает значительно увеличить емкость ионисторов, и тогда они смогут заменить аккумуляторы в ноутбуках, сотовых телефонах и другой переносной электронике. Экспериментальные образцы ионисторов на углеродных нанотрубках, полученные в Массачусетском технологическом институте в начале этого года, подают большие надежды.
Однако не только дорогие высокотехнологичные материалы можно использовать в перспективной электронике. Французские ученые взяли дешевый полимер альгинат, десятки тысяч тонн которого ежегодно извлекают из бурых водорослей и используют в качестве загустителя в пищевой промышленности и косметике. Альгинат нагрели на воздухе и получили из него углеродную пудру. Из этой пудры с помощью полимерного связующего можно изготовить электроды ионистора. Они вдвое плотнее обычных электродов из активированного угля и выдерживают вдвое большее напряжение. Ионистор легко переживает десять тысяч циклов заряда-разряда, теряя при этом не более пятнадцати процентов емкости. О такой надежности и долговечности аккумуляторы не могут даже мечтать.
Авторы считают, что их новая дешевая технология может очень быстро выйти на рынок. А если ионисторы и дальше будут совершенствоваться такими темпами, то недалек тот день, когда сотовый телефон можно будет зарядить всего за пару секунд. — Г.А.
Взгляд сквозь «Плеяды»
Сразу два открытия было недавно сделано благодаря японскому телескопу Subaru, расположенному на Гавайях.Во-первых, вновь принесла плоды программа по поиску «неправильных» спутников (Hawaii Irregular Satellites Survey). К таковым относят спутники, которые обращаются вокруг своих планет по часовой стрелке, то есть в направлении, противоположном вращению Солнца и планет. Как правило, все нерегулярные спутники невелики и, по мнению большинства астрономов, были захвачены планетами-гигантами из протопланетного облака на ранних стадиях формирования Солнечной системы. С 2000 года целенаправленный поиск таких объектов с помощью японского телескопа позволил ученым открыть 63 спутника из 97 известных подобных тел, при этом вниманием не была обойдена ни одна из больших планет. На сей раз найдено сразу восемь новых спутников у Сатурна. Таким образом, научная группа под руководством Дэвида Джуитта (David Jewitt) открывает уже двадцать спутников Сатурна подряд, и все они ждут своих имен. Пожалуй, подобрать всем достойные названия будет куда как сложнее, чем сделать то же самое с парой новых спутников Плутона (см. «КТ» #647-648).
Параллельно коллектив японских ученых сразу трех университетов исследовал с помощью «Субару» самое большое из известных образований в космосе. В 12 миллиардах световых лет от Земли были зафиксированы нитевидные образования, простирающиеся на 200 млн. световых лет в разные стороны. В этой системе обнаружились десятки газовых облаков, масса каждого из которых, по оценкам, на порядок больше массы нашей собственной Галактики. Так как наблюдавшиеся объекты относятся ко времени, когда с момента Большого взрыва прошло всего два миллиарда лет, их логично отнесли к зародышам галактик, а дальнейшее изучение гигантских облаков, возможно, даст нам более точные представления об образовании звездных систем.
Свое название восьмиметровый телескоп «Субару» получил от звездного скопления, которое мы называем Плеядами. Кроме того, слово «субару» пошло от понятия «пить чай вместе», что подчеркнуло интернациональность проекта. — А.Б.
Кто кому обязан?
По существующей теории образования планетных систем при сжатии протозвездного облака скорость его вращения увеличивается, а часть вещества собирается в плоскости, перпендикулярной оси вращения. Так образуется протопланетный диск. То есть если бы не формирование звезды, то и планетам не быть. Однако новое исследование американских ученых, работающих в научном центре, собирающем и анализирующем данные телескопа Spitzer, уже не дает нам права на такие безапелляционные заявления.Ученые задались вопросом о скорости вращения молодых звезд. По расчетам, у ряда таких звезд наблюдаемое вращение гораздо медленнее ожидаемого. Ранее уже предполагалось, что каким-то образом на скорость вращения светила может влиять протопланетный диск, но механизмы оставались загадкой, да и подтверждений не находилось. И вот, после изучения пятисот молодых звезд в туманности Ориона был выявлен интересный факт: у медленно вращающихся звезд с гораздо большей вероятностью можно ожидать наличия протопланетного диска. Шансы найти такой диск у быстро вертящейся звезды впятеро меньше. Впрочем, ученые во главе с доктором Луизой Ребулл (Luisa Rebull) не стали переносить результаты исследований на всю Вселенную, предполагая, что найденная закономерность вполне может быть свойственна только данной области бурного звездообразования.
