Вышедшая в 1987 году книга Владимира Успенского "Введение в нестандартный анализ" начиналась с вопроса: "Относятся ли грифоны и единороги к позвоночным?", который иллюстрировал экзотичность темы. В то время слово «грифон» было редким, индустрия фэнтези еще не вышла на книжный рынок, да и самого книжного рынка в России еще не было, да и сама Россия была еще Советским Союзом. Все с тех пор изменилось, а вот арифметика бесконечностей осталась экзотическим предметом – несмотря на то, что нестандартный анализ разрабатывался рядом крупных математиков начиная с 1960-х годов и популярность его была довольно высока.
Нестандартный анализ основан на системе "гипердействительных чисел", содержащей бесконечно малые и бесконечно большие величины и допускающей использование необходимых в анализе функций и эффективное решение уравнений. Построение гипердействительных чисел основано на сложной классификации бесконечных последовательностей обычных действительных чисел. При помощи этого аппарата были решены несколько серьезных задач функционального анализа, его использовали для описания «мгновенных» перестроек структуры решений дифференциальных уравнений. Сейчас "нестандартные методы" проникли в комплексный анализ, теорию чисел, алгебраическую геометрию, даже в некоммутативную геометрию, самый модный и стремительно развивающийся раздел современной математики. Впрочем, создатель некоммутативной геометрии Ален Конн (Alain Connes) высказывался о нестандартном анализе довольно резко. Причина (которую не отрицают, похоже, и энтузиасты нестандартной математики) – практически все, что удалось сделать с помощью этого аппарата, можно сделать и без него. Судя по обзору И. Фесенко (www.maths.nott.ac.uk/personal/ibf/rem.pdf), нестандартные методы сегодня рассматриваются скорее как "путеводная звезда" при поиске новых подходов к задачам.
Ниже мы расскажем об одном из первых приложений "бесконечных чисел" Сергеева – вычислении с их помощью геометрических характеристик фракталов, как классических, так и более общих, мерцающих (blinking fractals). Но прежде давайте разберемся в конструкции новой числовой системы.
Поясняя мотивы для разработки своей системы, Сергеев приводит пример арифметики, используемой одним из живущих в дельте Амазонки племен. Индейцы племени Пираха (Pirahг) считают так: один, два, много. Для них и 1 + 2 = много, и 2 + 2 = много. Что такое 3 или 4, они не представляют. Сергеев уверен, что этот примитивный способ счета очень важен для нас, потому что дает отличную аналогию с современным понятием бесконечности. Действительно, в системе счета Пираха операции много + 1 и много + 2 дают один и тот же результат: много. Нечто похожее мы имеем и в современной математике:
В основе конструкции Сергеева, призванной исправить дело, лежит гросс-единица (grossone), обозначаемая
Гросс-единица – это бесконечное число, равное по определению количеству элементов в множестве N натуральных (то есть целых положительных) чисел. Это определение надо понимать в дословном, буквальном смысле, то есть предполагать, что N имеет вид: {1, 2, 3, …,
– 1,
}. Другими словами,
– это "самое большое натуральное число". Оно и выбирается в качестве основания новой системы исчисления. Ну а дальше – точно так же, как мы записываем числа в десятичной системе, а компьютер в двоичной, произвольные бесконечно малые и бесконечно большие числа представляют собой «записи» (records) вида:
(1)
В этой записи p – «гросстепени», а c – «гроссцифры». Отличие от десятичной или двоичной систем в том, что «гроссцифры» не фиксированные заранее, а произвольные «обыкновенные» числа, записываемые с помощью конечного числа знаков. «Гросстепени», в свою очередь, это либо записи вида (1), либо снова «обыкновенные» конечные числа. Таким образом, числа в форме (1) всегда представляются конечным числом символов. Конечность записи принципиальна для этой конструкции, подчеркивает Сергеев, – она призвана учесть тот факт, что и человек, и компьютер способны выполнить лишь конечное число операций. В этом, кстати, существенное отличие от нестандартного анализа, который дополняет бесконечностями обычное множество вещественных чисел, построенное с помощью бесконечных десятичных дробей (или эквивалентных конструкций).
