Е=F/q.Приравнивая единице один из зарядов в формуле Кулона, получим выражение для напряженности поля Ев точке, удаленной на расстоянии rот физического точечного заряда: Е =q/(4???0r2),а для пустоты, у которой относительная электрическая проницаемость равна единице: Е =q/(4??0r 2).
   Единица измерения напряженности – В/м.
   Электрическое поле, напряженность которого в разных точках пространства одинакова по величине и по направлению, называется однородным полем.
   При изучении различных физических явлений приходится встречаться со скалярными и векторными величинами.
   Положительный электрический заряд, внесенный в поле положительно заряженного тела шарообразной формы, удаленного от других зарядов, будет отталкиваться по прямой линии, являющейся продолжением радиуса заряженного тела. Помещая электрический заряд в различные точки поля заряженного шара и отмечая траектории движения заряда под действием его электрических сил, получаем ряд радикальных прямых, расходящихся во все стороны. Эти воображаемые линии, по которым стремится двигаться положительный, лишенный инерции заряд, внесенный в электрическое поле, называются электрическими силовыми линиями. В электрическом поле можно провести любое число силовых линий. С помощью графических линий можно графически изобразить не только направление, но и напряженности электрического поля в данной точке.
   Количество электричества, приходящееся на единицу поверхности заряженного тела, называется поверхностной плотностью электрического заряда. Она зависит от количества электричества на теле, а также от формы поверхности проводника.

53. ПРОВОДНИК И ДИЭЛЕКТРИК В ЭЛЕКТРИЧЕСКОМ ПОЛЕ

   Если незаряженный изолированный проводник внести в электрическое поле, то в результате действия электрических сил поля в проводнике происходит разделение электрических зарядов. Свободные электроны проводника придут в движение в направлении, противоположном направлению электрического поля. В результате на конце проводника, обращенном к заряженному шару, окажется избыток электронов, обусловливающий отрицательный заряд этого конца, а на другом конце проводника окажется недостаток электронов, обусловливающий положительный заряд этой части проводника.
   Разделение зарядов на проводнике под влиянием заряженного тела называется электризацией через влияние, или электростатической индукцией, а заряды на проводнике – индуцированными зарядами. По мере приближения проводника к заряженному шару количество индуцированных зарядов на проводнике увеличивается. Электрическое поле заряженного шара изменяется, как только в нем окажется проводник. Электрические силовые линии шара, расходившиеся ранее равномерно и радикально, теперь изогнутся в сторону проводника. Так как началами и концами электрических силовых линий являются электрические заряды, лежащие на поверхности проводников, то, начинаясь у поверхности с положительными зарядами, силовая линия кончается у поверхности с отрицательными зарядами. Внутри проводника электрическое поле существовать не может. В противном случае между отдельными точками проводника существовала бы разность потенциалов, в проводнике происходило бы движение зарядов (ток проводимости) и до тех пор, пока вследствие перераспределения зарядов потенциалы всех точек проводника не стали бы равными.
   Этим пользуются, кода хотят оградить проводник от влияния внешних электрических полей. Для этого проводник окружают другим проводником, выполненным в виде сплошной металлической поверхности или проволочной сетки с мелкими отверстиями. Индуцированные заряды, образовавшиеся на проводнике в результате влияния на него заряженного поля, можно отделить один от другого, если разломить проводник пополам.
   Диэлектрик отличается от проводника отсутствием свободных электронов. Электроны атомов диэлектрика прочно связаны с ядром атома.
   Диэлектрик, внесенный в электрическое поле, так же как и проводник, электризуется через влияние. Однако между электризацией проводника и диэлектрика имеется существенная разность. Если в проводнике под влиянием сил электрического поля свободные электроны передвигаются по всему объему проводника, то в диэлектрике свободного перемещения электрических зарядов произойти не может. Но в пределах одной молекулы диэлектрика возникает смещение положительного заряда вдоль направления электрического поля и отрицательного заряда в обратном направлении. В результате влияния заряженного тела на поверхности диэлектрика возникнут электрические заряды. Это явление называется поляризациейдиэлектрика. Различают диэлектрики двух классов. 1. Молекула в нейтральном состоянии имеет положительный и отрицательный заряды, настолько близко расположенные один к другому, что действие их взаимно компенсируется. Под влиянием электрического поля положительные и отрицательные заряды в пределах молекулы несколько смещаются один относительно другого, образуя диполь. 2. Молекулы и в отсутствии электрического поля образуют диполи. Такие диэлектрики называют полярными.
   Необходимость правильного выбора величины напряженности электрического поля в диэлектрике привела к созданию теории электрической прочности, имеющей важное значение для современной техники высоких напряжений.

