Страница:
Несмотря на технологическую специфику новинки, эксперты называют ее вполне трезвой затеей: в условиях обостряющегося энергетического кризиса приветствуются любые начинания, способные сбить цену на вожделенные киловатты. Увы, в обозримом будущем перехватить пальму первенства у традиционных видов топлива "огненной воде" не светит: по самым оптимистичным оценкам, на долю альтернативных источников энергии придется не больше десятой части нынешнего энергетического "пирога". Впрочем, влияние новой технологии на жизнь рядовых британцев трудно переоценить. Ведь совсем скоро на вопрос разгневанной супруги о том, чем это он занимался в столь поздний час, любой полуночный гуляка не моргнув глазом сможет ответить: "Поддерживал энергетическую мощь страны!" ДК
Критики существующей в США системы голосования с использованием специальных машин для подсчета голосов, похоже, получили в свои руки еще один веский аргумент. Раньше им приходилось только делать предположения о нестойкости к взлому применяемых алгоритмов и программ подсчета. Теперь же всю подноготную выдал один из разработчиков таких устройств.
Уильям Сингер (William Singer), бывший работник компании Hart InterCivic, производящей машины для подсчета голосов, намерен судиться со своим бывшим работодателем. Иск, поданный им в защиту интересов государства еще в позапрошлом году, тем не менее, стал достоянием гласности только сейчас. Связано это с тем, что правительство только недавно объявило о своем отказе в поддержке данного иска, и теперь Сингеру придется судиться в одиночку. В иске содержится требование вернуть государству деньги, полученные от продажи машин для голосования в связи с их неудовлетворительным качеством.
По утверждениям Сингера, программное обеспечение машин, произведенных Hart InterCivic, вообще не подвергалось тестированию, а при получении сертификата тестировался якобы специальный экземпляр машины, отличающийся от стандартного. Когда выяснилось, что машины, разработанные Hart InterCivic, не могут генерировать отчеты нужного формата, экземпляр такого отчета был попросту создан вручную - и так представлен в сертифицирующую организацию. Причиной подтасовок Сингер называет желание компании заполучить лакомый четырехмиллиардный государственный контракт.
Разумеется, компания отрицает все обвинения, называя их просто местью уволенного работника. В качестве основного аргумента представители Hart InterCivic называют то, что Сингер, будучи уволенным в 2004 году, столько ждал, прежде чем начать отстаивать государственные интересы. Вдобавок и отказ правительства присоединиться к иску они связывают с недостатком аргументов, подтверждающих позицию Сингера. ПП
Массовое внедрение биометрической идентификации, область применения которой простирается от ноутбуков до паспортов, имеет не только сторонников, но и противников, не устающих трубить об уязвимости подобных систем и связанных с ними угрозах. Оригинальный и необычайно дерзкий способ привлечения внимания общественности к этой проблеме опробовала группа энтузиастов с хакерским уклоном под названием Chaos Computer Club, давно критикующая конкретные образцы воплощения биометрических технологий.
На страницах своего журнала активисты клуба опубликовали отпечаток пальца министра внутренних дел Германии Вольфганга Шойбле (Wolfgang Schа..uble), являющегося сторонником использования биометрии в удостоверениях личности; причем "диверсанты" не ограничились одной лишь фотографией отпечатка, а приложили вдобавок его муляж. Изготовленный по фирменной технологии CCC (которую участники клуба, впрочем, в секрете никогда не держали), поддельный отпечаток представляет собой пленку с нанесенными линиями, повторяющими папиллярный рисунок оригинала. По свидетельству членов группы, такую копию устройства считывания отпечатков принимают за настоящий, живой палец. Получается, что при желании можно выдать себя за главу МВД при условии, что его биометрические сведения занесены в испытываемую систему.
Заполучить "пальчик" целого министра, как сообщается, удалось благодаря сочувствующему делу CCC человеку, прихватившему стакан, из которого пил чиновник, присутствуя на официальном мероприятии в одном из германских университетов. Авторы опубликовали также список других высокопоставленных лиц, отпечатками которых хотели бы наполнить свою необычную коллекцию (значится в этом перечне и канцлер Германии Ангела Меркель), предоставив самодеятельным "охотникам за пальчиками" подробную инструкцию по правильному снятию отпечатков. Тираж издания с диковинной начинкой составил четыре тысячи экземпляров, и наверняка их обладатели будут пробовать прикладываться поддельным отпечатком ко всем встречающимся сканерам. Конечно, акция CCC поднимает вопрос об этичности выставления напоказ столь интимной детали, а вот судебное преследование "разоблачителей", судя по имеющимся данным, пострадавший министр затевать не планирует.
Подлинность размноженного отпечатка по понятным причинам установить непросто. Впрочем, в случае, если бы эта история была выдумкой, она все равно бы выполнила возложенную на нее функцию, выступив в роли своеобразной лакмусовой бумажки, усиленной участием видного персонажа. А вдруг, чиновники под впечатлением от столь яркого примера задумаются и перестанут допускать использование сырых и слабо защищенных систем или, чем черт не шутит, даже пересмотрят принципы сбора и использования персональной информации. ИК
Мощный экспериментальный метод трехмерной визуализации магнитных полей внутри материалов и конструкций разработали ученые из Института Хана-Мейтнера (Hahn-Meitner-Institute) в Берлине. Он поможет ученым лучше понять многие электромагнитные явления - от тех, что протекают в высокотемпературных сверхпроводниках, до тех, что определяют качество поверхности и магнитных головок жестких дисков.