В то же время может статься, что некоторые звезды, в том числе и Солнце, обязаны своим существованием планетам. При некоторой скорости вращения протозвездного облака ему бы никогда не стать звездой, если бы часть энергии вращения из центра не забирал бы протопланетный диск. Что касается механизма передачи энергии, то здесь американские ученые придерживаются версии взаимодействия магнитных полей диска и будущей звезды. Иными словами, проблема курицы и яйца принимает вселенский масштаб. — А.Б.
Песни песков
Со времен знаменитого путешественника Марко Поло ученых мучила загадка «поющих» песков. Звуки, длящиеся до нескольких минут и напоминающие гром, рев низко летящего самолета или даже орган, люди слышали на расстоянии до десяти километров. Обычно дюны поют «низким голосом» в диапазоне 65—110 Гц в зависимости от места происхождения песка. За многие годы было предложено несколько объяснений этому природному феномену, но лишь теперь группе французских ученых из Парижской лаборатории Национального центра научных исследований удалось точно установить механизм пения песка, воспроизведя эти звуки в лабораторных и полевых экспериментах.Дюны поют при обвалах песка. Маленькие песчаные лавинки почти бесшумны, а крупные производят звуки многих частот, сливающиеся в какофонию. И лишь обвалы средних размеров, и то в определенных условиях, поют почти чистым тоном. Эти звуки удалось воспроизвести с помощью простого устройства, которое похоже на лопату, движущуюся по периметру бочки с песком. Песок для экспериментов был специально привезен из Марокко.
Оказалось, что звук возникает в результате специфического резонанса в тонком (2—3 см) слое сползающего песка. Песчинки ударяются друг о друга с разной частотой и порождают стоячие волны в ползущем песке. Эти волны взаимодействуют и конкурируют друг с другом, и в результате эффекта самоорганизации побеждает только одна основная частота и ее гармоники. Песок должен двигаться достаточно быстро, не медленнее чем 45 см/с. Кроме того, многое зависит от состояния поверхности песчинок. Мокрый или испачканный гелем песок совсем не звучит. — Г.А.
В деньгах ли счастье?
То, что восприятие качества жизни влияет на состояние здоровья, новостью не является. Каждый из нас может наблюдать это на своем окружении. Сложно, конечно, различить первичные и вторичные эффекты и определить, то ли здоровье у человека портится оттого, что его жизнь не заладилась и сам он впал в депрессию, то ли испорченное здоровье вызвало проблемы в эмоциональной области и социальных взаимодействиях. Ясно, что эти два комплекса проблем идут рука об руку.Более того, абсолютной оценки качества жизни не существует и существовать не может. Сравните жизнь аристократа-феодала несколько веков назад с бытием современного клерка. В отношении бытовых удобств, гигиены, диетологии, здравоохранения, безопасности, возможностей для туризма и способов психической разгрузки жизнь шагнула далеко вперед. Разница только в том, что феодал мог и не ждать от жизни ничего лучшего, а клерк смотрит на «звезд» и нуворишей, завидует им и чувствует себя обделенным.
Сформулированные наблюдения могут показаться банальными. А каковы их психофизиологические механизмы? Чтобы объяснить один из «свежих» научных результатов, нужно вспомнить, что в большинство клеток тела встроен «часовой механизм», ограничивающий возможное число их делений. На концах хромосом есть особые участки — теломеры. С каждым клеточным делением от них «откусывается» небольшой кусок. После сокращения теломер до определенного уровня клетки теряют способность к делению. Лишь клетки зародышевого пути, а также некоторые стволовые и опухолевые клетки неподвластны этому эффекту.
С изучением описанного феномена связан один из потенциальных способов омоложения. Если бы мы смогли остановить или обратить вспять сокращение «шагреневой кожи» теломер, то сняли бы одно из существенных ограничений продолжительности жизни. Известны ферменты, способные решать эту задачу, осталось лишь обеспечить их желаемую работу. Впрочем, сейчас речь не об этом.
Британо-американская группа под руководством Тима Спектора (Tim D. Spector) установила, что скорость сокращения теломер зависит от социально-экономического статуса! Изучив хромосомы добровольцев, исследователи обнаружили, что, к примеру, для женщин бальзаковского возраста (паспортного) разница между социальными «сливками» и «люмпенами» по размерам теломер соответствовала семи годам. Естественно, быстрее жизненный запас сокращался у представителей групп с низким статусом. Тот же феномен удалось подтвердить близнецовым методом при исследовании генетически идентичных людей, живущих в разных условиях. — Д.Ш.
Новости подготовили
Галактион Андреев [galaktion@computerra.ru]Тимофей Бахвалов [tbakhvalov@computerra.ru]
Сергей Борисов [borisov@computerra.ru]
Артем Захаров [azak@computerra.ru]
Бёрд Киви [kiwi@computerra.ru]
Денис Коновальчик [dyukon@computerra.ru]
Алексей Левин [alekseylevin@comcast.net]
Дмитрий Шабанов [bio_news@computerra.ru]
Виктор Шепелев [vshepelev@computerra.ru]