54. ГЛАВНЕЙШИЕ ЭЛЕКТРОИЗОЛЯЦИОННЫЕ МАТЕРИАЛЫ

    Асбест– минерал, имеющий волокнистое строение. Длина волокна – от десяти долей миллиметра до нескольких сантиметров. Из асбеста изготовляют пряжу, ленту, ткани, бумагу, картон и др. Ценным качеством является его высокая нагревостойкость. Нагрев до 300–400° не меняет свойств асбеста. Благодаря низкой теплопроводности асбест применяют в качестве тепловой изоляции при высоких температурах. Асбест обладает гигроскопичностью, которая уменьшается при пропитке его смолами, битумами и т. п. Электроизоляционные свойства асбеста невысоки. Поэтому он не применяется при высоких напряжениях.
    Канифоль– хрупкая смола светло-желтого или коричневого цвета, получаемая путем обработки смолы хвойных деревьев. Канифоль растворяется в нефтяных маслах, жидких углеводородах, растительных маслах, спирте, скипидаре. Температура размягчения канифоли 50–70 °C. Употребляют для приготовления пропиточных и заливочных масс.
    Парафин– воскообразное вещество, полученное из нефти. Хорошо очищенный парафин – кристаллическое вещество белого цвета. Применяется для пропитки дерева, бумаги, волокнистых веществ, для заливки высокочастотных катушек и трансформаторов, для приготовления изолирующих составов.
    Слюда– минерал кристаллического строения. Благодаря своему строению легко расщепляется на отдельные листочки. Обладает высокой электрической прочностью, высокой нагревостойкостью, влагостойкостью, механической прочностью и гибкостью. Применяют два вида слюды: мусковит и флогопит, различающиеся по составу, цвету и свойствам. Лучшей слюдой является мусковит. Из листочков слюды штампуют прямоугольные пластинки для конденсато– ров, шайбы для электрических приборов и т. п.
    Текстолит– пластмасса, представляющая собой многослойную ткань, пропитанную резольной смолой и спрессованную под большим давлением при 150". Положительные качества: малая хрупкость, высокие механические качества, стойкость к истиранию. Отрицательные качества: плохие электрические свойства, малая влагостойкость, более дорогой по цене.
    Фибраизготавливается из пористой бумаги, обработанной раствором хлористого цинка. Хорошо поддается механической обработке. Большим недостатком является ее гигроскопичность. фибра разъедается кислотами и щелочами. Из нее изготовляют мелкие детали, прокладки, каркасы катушек. Тонкая фибра называется летероидом.
    Церезинполучают путем очистки воскообразного минерала – озокерита или петролатума. Имеет повышенную температуру плавления (65–80°) и повышенную стойкость против окисления. Применяют для пропитки бумажных конденсаторов, приготовления изолирующих составов и др.
    Шеллак– природная смола тропических растений, температура его плавления 100–200°. Имеет вид желтоватых или коричневых чешуек, легко растворяется в спирте. Применяется для приготовления заливочных масс, изоляционных и клеящих лаков, пропитки изоляционных лент.
    Шифер– сланец, имеет слоистое строение. Негигроскопичен, легко поддается механической обработке. Идет на изготовление панелей, щитков для рубильников и т. п.
    Эбонит(твердая резина) получается из каучука путем добавки в него 20–50 % серы. Выпускается в виде листов (досок), палок и трубок, хорошо поддается механической обработке. Применяется в технике слабых токов, в эбонитовые трубки протаскиваются провода при проходе сквозь стены и при скрытой проводке.