В основе метода лежит давно известная нейтронная радиография. Не имеющие электрического заряда нейтроны сравнительно слабо взаимодействуют с веществом и могут, подобно рентгену, просвечивать многие непрозрачные объекты. Это свойство используется, в частности, для поиска дефектов в изделиях. Но нейтрон, как и другие элементарные частицы, имеет спин, который очень чувствителен к внешнему магнитному полю и стремится повернуться вдоль его силовых линий. Если нейтрон пролетит через магнитное поле со сложной конфигурацией, то спин нейтрона "запомнит", как поле поворачивало частицу. А если нейтронов с разными траекториями и разной начальной ориентацией спина много - можно ли по ним, как в томографии, восстановить трехмерную картину магнитного поля?
Выяснить это взялись немецкие ученые. В их опытах нейтроны со случайной ориентацией спина сначала пролетали сквозь поляризатор, пропускавший нейтроны только с определенной ориентацией спина, затем - сквозь образец и, наконец, попадали во второй поляризатор - анализатор, определявший новую ориентацию их спина. Образец вращали, получая несколько изображений, а затем в дело вступал компьютер, восстанавливавший трехмерную картину поля.
В экспериментах удалось получить известное магнитное поле диполя, а затем заглянуть внутрь одного из высокотемпературных сверхпроводников YBa2Cu3O7, а также проследить за магнитным полем, "захваченным" внутри охлажденного до нескольких градусов выше абсолютного нуля и ставшего сверхпроводящим свинца.
Новый метод позволяет увидеть многие вещи, о которых раньше нельзя было и мечтать. Например, он дает возможность получить полную трехмерную картину распределения магнитных доменов в образце. Работа немецких ученых сулит прогресс во многих областях, включая разработку различных магнитных запоминающих устройств. ГА
Любопытный способ увеличения нужной части карты разработала японская фирма Alps Mapping сотрудничестве с Нагойским технологическим институтом. Увеличенный кусочек не теряет связей со своим окружением, что должно значительно облегчить чтение карты и ориентацию на местности.
Есть несколько способов зуммирования карт - от простейшего увеличения фрагмента во весь экран до различных комбинаций типа "картинка в картинке". Но ни один из них не позволяет сразу увидеть связь выделенной области с остальной частью карты. Это зачастую вынуждает пользователя подолгу возиться с картой и несколько раз менять масштаб туда-обратно, чтобы разобраться, где что находится и как туда побыстрее добраться.
С помощью нового способа карта увеличивается так, будто к ней приложили широкоугольную линзу "рыбий глаз", которая охватывает сразу все полупространство. Область увеличения состоит из двух концентрических кругов. Во внутреннем круге коэффициент увеличения постоянен, а за пределами наружного круга карта представлена в оригинальном виде. Между кругами масштаб плавно меняется, и изображение искривляется, но так, чтобы его кривизна была минимальной. В результате линии дорог искажаются, но все же остаются непрерывными. Поэтому проследить связь между ними гораздо проще.
Авторы надеются, что так будет удобно разглядывать не только карты. Прежде всего новинка может найти применение в мобильных устройствах с небольшими экранами, вроде КПК и смартфонов. Окончательный приговор этой идее вынесет публика, а пока экспериментальный образец карты с виртуальной лупой ученые выложили в Сетьи ждут замечаний пользователей. ГА
Кто из нас не злился, когда срочно понадобившийся скотч, вместо того чтобы разматываться ровной лентой, вдруг отрывался коротким треугольником. Так "неправильно" почему-то ведет себя не только скотч, но и старые обои, пленка, в которую упакованы компакт-диски, кожура помидоров и многие другие покрытия. И вот, наконец, международной команде ученых из Чили, США и Франции, координируемой из Университета Сантьяго, удалось разобраться, в чем тут дело. Полученное учеными простое соотношение хорошо описывает это распространенное явление и поможет избежать проблем во многих практических приложениях, от упаковки товаров до производства электроники.
Как выяснилось, образование треугольной прорехи обусловлено тремя свойствами липкой пленки - упругостью, энергией приклеивания и энергией разрыва. Ученым удалось вывести формулу, которая связывает эти свойства и угол треугольника, в виде которого отрывается пленка. Стало понятно, почему иногда возникает такой треугольный отрыв. Когда пленку тянут, отклеивая от поверхности, упругая энергия запасается в ее изгибе. Эта энергия может израсходоваться двумя способами - либо на отрыв пленки от поверхности, либо на разрыв самой пленки, что и случается при наличии в ней дефектов, провоцирующих начало разрыва. При отсутствии клея (например, в упаковке компакт-дисков) физика разрыва и форма получающихся фигур гораздо сложнее, но все равно более-менее укладывается в общую концепцию.
Многочисленные эксперименты прекрасно подтверждают теорию. Кроме очевидных практических приложений с ее помощью, измерив угол в получившемся треугольнике, теперь можно вычислить любое из трех свойств пленки, если два других известны. Этот способ очень пригодится разработчикам современной гибкой электроники, поскольку определять свойства применяемых в ней тонких пленок сегодня крайне затруднительно.
На первый взгляд кажется странным, что серьезные ученые из известных университетов занялись такой вроде бы пустячной проблемой. Однако история науки свидетельствует, что, казалось бы, самые простые и обыденные явления зачастую очень трудно объяснить. Любопытно, что такие обрывки давно вдохновляют французского художника Жака Виллажа (Jacques Villeglе), который ищет и отрывает материал для своих шедевров от афиш и рекламы на улицах Парижа и других французских городов. ГА
Принципиально новый высокотемпературный сверхпроводник на основе железа открыли химики из Токийского технологического института. Новый материал не бьет никаких рекордов, становясь сверхпроводящим при 26 градусах выше абсолютного нуля, но обещает помочь ученым разобраться с самим механизмом сверхпроводимости.