Сергеев с самого начала оставляет за скобками своих построений понятия счетного и несчетного множеств, взаимно однозначные соответствия и тому подобные базовые концепции привычной канторовской теории множеств. В его числовой системе, опять-таки в прямом и буквальном смысле слова, соблюдается древний постулат "часть всегда меньше целого". Например, число
+ 1 строго больше числа
, а множество натуральных чисел можно расширить так:
Записи вида (1) позволяют очень аккуратно сравнивать "маленькие бесконечности". Например, в обычной теории множеств совокупность всех натуральных чисел и совокупность четных положительных чисел неразличимы по так называемой мощности, и то и другое – счетные множества. Здесь же постулируется, что второе из этих множеств содержит ровно
/2 элементов, то есть вдвое меньше, чем первое. Аналогично, множество всех положительных чисел вида, например, (6К+3) будет состоять из (
/6) элементов; а если к нему добавить еще три числа другого вида, полученное множество будет состоять уже из (
/6 + 3) элементов.
1/
– простейшее по записи бесконечно малое ("инфинитезимальное") число. Арифметика записей (1) устроена самым естественным образом – они перемножаются и складываются так, как если бы вместо
стояло обыкновенное число. Тонкости начинаются при суммировании бесконечных рядов. Согласно одному из самых интересных постулатов теории Сергеева, любой процесс (в том числе и процесс суммирования ряда) может включать не более чем
шагов. В частности, параллельные процессы в этой модели принципиально более мощны, чем одиночные, последовательные, – ведь К параллельно идущих процессов позволяют выполнить (К*
) шагов. В этом же постулате о процессах скрыта и очевидная связь рассматриваемой модели с аксиомой выбора – источником множества трудностей и, в частности, «виновницей» парадокса Банаха-Тарского. Можно осторожно предположить, что настоящие теоретические трудности в согласовании концепций Сергеева с остальной математикой относятся именно к этим вопросам – но мы в них углубляться, разумеется, не будем. Во всяком случае, парадокс Банаха-Тарского в теории Сергеева не возникает – дело в том, что точки, из которых состоят шары, в данном случае можно просто пересчитать, выразив их количество соответствующей записью вида (1), и это не позволяет выполнять трюки с производством предметов из ничего.
Чуть позже мы приведем примеры прямого подсчета точек во фрактальных объектах, а пока черкнем еще пару формул. В любое выражение мы теперь можем подставлять не только конечные, но и бесконечные числа – и приписать вполне определенные значения как "стремящимся к бесконечности" в традиционном смысле слова рядам и функциям, так и рядам, которые вообще не имеют традиционного предела. Например, предел
как известно, не существует. Однако с помощью записей (1) можно точно выразить значение этой последовательности в любой бесконечной точке: при n=
получаем
, при n=
– 1 получаем —
+1 и т. д.
Но содержат ли такие записи в новой арифметике действительно новую информацию о классических выражениях? Очень важный вопрос. Ответ на него даст только предстоящая история развития этого аппарата. Впрочем, уже существуют примеры описания наглядных геометрических конструкций – фрактальных процессов – при помощи новой числовой системы.
В известном фильме Питера Гринуэя "Отсчет утопленников" ("Drowning by numbers") персонажи монотонно и без особых хлопот применяют друг к другу одну и ту же элементарную операцию – утопление. По духу это очень напоминает классические конструкции фракталов – геометрических объектов, ставших популярными в последние десятилетия в самых разных областях науки и практики. Строгое математическое определение фракталов очень скучное, а интересны они тем, что чаще всего обладают свойством самоподобия: состоят из небольшого числа частей, каждая из которых – уменьшенная и слегка измененная копия объекта в целом. Самоподобие же почему-то встречается во всевозможных структурах нашего лучшего из миров – причем именно в таких, которые трудно описать гладкими функциями классического анализа. Например, фрактальный лист папоротника (рис. справа внизу) очень похож на настоящий. Задать такую форму можно либо с помощью длиннейших (но совершенно неинформативных в данном случае) рядов по синусам и косинусам, либо с помощью очень простого фрактального процесса, в явном виде учитывающего самоподобие этого листочка (а он состоит из трех уменьшенных копий самого себя: двух нижних веточек и того, что останется, если их отрезать). Папоротник тут не случаен – фрактальные модели (так называемые L-системы) построены для множества видов растений. Классик науки о фракталах Бенуа Мандельброт (если не ошибаюсь, он и ввел термин "фрактал") в начале 1960-х обнаружил фрактальные (в усредненном, статистическом смысле) структуры не где-нибудь, а в финансовых рядах – графиках колебания цен на рынках. Фрактальный характер имеет и множество других заманчивых объектов и процессов, включая строение Интернета и динамику сетевого трафика, и фрактальные компьютерные модели всего этого разрабатываются весьма активно. Проблема только в том, что построить такую модель для конкретного предмета из реального мира всегда крайне сложно. С формами растений это в целом удалось, а вот с финансовыми рядами – как-то пока не очень (хотя кто знает? может быть, нам не все рассказывают?).