Открытые более двадцати лет назад высокотемпературные сверхпроводники, для охлаждения которых использовался сравнительно дешевый жидкий азот, обещали произвести быструю революцию в энергетике, электротехнике и электронике. Они должны были свести к нулю огромные потери энергии на бесполезный нагрев проводов. Но прошло двадцать лет, а коммерческие приложения высокотемпературной сверхпроводимости еще надо поискать.
Дело в том, что несмотря на титанические усилия исследователей механизм высокотемпературной сверхпроводимости до сих пор не очень понятен. Теорий предостаточно (даже, пожалуй, чересчур), но это почти равносильно их отсутствию. Развитая в шестидесятые годы теория сверхпроводимости БКШ (по инициалам ее создателей - Бардин-Купер-Шриффер) сносно объяснила этот эффект в металлах и сплавах при низких температурах. Но она плохо работает в сложной слоистой структуре высокотемпературных сверхпроводников. Поэтому физикам приходится продираться в потемках, часто по наитию, тупо меняя атом за атомом в различных соединениях. И многие из них оказываются непрочными, нестабильными или даже ядовитыми, что препятствует коммерческому применению сверхпроводимости.
Во всех высокотемпературных сверхпроводниках, несмотря на их разнообразие, есть слои из атомов кислорода и меди. Предполагают, что именно по ним постоянный ток течет без сопротивления. И тем примечательнее новое соединение из лантана, кислорода, железа и мышьяка с небольшой примесью фтора La[O1-xFx]FeAs (x = 0,05-0,12), в котором вместо меди работает железо. У железа совсем другие электронные и магнитные свойства, и исследование нового класса высокотемпературных сверхпроводников (а похожие соединения наверняка не заставят себя ждать) даст теоретикам массу новой пищи для размышлений. Нам же остается надеяться, что содержащие железо сверхпроводники помогут решить эту проблему физики твердого тела. Впрочем, нельзя исключать, что все только еще сильнее запутается. ГА
Безопасность веб-браузеров давно стала главной причиной головной боли для их разработчиков. В каждом современном приложении подобного рода есть уязвимости, которые могут быть использованы для несанкционированного доступа к данным пользователя. К десяткам дыр в самих браузерах добавляются сотни опасных ошибок в бесчисленных плагинах. Пока девелоперы устраняют известные проблемы, взломщики уже эксплуатируют свежие находки - и так без конца. Впрочем, свет в конце тоннеля забрезжил: группа американских исследователей из Иллинойского университета (University of Illinois at Urbana-Champaign) готовит к выпуску экспериментальный веб-браузер, построенный с нуля с прицелом на информационную безопасность и нареченный Opus Palladianum (OP; название одной из техник художественной мозаики - и реверанс в сторону первого браузера Mosaic).
Идея, положенная в основу браузера, многим покажется крамольной. По мнению создателей, Opus Palladianum, задуманный как приложение для работы со статичными документами, сегодня сам превратился в платформу, на которой исполняются разнотипные приложения (почтовые клиенты, текстовые редакторы и т. п.). Как следствие, в результате одной успешной атаки злоумышленника под угрозой оказываются сразу все данные пользователя. Решить проблему можно лишь перекроив порочную архитектуру, что и намерены сделать авторы OP.
Принципы, на которых выстроен Opus Palladianum, очевидно позаимствованы из микроядерной архитектуры операционных систем. OP представляет собой несколько сравнительно простых, обособленных компонентов, взаимодействующих при посредничестве микроядра. Функциональность составных частей и все сообщения, которыми они обмениваются между собой, четко сформулированы. Всего в OP предусмотрено пять компонентов, каждый из которых отвечает за свой участок: работу с сетью, хранение данных, общение с пользователем, взаимодействие с операционной системой и, наконец, обработку веб-контента. Каждый компонент исполняется в виде отдельного процесса, изолированного от других приложений и ОС с помощью специальных средств операционной системы (в настоящее время OP работает в Linux и использует security-инструментарий SELinux). Однако веб-компонент сложнее прочих: каждый раз, когда пользователь открывает новую страничку, браузерное ядро запускает новую, независимую от соседних копию веб-компонента, ограничивая таким образом последствия возможного проникновения. Эта же особенность уменьшает вред от потенциально дырявого плагина, который может стать целью злоумышленника. В целом модульная архитектура с обособленными частями способна гарантировать, что в худшем случае пользователь рискует лишь информацией, с которой он работал в скомпрометированном окне. Ни браузер, ни тем более операционная система взломщику и вирусам недоступны.
Помимо архитектурных особенностей, Opus Palladianum содержит несколько долгожданных инноваций, призванных помочь пользователю контролировать происходящее во время веб-серфинга. Так, специальный алгоритм следит за тем, чтобы в адресной строке браузера всегда отображался действительный адрес текущей странички, что серьезно осложнит задачу фишерам. А на случай успешного взлома OP ведет запись всех операций, так что впоследствии нетрудно установить, посещение какого именно сайта привело к нарушению защиты.
Прототип Opus Palladianum уже готов. В качестве основы для веб-движка в нем используется свободный KHTML. Предварительные тесты показали, что по скорости OP сопоставим с браузером Firefox. Научному сообществу и, вероятно, публике, новинку предъявят на майской конференции IEEE по вопросам ИТ-безопасности. Впоследствии создатели уникального браузера планируют опубликовать исходные тексты своего детища под свободной лицензией и с помощью общественности перенести OP с KHTML на более совершенный движок WebKit (основа браузера Safari). ЕЗ
Еще один шаг на тернистом пути к полноценным квантовым информационным системам удалось сделать физикам из Бристольского университета в Великобритании. Там впервые реализовали квантово-оптические логические вентили непосредственно в кремниевом чипе.
Речь идет о реализации полностью оптического вентиля CNOT (контролируемое отрицание). У такого вентиля поступающий на вход кубит передается на выход неизменным, если на втором управляющем входе ноль, но изменяется на противоположный, если на управляющем входе единица. Ранее вентиль уже был реализован на лабораторном оптическом столе с помощью сложного набора зеркал, смесителей и делителей лучей, а также сопутствующего оборудования. Разумеется, о практическом использовании подобных конструкций никто и не помышлял. Теперь ученым удалось вместить сразу сотню таких вентилей в небольшой кремниевый чип, изготовленный с помощью обычной фотолитографии.
Громоздкую настольную конструкцию заменили шесть параллельных оптических волноводов из кварца размером 3,5х3,5 мкм, рассчитанных на излучение лазера с длиной волны 804 нм. Волноводы в чипе разнесены на десятки микрон, но на пяти отрезках некоторые из них попарно сближаются на расстояние порядка длины волны так, чтобы фотоны могли с заданной вероятностью туннелировать из одного волновода в другой. Похожие волноводные разделители лучей сегодня часто используют в оптическом телекоммуникационном оборудовании.
Если два летящих по соседним волноводам фотона одновременно попадают на участок сближения, то фотоны испытывают там квантовую интерференцию и "запутываются" между собой. Весь оптический вентиль CNOT работает довольно хитрым образом, трижды "перепутывая" фотоны из пар входных и управляющих волноводов.
Эксперименты показали, что чип получился удачным и вероятность успеха каждого квантового "запутывания" и других оптических процессов в нем более 92%. Тем не менее вероятность того, что весь вентиль сработает успешно, пока не превышает 11%. В принципе, эту трудность легко обойти, установив дополнительные волноводы для проверки успешности срабатывания вентиля. Над этим и над задачей интеграции излучателей и фотоприемников непосредственно в оптический чип ученые и трудятся сегодня. ГА
Блестящая идея пришла в голову профессору Массачусетского технологического института Сету Ллойду (Seth Lloyd). Пока специалисты по квантовой информации безуспешно борются с тепловым шумом, который быстро разрушает нежные квантовые состояния, ученый решил "перевернуть" задачу и использовать квантовые состояния именно для борьбы с шумом.
Для решения (пока, к сожалению, только умозрительного) этой задачи пригодилась уже созданная теория и накопленный опыт работы с запутанными квантовыми состояниями частиц, в которых одна частица "чувствует" состояние своей "напарницы". В работе речь идет о фотонах и оптике, но сама идея применима и к любым другим квантовым частицам.
Обычно в оптической системе для получения изображений (вроде микроскопа или кинокамеры) требуется сначала осветить объект, а потом регистрировать отраженный им свет. И если освещение слабое, а в фотоприемник попадают лишние фотоны от случайных источников, то изображение размывается вплоть до полной неразличимости. Обычный фотоприемник не в состоянии отличить отраженные объектом и несущие полезную информацию фотоны от фотонов шума, но квантовый подход, в принципе, позволяет это сделать.
Для этого профессор предлагает взять пару запутанных фотонов, одним из которых можно осветить объект, а второй оставить для последующего сравнения с первым, дабы отличить его от фотонов шума, когда он вернется, отразившись от объекта. Как именно это сделать, пока не очень понятно. Можно, например, сложить два запутанных фотона в нелинейном кристалле так, чтобы получить один с вдвое большей энергией и уже его регистрировать фотоприемником. Обратный процесс, называемый даунконверсией, обычно используют как раз для получения пар запутанных фотонов. Но тут еще нужно угадать время задержки для второго фотона, равное времени полета первого фотона до объекта и обратно. Если подобные трудности удастся преодолеть, то, согласно предложенной теории, можно будет существенно улучшить отношение сигнала и шума оптической системы. И это улучшение тем сильнее, чем лучше фотоны запутаны.
По всей видимости, похожая техника может пригодиться не только для получения изображений. Таким образом можно снижать шумы в оптических телекоммуникационных сетях, а также при измерении или передаче слабых электрических сигналов, если вместо фотонов использовать электроны. Остается уповать на то, что экспериментальное подтверждение этой оригинальной теории не заставит себя ждать. ГА
Неожиданные результаты получили физики из Корнелльского университета, детально исследовавшие так называемое спин-орбитальное взаимодействие электронов и дырок в углеродных нанотрубках. Это взаимодействие оказалось неожиданно сильным, что в корне меняет взгляд на возможные приложения нанотрубок в спинтронике и квантовых вычислениях.
Спин-орбитальное взаимодействие - это слабый релятивистский эффект, который приводит к небольшому расщеплению спектральных линий атомов. Он возникает из-за того, что спины электронов, движущихся по орбитам вокруг ядра, "чувствуют" магнитное поле, порождаемое зарядом ядра, которое, как ток в катушке соленоида, "вращается вокруг электрона" в связанной с самим электроном системе отсчета. Несмотря на свою слабость, спин-орбитальное взаимодействие играет важную роль в спинтронике. Именно оно приводит к тому, что спин движущихся по проводнику электронов, взаимодействуя с зарядами ядер атомов, быстро приобретает случайную ориентацию. Этот эффект сильно сдерживает прогресс спинтроники, в которой два возможных значения спина электрона в дополнение к его заряду используются для кодирования информации.