Сами же фрактальные модели обычно представляют собой процессы последовательного измельчения и перемешивания исходных заготовок в соответствии с коротким списком правил. Как раз для точного подсчета (или отсчета?) того, что еще осталось от исходной заготовки после бесконечного числа таких шагов, Сергеев и использовал свои новые числа – в качестве иллюстрации их потенциальных возможностей.
Пример простого фрактального процесса – построение классического канторова множества. Заготовка – отрезок [0, 1]. Первый шаг – выбрасываем (Гринуэй, может быть, сказал бы – топим) среднюю треть этой заготовки. Получаем уже два отрезка, но маленьких: [0, 1/3] и [2/3, 1]. Затем топим (пардон, стираем) среднюю треть у каждого из этих двух, затем – у каждого из полученных четырех, и так далее. Ясно, что при рисовании на мониторе оставшиеся отрезки скоро станут меньше пикселов, и ничего кроме пустого экрана этот фрактальный процесс не даст (зато при другом выборе заготовок и операций с ними мы могли бы получить ветку сирени или реалистичный горный ландшафт).
Однако с точки зрения чистой математики в пределе остается отнюдь не пустота. Предельное канторово множество – трудновообразимый континуум (то есть нечто эквивалентное исходному отрезку!), все связи между точками которого разорваны выбрасыванием бесчисленных крошечных отрезков.
С использованием разложения по гросс-единицам Сергеев описывает этот процесс (и его результат) иначе. На n-м шаге процесса имеется 2n отрезков, каждый длиной 3-n. Стало быть, после
шагов бесконечно большое количество отрезков будет равно (2
), а их общая длина выразится бесконечно малым числом ((2/3)
). Эти выражения – точная характеристика фрактального множества, которая изменится при других параметрах порождающего процесса (если топить больше, или меньше, да еще и в других местах). Разумеется, аналогичные характеристики есть и в классике – например, фрактальная размерность, которая в данном случае равна log(2)/log(3). Но в классике лишен, конечно, смысла вопрос, насколько отличаются результаты последней и предпоследней из некоторого бесконечного числа итераций. Через новые числа это легко выразить: так, на шаге
– 1 общая длина отрезков равна (2/3) (
– 1).
Однако в новой системе невозможно пересчитать все полученные отрезки: ведь их будет (2
), то есть строго больше, чем
А мы помним постулат, что любой процесс, в том числе и процесс последовательного счета, не может использовать более
шагов. Зато здесь можно точно подсчитать число точек (!) в множестве, полученном после бесконечного числа шагов. Дело в том, что само понятие точки теперь сильно отличается от классического. "Как только мы выбрали символы для записи чисел, выражающих координаты точек, – поясняет Ярослав Сергеев, – мы определили понятие «точка» и можем легко сосчитать число этих точек. Более мощная система записи (например, система (1)) позволит нам увидеть больше точек, а более слабая (традиционная) – меньше".
Обратимся, наконец, к давно обещанным мерцающим фракталам. Мерцание заключается в том, что фрактальный процесс генерирует не одно, а несколько множеств. В данном случае их два, а процесс задан схемой:
Начав с синего квадрата, получаем на последовательных шагах такую динамику двух зависимых друг от друга множеств (см. схему внизу).