Сила спин-орбитального взаимодействия пропорциональна четвертой степени заряда ядра. Поэтому многие специалисты полагали, что в углероде с зарядом 6 оно будет пренебрежимо мало по сравнению, например, с медью с зарядом ядра 29. А значит, углеродные нанотрубки с толщиной стенок в один атом, благодаря высокой проводимости, прочности и стабильности, могли бы стать прекрасными проводниками и для спинтроники. Но на самом деле все оказалось устроено иначе.
"Очень денег хочется"…
Критики существующей в США системы голосования с использованием специальных машин для подсчета голосов, похоже, получили в свои руки еще один веский аргумент. Раньше им приходилось только делать предположения о нестойкости к взлому применяемых алгоритмов и программ подсчета. Теперь же всю подноготную выдал один из разработчиков таких устройств.
Уильям Сингер (William Singer), бывший работник компании Hart InterCivic, производящей машины для подсчета голосов, намерен судиться со своим бывшим работодателем. Иск, поданный им в защиту интересов государства еще в позапрошлом году, тем не менее, стал достоянием гласности только сейчас. Связано это с тем, что правительство только недавно объявило о своем отказе в поддержке данного иска, и теперь Сингеру придется судиться в одиночку. В иске содержится требование вернуть государству деньги, полученные от продажи машин для голосования в связи с их неудовлетворительным качеством.
По утверждениям Сингера, программное обеспечение машин, произведенных Hart InterCivic, вообще не подвергалось тестированию, а при получении сертификата тестировался якобы специальный экземпляр машины, отличающийся от стандартного. Когда выяснилось, что машины, разработанные Hart InterCivic, не могут генерировать отчеты нужного формата, экземпляр такого отчета был попросту создан вручную - и так представлен в сертифицирующую организацию. Причиной подтасовок Сингер называет желание компании заполучить лакомый четырехмиллиардный государственный контракт.
Разумеется, компания отрицает все обвинения, называя их просто местью уволенного работника. В качестве основного аргумента представители Hart InterCivic называют то, что Сингер, будучи уволенным в 2004 году, столько ждал, прежде чем начать отстаивать государственные интересы. Вдобавок и отказ правительства присоединиться к иску они связывают с недостатком аргументов, подтверждающих позицию Сингера. ПП
Копирование министра
Массовое внедрение биометрической идентификации, область применения которой простирается от ноутбуков до паспортов, имеет не только сторонников, но и противников, не устающих трубить об уязвимости подобных систем и связанных с ними угрозах. Оригинальный и необычайно дерзкий способ привлечения внимания общественности к этой проблеме опробовала группа энтузиастов с хакерским уклоном под названием Chaos Computer Club, давно критикующая конкретные образцы воплощения биометрических технологий.
На страницах своего журнала активисты клуба опубликовали отпечаток пальца министра внутренних дел Германии Вольфганга Шойбле (Wolfgang Schа..uble), являющегося сторонником использования биометрии в удостоверениях личности; причем "диверсанты" не ограничились одной лишь фотографией отпечатка, а приложили вдобавок его муляж. Изготовленный по фирменной технологии CCC (которую участники клуба, впрочем, в секрете никогда не держали), поддельный отпечаток представляет собой пленку с нанесенными линиями, повторяющими папиллярный рисунок оригинала. По свидетельству членов группы, такую копию устройства считывания отпечатков принимают за настоящий, живой палец. Получается, что при желании можно выдать себя за главу МВД при условии, что его биометрические сведения занесены в испытываемую систему.
Заполучить "пальчик" целого министра, как сообщается, удалось благодаря сочувствующему делу CCC человеку, прихватившему стакан, из которого пил чиновник, присутствуя на официальном мероприятии в одном из германских университетов. Авторы опубликовали также список других высокопоставленных лиц, отпечатками которых хотели бы наполнить свою необычную коллекцию (значится в этом перечне и канцлер Германии Ангела Меркель), предоставив самодеятельным "охотникам за пальчиками" подробную инструкцию по правильному снятию отпечатков. Тираж издания с диковинной начинкой составил четыре тысячи экземпляров, и наверняка их обладатели будут пробовать прикладываться поддельным отпечатком ко всем встречающимся сканерам. Конечно, акция CCC поднимает вопрос об этичности выставления напоказ столь интимной детали, а вот судебное преследование "разоблачителей", судя по имеющимся данным, пострадавший министр затевать не планирует.
Подлинность размноженного отпечатка по понятным причинам установить непросто. Впрочем, в случае, если бы эта история была выдумкой, она все равно бы выполнила возложенную на нее функцию, выступив в роли своеобразной лакмусовой бумажки, усиленной участием видного персонажа. А вдруг, чиновники под впечатлением от столь яркого примера задумаются и перестанут допускать использование сырых и слабо защищенных систем или, чем черт не шутит, даже пересмотрят принципы сбора и использования персональной информации. ИК
Магнитная томография
Мощный экспериментальный метод трехмерной визуализации магнитных полей внутри материалов и конструкций разработали ученые из Института Хана-Мейтнера (Hahn-Meitner-Institute) в Берлине. Он поможет ученым лучше понять многие электромагнитные явления - от тех, что протекают в высокотемпературных сверхпроводниках, до тех, что определяют качество поверхности и магнитных головок жестких дисков.
В основе метода лежит давно известная нейтронная радиография. Не имеющие электрического заряда нейтроны сравнительно слабо взаимодействуют с веществом и могут, подобно рентгену, просвечивать многие непрозрачные объекты. Это свойство используется, в частности, для поиска дефектов в изделиях. Но нейтрон, как и другие элементарные частицы, имеет спин, который очень чувствителен к внешнему магнитному полю и стремится повернуться вдоль его силовых линий. Если нейтрон пролетит через магнитное поле со сложной конфигурацией, то спин нейтрона "запомнит", как поле поворачивало частицу. А если нейтронов с разными траекториями и разной начальной ориентацией спина много - можно ли по ним, как в томографии, восстановить трехмерную картину магнитного поля?
Выяснить это взялись немецкие ученые. В их опытах нейтроны со случайной ориентацией спина сначала пролетали сквозь поляризатор, пропускавший нейтроны только с определенной ориентацией спина, затем - сквозь образец и, наконец, попадали во второй поляризатор - анализатор, определявший новую ориентацию их спина. Образец вращали, получая несколько изображений, а затем в дело вступал компьютер, восстанавливавший трехмерную картину поля.
В экспериментах удалось получить известное магнитное поле диполя, а затем заглянуть внутрь одного из высокотемпературных сверхпроводников YBa2Cu3O7, а также проследить за магнитным полем, "захваченным" внутри охлажденного до нескольких градусов выше абсолютного нуля и ставшего сверхпроводящим свинца.
Новый метод позволяет увидеть многие вещи, о которых раньше нельзя было и мечтать. Например, он дает возможность получить полную трехмерную картину распределения магнитных доменов в образце. Работа немецких ученых сулит прогресс во многих областях, включая разработку различных магнитных запоминающих устройств. ГА
Рыбий глаз
Любопытный способ увеличения нужной части карты разработала японская фирма Alps Mapping сотрудничестве с Нагойским технологическим институтом. Увеличенный кусочек не теряет связей со своим окружением, что должно значительно облегчить чтение карты и ориентацию на местности.
Есть несколько способов зуммирования карт - от простейшего увеличения фрагмента во весь экран до различных комбинаций типа "картинка в картинке". Но ни один из них не позволяет сразу увидеть связь выделенной области с остальной частью карты. Это зачастую вынуждает пользователя подолгу возиться с картой и несколько раз менять масштаб туда-обратно, чтобы разобраться, где что находится и как туда побыстрее добраться.
С помощью нового способа карта увеличивается так, будто к ней приложили широкоугольную линзу "рыбий глаз", которая охватывает сразу все полупространство. Область увеличения состоит из двух концентрических кругов. Во внутреннем круге коэффициент увеличения постоянен, а за пределами наружного круга карта представлена в оригинальном виде. Между кругами масштаб плавно меняется, и изображение искривляется, но так, чтобы его кривизна была минимальной. В результате линии дорог искажаются, но все же остаются непрерывными. Поэтому проследить связь между ними гораздо проще.
Авторы надеются, что так будет удобно разглядывать не только карты. Прежде всего новинка может найти применение в мобильных устройствах с небольшими экранами, вроде КПК и смартфонов. Окончательный приговор этой идее вынесет публика, а пока экспериментальный образец карты с виртуальной лупой ученые выложили в Сетьи ждут замечаний пользователей. ГА
Проблема старых обоев
Кто из нас не злился, когда срочно понадобившийся скотч, вместо того чтобы разматываться ровной лентой, вдруг отрывался коротким треугольником. Так "неправильно" почему-то ведет себя не только скотч, но и старые обои, пленка, в которую упакованы компакт-диски, кожура помидоров и многие другие покрытия. И вот, наконец, международной команде ученых из Чили, США и Франции, координируемой из Университета Сантьяго, удалось разобраться, в чем тут дело. Полученное учеными простое соотношение хорошо описывает это распространенное явление и поможет избежать проблем во многих практических приложениях, от упаковки товаров до производства электроники.
Как выяснилось, образование треугольной прорехи обусловлено тремя свойствами липкой пленки - упругостью, энергией приклеивания и энергией разрыва. Ученым удалось вывести формулу, которая связывает эти свойства и угол треугольника, в виде которого отрывается пленка. Стало понятно, почему иногда возникает такой треугольный отрыв. Когда пленку тянут, отклеивая от поверхности, упругая энергия запасается в ее изгибе. Эта энергия может израсходоваться двумя способами - либо на отрыв пленки от поверхности, либо на разрыв самой пленки, что и случается при наличии в ней дефектов, провоцирующих начало разрыва. При отсутствии клея (например, в упаковке компакт-дисков) физика разрыва и форма получающихся фигур гораздо сложнее, но все равно более-менее укладывается в общую концепцию.
Многочисленные эксперименты прекрасно подтверждают теорию. Кроме очевидных практических приложений с ее помощью, измерив угол в получившемся треугольнике, теперь можно вычислить любое из трех свойств пленки, если два других известны. Этот способ очень пригодится разработчикам современной гибкой электроники, поскольку определять свойства применяемых в ней тонких пленок сегодня крайне затруднительно.
На первый взгляд кажется странным, что серьезные ученые из известных университетов занялись такой вроде бы пустячной проблемой. Однако история науки свидетельствует, что, казалось бы, самые простые и обыденные явления зачастую очень трудно объяснить. Любопытно, что такие обрывки давно вдохновляют французского художника Жака Виллажа (Jacques Villeglе), который ищет и отрывает материал для своих шедевров от афиш и рекламы на улицах Парижа и других французских городов. ГА
Железо даст ответ?
Принципиально новый высокотемпературный сверхпроводник на основе железа открыли химики из Токийского технологического института. Новый материал не бьет никаких рекордов, становясь сверхпроводящим при 26 градусах выше абсолютного нуля, но обещает помочь ученым разобраться с самим механизмом сверхпроводимости.
Открытые более двадцати лет назад высокотемпературные сверхпроводники, для охлаждения которых использовался сравнительно дешевый жидкий азот, обещали произвести быструю революцию в энергетике, электротехнике и электронике. Они должны были свести к нулю огромные потери энергии на бесполезный нагрев проводов. Но прошло двадцать лет, а коммерческие приложения высокотемпературной сверхпроводимости еще надо поискать.