На четных шагах мы видим фигуру из синих квадратов, на нечетных – другую, составленную из красных треугольников. Описание динамики этого процесса в новой арифметике состоит в подсчете площади каждой фигуры на любом из шагов в процессе ее построения. Например, возьмем шаг
/2 – это четное бесконечное число, поэтому фигура в этот момент состоит из 2(3
/4) синих квадратов с общей бесконечно малой площадью 2(-
/4). На следующем шаге номер (
/2)+1 площадь фигуры из красных треугольников будет равна 2-
/4+1, и т. д. Вот так бесконечные числа описывают динамику этого мерцающего процесса – казалось бы, не имеющего предела в классическом смысле, подобно ряду 1, -1, 1, -1, …, 1. [Впрочем, аналогия тут не совсем полная.]
В заключение – скриншот "калькулятора бесконечности", построенного на основе уже работающего софтверного симулятора "компьютера бесконечности". Может быть, когда-нибудь мы увидим "компьютер бесконечности", реализованный в железе. Но это зависит от того, станет ли новая арифметика бесконечных чисел незаменимым инструментом решения сложных задач.
Ну а совсем в заключение – просим не рассматривать эту публикацию как сигнал о нашей особой заинтересованности в сочинениях именно на такие, фундаментальные и в то же время экзотические темы. Впрочем, независимо от тематики, мы пишем только о том, что прошло апробацию в солидной научной периодике, на серьезных конференциях и семинарах. Увлекательная работа Ярослава Сергеева именно такова.
Ярослав Серегеев занимает должность "полного профессора", учрежденную в Университете Калабрии (Италия) для приглашения выдающихся ученых. Он также профессор Нижегородского государственного университета им. Н. И. Лобачевского, доктор физико-математических наук, специалист по численному анализу, параллельным вычислениям, глобальной оптимизации, автор более 150 научных публикаций, среди которых 50 статей в международных журналах и три книги. Сергеев – один из организаторов и координатор Российско-Итальянского университета, действующего при Нижегородском университете.
Арифметике бесконечностей посвящен ряд его недавних работ, в том числе статья "Blinking fractals and their quantitative analysis" (Chaos, Solitons & Fractals, 33(1), 50—75, 2007), использованная в этом материале. См. также www.info.deis.unical.it/~yaro/arithmetic.html, www.grossone.com.
Добротная бесконечность против QWERT
Автор: Анатолий Кричевец
Как полагает Леонид Левкович, ответ на вопрос об эффективности предложенной Ярославом Сергеевым принципиально новой числовой системы даст история. Разумеется, история всех нас рассудит, но обязаны ли мы с нею соглашаться?
Идеи Сергеева кажутся мне по научным меркам вполне добротными, интересными и уже неплохо проработанными, но реакция сообщества на них, увы, довольно слабая (пока?). О чем это говорит?
Сеймур Пейперт, известный в компьютерном мире прошлого века прежде всего как создатель "черепашьей графики", назвал некоторые суждения истории феноменом «QWERT» – по буквам первого ряда на латинской клавиатуре пишущей машинки. Никто не может проверить, является ли такое «разложение» букв по клавишам в каком-либо смысле оптимальным. Эту проверку можно было бы устроить только в рамках альтернативной истории, где другая система была бы столь же привычной, как наша «QWERT», и столь же обеспеченной с детства доступными предметами окружающей среды. Тогда, если бы мы сравнили скорость, количество ошибок и тому подобные показатели уравненных по важным качествам групп из культур «QWERT» и, скажем, «TREWQ», в нашем лице история сделала бы (возможно, впервые) обоснованное суждение. В настоящей же ситуации история только зафиксировала необратимый культурный выбор, один из тысяч подобных [С. Пейперт известен также написанной в соавторстве с М. Минским книгой «Перцептроны» (М.:, Мир, 1971), в которой был подвергнут разгрому нейросетевой (в современных терминах) подход к моделированию человеческого восприятия].