Дело в том, что несмотря на титанические усилия исследователей механизм высокотемпературной сверхпроводимости до сих пор не очень понятен. Теорий предостаточно (даже, пожалуй, чересчур), но это почти равносильно их отсутствию. Развитая в шестидесятые годы теория сверхпроводимости БКШ (по инициалам ее создателей - Бардин-Купер-Шриффер) сносно объяснила этот эффект в металлах и сплавах при низких температурах. Но она плохо работает в сложной слоистой структуре высокотемпературных сверхпроводников. Поэтому физикам приходится продираться в потемках, часто по наитию, тупо меняя атом за атомом в различных соединениях. И многие из них оказываются непрочными, нестабильными или даже ядовитыми, что препятствует коммерческому применению сверхпроводимости.
Во всех высокотемпературных сверхпроводниках, несмотря на их разнообразие, есть слои из атомов кислорода и меди. Предполагают, что именно по ним постоянный ток течет без сопротивления. И тем примечательнее новое соединение из лантана, кислорода, железа и мышьяка с небольшой примесью фтора La[O1-xFx]FeAs (x = 0,05-0,12), в котором вместо меди работает железо. У железа совсем другие электронные и магнитные свойства, и исследование нового класса высокотемпературных сверхпроводников (а похожие соединения наверняка не заставят себя ждать) даст теоретикам массу новой пищи для размышлений. Нам же остается надеяться, что содержащие железо сверхпроводники помогут решить эту проблему физики твердого тела. Впрочем, нельзя исключать, что все только еще сильнее запутается. ГА
Разделяй и властвуй
Безопасность веб-браузеров давно стала главной причиной головной боли для их разработчиков. В каждом современном приложении подобного рода есть уязвимости, которые могут быть использованы для несанкционированного доступа к данным пользователя. К десяткам дыр в самих браузерах добавляются сотни опасных ошибок в бесчисленных плагинах. Пока девелоперы устраняют известные проблемы, взломщики уже эксплуатируют свежие находки - и так без конца. Впрочем, свет в конце тоннеля забрезжил: группа американских исследователей из Иллинойского университета (University of Illinois at Urbana-Champaign) готовит к выпуску экспериментальный веб-браузер, построенный с нуля с прицелом на информационную безопасность и нареченный Opus Palladianum (OP; название одной из техник художественной мозаики - и реверанс в сторону первого браузера Mosaic).
Идея, положенная в основу браузера, многим покажется крамольной. По мнению создателей, Opus Palladianum, задуманный как приложение для работы со статичными документами, сегодня сам превратился в платформу, на которой исполняются разнотипные приложения (почтовые клиенты, текстовые редакторы и т. п.). Как следствие, в результате одной успешной атаки злоумышленника под угрозой оказываются сразу все данные пользователя. Решить проблему можно лишь перекроив порочную архитектуру, что и намерены сделать авторы OP.
Принципы, на которых выстроен Opus Palladianum, очевидно позаимствованы из микроядерной архитектуры операционных систем. OP представляет собой несколько сравнительно простых, обособленных компонентов, взаимодействующих при посредничестве микроядра. Функциональность составных частей и все сообщения, которыми они обмениваются между собой, четко сформулированы. Всего в OP предусмотрено пять компонентов, каждый из которых отвечает за свой участок: работу с сетью, хранение данных, общение с пользователем, взаимодействие с операционной системой и, наконец, обработку веб-контента. Каждый компонент исполняется в виде отдельного процесса, изолированного от других приложений и ОС с помощью специальных средств операционной системы (в настоящее время OP работает в Linux и использует security-инструментарий SELinux). Однако веб-компонент сложнее прочих: каждый раз, когда пользователь открывает новую страничку, браузерное ядро запускает новую, независимую от соседних копию веб-компонента, ограничивая таким образом последствия возможного проникновения. Эта же особенность уменьшает вред от потенциально дырявого плагина, который может стать целью злоумышленника. В целом модульная архитектура с обособленными частями способна гарантировать, что в худшем случае пользователь рискует лишь информацией, с которой он работал в скомпрометированном окне. Ни браузер, ни тем более операционная система взломщику и вирусам недоступны.
Помимо архитектурных особенностей, Opus Palladianum содержит несколько долгожданных инноваций, призванных помочь пользователю контролировать происходящее во время веб-серфинга. Так, специальный алгоритм следит за тем, чтобы в адресной строке браузера всегда отображался действительный адрес текущей странички, что серьезно осложнит задачу фишерам. А на случай успешного взлома OP ведет запись всех операций, так что впоследствии нетрудно установить, посещение какого именно сайта привело к нарушению защиты.
Прототип Opus Palladianum уже готов. В качестве основы для веб-движка в нем используется свободный KHTML. Предварительные тесты показали, что по скорости OP сопоставим с браузером Firefox. Научному сообществу и, вероятно, публике, новинку предъявят на майской конференции IEEE по вопросам ИТ-безопасности. Впоследствии создатели уникального браузера планируют опубликовать исходные тексты своего детища под свободной лицензией и с помощью общественности перенести OP с KHTML на более совершенный движок WebKit (основа браузера Safari). ЕЗ
Вентили в чипе
Еще один шаг на тернистом пути к полноценным квантовым информационным системам удалось сделать физикам из Бристольского университета в Великобритании. Там впервые реализовали квантово-оптические логические вентили непосредственно в кремниевом чипе.
Речь идет о реализации полностью оптического вентиля CNOT (контролируемое отрицание). У такого вентиля поступающий на вход кубит передается на выход неизменным, если на втором управляющем входе ноль, но изменяется на противоположный, если на управляющем входе единица. Ранее вентиль уже был реализован на лабораторном оптическом столе с помощью сложного набора зеркал, смесителей и делителей лучей, а также сопутствующего оборудования. Разумеется, о практическом использовании подобных конструкций никто и не помышлял. Теперь ученым удалось вместить сразу сотню таких вентилей в небольшой кремниевый чип, изготовленный с помощью обычной фотолитографии.
Громоздкую настольную конструкцию заменили шесть параллельных оптических волноводов из кварца размером 3,5х3,5 мкм, рассчитанных на излучение лазера с длиной волны 804 нм. Волноводы в чипе разнесены на десятки микрон, но на пяти отрезках некоторые из них попарно сближаются на расстояние порядка длины волны так, чтобы фотоны могли с заданной вероятностью туннелировать из одного волновода в другой. Похожие волноводные разделители лучей сегодня часто используют в оптическом телекоммуникационном оборудовании.
Если два летящих по соседним волноводам фотона одновременно попадают на участок сближения, то фотоны испытывают там квантовую интерференцию и "запутываются" между собой. Весь оптический вентиль CNOT работает довольно хитрым образом, трижды "перепутывая" фотоны из пар входных и управляющих волноводов.
Эксперименты показали, что чип получился удачным и вероятность успеха каждого квантового "запутывания" и других оптических процессов в нем более 92%. Тем не менее вероятность того, что весь вентиль сработает успешно, пока не превышает 11%. В принципе, эту трудность легко обойти, установив дополнительные волноводы для проверки успешности срабатывания вентиля. Над этим и над задачей интеграции излучателей и фотоприемников непосредственно в оптический чип ученые и трудятся сегодня. ГА
О пользе путаницы
Блестящая идея пришла в голову профессору Массачусетского технологического института Сету Ллойду (Seth Lloyd). Пока специалисты по квантовой информации безуспешно борются с тепловым шумом, который быстро разрушает нежные квантовые состояния, ученый решил "перевернуть" задачу и использовать квантовые состояния именно для борьбы с шумом.
Для решения (пока, к сожалению, только умозрительного) этой задачи пригодилась уже созданная теория и накопленный опыт работы с запутанными квантовыми состояниями частиц, в которых одна частица "чувствует" состояние своей "напарницы". В работе речь идет о фотонах и оптике, но сама идея применима и к любым другим квантовым частицам.
Обычно в оптической системе для получения изображений (вроде микроскопа или кинокамеры) требуется сначала осветить объект, а потом регистрировать отраженный им свет. И если освещение слабое, а в фотоприемник попадают лишние фотоны от случайных источников, то изображение размывается вплоть до полной неразличимости. Обычный фотоприемник не в состоянии отличить отраженные объектом и несущие полезную информацию фотоны от фотонов шума, но квантовый подход, в принципе, позволяет это сделать.
Для этого профессор предлагает взять пару запутанных фотонов, одним из которых можно осветить объект, а второй оставить для последующего сравнения с первым, дабы отличить его от фотонов шума, когда он вернется, отразившись от объекта. Как именно это сделать, пока не очень понятно. Можно, например, сложить два запутанных фотона в нелинейном кристалле так, чтобы получить один с вдвое большей энергией и уже его регистрировать фотоприемником. Обратный процесс, называемый даунконверсией, обычно используют как раз для получения пар запутанных фотонов. Но тут еще нужно угадать время задержки для второго фотона, равное времени полета первого фотона до объекта и обратно. Если подобные трудности удастся преодолеть, то, согласно предложенной теории, можно будет существенно улучшить отношение сигнала и шума оптической системы. И это улучшение тем сильнее, чем лучше фотоны запутаны.
По всей видимости, похожая техника может пригодиться не только для получения изображений. Таким образом можно снижать шумы в оптических телекоммуникационных сетях, а также при измерении или передаче слабых электрических сигналов, если вместо фотонов использовать электроны. Остается уповать на то, что экспериментальное подтверждение этой оригинальной теории не заставит себя ждать. ГА
Сюрпризы спина
Неожиданные результаты получили физики из Корнелльского университета, детально исследовавшие так называемое спин-орбитальное взаимодействие электронов и дырок в углеродных нанотрубках. Это взаимодействие оказалось неожиданно сильным, что в корне меняет взгляд на возможные приложения нанотрубок в спинтронике и квантовых вычислениях.
Спин-орбитальное взаимодействие - это слабый релятивистский эффект, который приводит к небольшому расщеплению спектральных линий атомов. Он возникает из-за того, что спины электронов, движущихся по орбитам вокруг ядра, "чувствуют" магнитное поле, порождаемое зарядом ядра, которое, как ток в катушке соленоида, "вращается вокруг электрона" в связанной с самим электроном системе отсчета. Несмотря на свою слабость, спин-орбитальное взаимодействие играет важную роль в спинтронике. Именно оно приводит к тому, что спин движущихся по проводнику электронов, взаимодействуя с зарядами ядер атомов, быстро приобретает случайную ориентацию. Этот эффект сильно сдерживает прогресс спинтроники, в которой два возможных значения спина электрона в дополнение к его заряду используются для кодирования информации.
Сила спин-орбитального взаимодействия пропорциональна четвертой степени заряда ядра. Поэтому многие специалисты полагали, что в углероде с зарядом 6 оно будет пренебрежимо мало по сравнению, например, с медью с зарядом ядра 29. А значит, углеродные нанотрубки с толщиной стенок в один атом, благодаря высокой проводимости, прочности и стабильности, могли бы стать прекрасными проводниками и для спинтроники. Но на самом деле все оказалось устроено иначе.