Другой пример. Никто не скажет, что английский язык является наилучшим языком для выражения мысли. Известный в лингвистике тезис Сепира-Уорфа утверждает, что «объективный» мир, с которым имеет дело человек, в значительной степени определяется особенностями языка, на котором человек говорит и с помощью которого мыслит. Психологи недавно провели эксперимент, показавший, что одну и ту же последовательность сцен (скажем, мультфильм) люди, говорящие на немецком и на английском языках, описывают по-разному: англичане выделяют в несколько раз больше эпизодов и описывают их как текущие действия (часто употребляя очень удобный для этого английский герундий), носители немецкого языка выделяют эпизоды более длинные и приводящие к какому-то результату [Величковский Б.М., Когнитивная наука. В 2-х. т. – М.:, Смысл, 2006] (вспомним, что существительные в немецком языке пишутся с заглавной буквы). Выбирая в качестве языка международного общения английский, мы предрешаем кое-что в содержании наших знаний, по-видимому, утрачивая какие-то возможности, доступные при ином выборе. Но нынче разумно учить английский – поскольку он наиболее употребителен. Вот и Сергеев пишет по-английски, а не на языке итальянских прачек, на котором писал Галилей.
Читая в его статье о том, что количество четных чисел вдвое меньше, чем всех натуральных, я испытываю чувство, обратное тому, которое испытал на первом курсе мехмата, когда лектор с непринужденным видом, но все же явно рассчитывая на эффект, сообщил, что четных чисел столько же, сколько натуральных. Я понял, что он глубоко прав и что придется с ним согласиться и думать, как он. Но бывший школьник во мне сделал заметочку в дальнем углу памяти, что этой правде где-то должна быть не менее глубокая альтернатива. Теперь она явилась – и признаюсь, я испытываю некоторое облегчение.
Однако теперь я понимаю, что результаты, полученные в рамках канторовского подхода, не являются утверждениями об объективном мире и поэтому не могут быть ложными. Канторовский способ видеть мир порождает массу интересных вопросов и целую культуру рассуждений о них. Очень сомнительно, чтобы подход Сергеева помог решить какие-то из этих вопросов.
С другой стороны, в практике применяется, конечно, не теорема Банаха-Тарского, позволяющая легко удваивать футбольные мячи. Просто воспроизводство инженеров и других "практических реализаторов" математической мысли в настоящее время связано традиционной цепочкой с воспроизводством «канторовских» математиков. Эта связь – феномен «QWERT». По моему собственному мнению, матанализ для практиков надо рассказывать без теоретико-множественных тонкостей, примерно на уровне второй половины XVIII века [Кричевец А.Н., Дьячков А.Г., Шикин Е.В., Математика для психологов. – М.:, Флинта, 2006], но и бесконечность по Сергееву здесь вряд ли понадобится.
Таким образом, подход Ярослава Сергеева занимает пока нишу между теми и другими: для успеха, по-видимому, нужно встречное движение со стороны более практически ориентированных математиков-прикладников, которые в подходе Сергеева обнаружат что-то родственное своим еще не нашедшим выражения мыслям (подобно моему упомянутому выше чувству, которое, увы, не может иметь практических последствий).
Со своей стороны могу только пожелать успеха этому труду – о его добротности я уже не раз говорил в профессиональном кругу, к которому принадлежу. Если же история рассудит неблагоприятным для него образом – тем хуже для истории.
ТЕМА НОМЕРА: Курортный SIGGRAPH
Автор: Сергей Цыпцын
В нынешнем году конференция и выставка Siggraph 2007 проходили в курортном городе Калифорнии Сан-Диего. Мягкий климат, выставочный комплекс, расположенный на берегу океана, яхты и умопомрачительные катера, бассейны и пальмы – все это с самого начала настраивало посетителей на благодушный и расслабленный лад.
SIGGRAPH 2007
Крупнейшая выставка в области компьютерной графики. В этом году SIGGRAPH посетило почти 25 тысяч человек (с учетом того, что случайных зевак на выставке почти нет, – то очень много).
Впрочем, начиналось все не так гладко. Подав документы в американское посольство и ожидая собеседования, я с грустью наблюдал, как заканчиваются последние и уже недешевые билеты до Лос-Анджелеса. Аэрофлот иссяк первым, дальше пошли европейские авиакомпании. Тем не менее не хотелось, получив отказ для выезда всей семьей, остаться с тремя бесполезными билетами на руках. Пришлось ждать до упора, то есть до получения виз. Повоевав с жуткой компанией Delta, которая сняла мою бронь на том основании, что моего сына зовут так же, как меня, и, даже признав свой ляп, отказалась восстанавливать ее, я приуныл. И тут на помощь пришли авиалинии KLM, прямо как у Райкина: – А на второе есть?! – Есть! – А три места есть? – Есть! – А дорого? – Недорого!
С одной лишь поправкой – ночевка в Амстердаме. Впрочем, последнее обстоятельство воспринималось скорее как приятное дополнение к путешествию – вылазка в город занимает пятнадцать минут на электричке от аэропорта, а ночной Амстердам воспринимается как один большой ночной клуб.
Привычно оклемавшись за два дня от одиннадцатичасовой разницы во времени, я прибыл в Сан-Диего 5 августа, к началу открытия конференции, выставка же открывалась на два дня позже. Каждый год организаторы выслушивают потоки жалоб на то, что невозможно успеть на все мероприятия, и стараются развести конференцию и выставку как можно эффективнее, но безуспешно. Дело в том, что на самой выставке среднестатистический посетитель проводит один-два часа в день (по данным оргкомитета)! Все остальное время уходит на посещение семинаров, учебных курсов, специальных секций, анимационных просмотров, а также на бесконечные переговоры и разговоры. Кроме того, труженики компьютерной графики – совершенно безумные люди. Работа по выходным и по ночам – обычное дело, отпуск – экзотика, поездка на выставку – редкая удача. Многие могут позволить себе приехать только на два-три дня. И расписание этих дней похоже на круглосуточный марафон.
Море волнуется – раз!
Авторы: Сергей Цыпцын, Берто, Паоло
Главной новостью первого дня конференции стала покупка пакета MudBox компанией Autodesk [Сергей Цыпцын находился на выставке в двух ипостасях: и как автор репортажа для «Компьютерры», и как лектор, приглашенный компанией Autodesk для проведения мастер-класса Planet Nucleus. – Прим. ред.]. Напомню, что вышеупомянутый пакет наделал много шума, родившись в недрах студии Weta Digital и выскочив на рынок благодаря компании Skymatter.
В узких кругах его еще называют "Zbrush с человеческим лицом" – пакет предназначен для моделирования в основном органических форм и персонажей и исповедует концепцию трехмерных кистей, благодаря которым 3D-художник работает с моделью скорее как скульптор, а не как инженер, передвигающий сотни контрольных вершин и ребер. Пакет действительно уникальный, и Autodesk не смогла устоять против его покупки. Таким образом, в руках компании скопилось беспрецедентное количество не имеющих аналогов 3D-пакетов: 3ds max, Maya, Motion Builder, MudBox, Studio Tools плюс вся "семейка Каддамс" во главе с AutoCAD и его клонами. Плюс архитектурные инструменты. Плюс целый выводок мощных профессиональных 2D-пакетов: Combustion, Toxik, Flint, Flame, Inferno. Неудивительно, что стенд Autodesk напоминал развеселый красно-зеленый зоопарк – чтобы продемонстрировать хотя бы часть флагманских продуктов, компания выстроила кучу микростендиков вокруг основного Autodesk-айсберга. Зрелище внушительное и слегка подавляющее; остается только гадать, как компания собирается унифицировать линейки конкурирующих друг с другом продуктов и развивать трехмерное и двухмерное направления. Кстати, в декабре в Москве должен состояться так называемый Autodesk M3 Launch – первый в Европе запуск и анонс новых версий Maya, Motion Builder и 3ds Max (учитывая покупку MudBox, впору объявлять M4 Launch). Может быть, там станут известны подробности. Пока же большую часть усилий компания тратит на обеспечение беспроблемного обмена данными между основными пакетами, причем не только трехмерными – на Сигграфе было показано, как трехмерная информация из Render Layers в Maya 2008 плавно «приезжает» в Toxik с сохранением данных об источниках света, камерах и других объектах.