55. ПОНЯТИЕ ОБ ЭЛЕКТРИЧЕСКОМ ТОКЕ. ЗАКОН ОМА

   Движение электронов по проводнику называется электрическим током.В электротехнике условно принято считать направление тока противоположным направлению движения электронов в проводнике. Иначе говоря, направление тока принято считать совпадающим с направлением движения положительных зарядов. Электроны не проходят в своем движении всю длину проводника. Наоборот, они пробегают очень небольшие расстояния до столкновения с другими электронами, атомами или молекулами. Это расстояние называется длиной свободного пробега электронов.Электрический ток непосредственно наблюдать нельзя. О прохождении тока можно только судить по тем действиям, которые он производит. Признаки, по которым легко судить о наличии тока:
   1) ток, проходя через растворы солей, щелочей, кислот, а также через расплавленные соли, разлагает их на составные части;
   2) проводник, по которому проходит электрический ток, нагревается;
   3) электрическийток, проходя по проводнику, создает вокруг него магнитное поле.
   Простейшая электрическая установка состоит из источника (гальванического элемента, аккумулятора, генератора и т. п.), потребителей или приемников электрической энергии (ламп накаливания, электронагревательных приборов, электродвигателей и т. п.) и соединительных проводов, соединяющих зажимы источника напряжения с зажимами потребителя.
   Ток, не изменяющийся по величине и по направлению, называется постоянным током. Постоянный электрический ток может протекать только по замкнутой электрической цепи. Разрыв цепи в любом месте вызывает прекращение электрического тока. Постоянный ток дают гальванические элементы, аккумуляторы, генераторы постоянного тока, если условия работы электрической цепи не меняются.
   Через поперечное сечение проводника проходит заряд за определенное время. Сила тока, прошедшего через поперечное сечение проводника в течение времени, равна: I = q/t.Отношение величины тока Iк площади поперечного сечения проводника З называется плотностью тока и обозначается ?. ?= I/S; плотность тока измеряется в А/м2.
   При замыкании электрической цепи, на зажимах которой имеется разность потенциалов, возникает электрический ток. Свободные электроны под влиянием электрических сил поля перемещаются вдоль проводника. В своем движении электроны наталкиваются на атомы проводника и отдают им запас своей кинетической энергии. Скорость движения электронов непрерывно изменяется: при столкновении электронов с атомами, молекулами и другими электронами она уменьшается, потом под действием электрического поля увеличивается и снова уменьшается при новом столкновении. В результате этого в проводнике устанавливается равномерное движение потока электронов со скоростью нескольких долей сантиметра в секунду. Следовательно, электроны, проходя по проводнику, всегда встречают с его стороны сопротивление своему движению. При прохождении электрического тока через проводник последний нагревается.
   Электрическим сопротивлением Rпроводника называется свойство тела или среды превращать электрическую энергию в тепловую при прохождении по нему электрического тока. R = ?· l/S, где ?-удельное сопротивление проводника, l– длина проводника.
   Ток на участке цепи прямо пропорционален напряжению на этом участке и обратно пропорционален сопротивлению того же участка. Эта зависимость известна под названием закона Омаи выражается формулой: I = U/R.Ток проходит не только по внешней части цепи, но и по внутренней. ЭДС ( Eисточника идет на покрытие внутренних и внешних потерь напряжения в цепи. Закон Ома для всей цепи: I = E/(R+r),где R– сопротивление внешней части цепи, r– сопротивление внутренней части цепи.

56. СОЕДИНЕНИЕ ПРОВОДНИКОВ МЕЖДУ СОБОЙ. ПЕРВЫЙ ЗАКОН КИРХГОФА

   Отдельные проводники электрической цепи могут быть соединены между собой последовательно, параллельно и смешанно.
    Последовательным соединениемпроводников называется такое соединение, когда конец первого проводника соединен с началом второго, конец второго проводника соединен с началом третьего и т. д. Общее сопротивление цепи, состоящее из нескольких последовательно соединенных проводников, равно сумме сопротивлений отдельных проводников: R = R1 + R2+ R3+. +R||. Ток на отдельных участках последовательной цепи одинаков: I1 = I2= I3=I. Падение напряжения пропорционально сопротивлению данного участка. Общее напряжение цепи равно сумме падений напряжения на отдельных участках цепи: и = и1+ U2+U3.
    Параллельным соединениемпроводников называется такое сопротивление, когда начала всех проводников соединены в одну точку, а концы проводников – в другую точку. Начало цепи присоединяется к одному полюсу источника напряжения, а конец цепи – к другому полюсу.
   При параллельном соединении проводников для прохождения тока имеется несколько путей. Ток, протекая к точке разветвления, растекается далее по трем сопротивлениям и равен сумме токов, уходящих от этой точки: I= I1+ I2+ I3.
   Если токи, приходящие к точке разветвления, считать положительными, а уходящие – отрицательными, то для точки разветвления можно написать: ?Iк = 0 (kпринимает значения от 1 до n), т. е. алгебраическая сумма токов для любой узловой точки цепи всегда равно нулю. Это соотношение, связывающее токи в любой точке разветвления цепи, называется первым законом Кирхгофа. Обычно при расчете электрических цепей направления токов в ветвях, присоединенных к какой-либо точке разветвления, неизвестны. Поэтому для возможности самой записи уравнения первого закона Кирхгофа нужно перед началом расчета цепи произвольно выбрать так называемые положительные направления токов во всех ее ветвях и обозначить их стрелками на схеме.
   Пользуясь законом Ома, можно вывести формулу для подсчета общего сопротивления при параллельном соединении потребителей.
   Общий ток, приходящий к точке, равен: I = U/R.Токи в каждой из ветвей имеют значения: I1 = U1 /R1; I2= U2 /R2; I3= U3 /R3.
   По первому закону Кирхгофа I = I1+I2+I3 или U /R= U /R1+U /R2+U /R3.
   Вынося U в правой части равенства за скобки, получим: U/R = U(1/R1 + 1 /R2+ 1/R3).
   Сокращая обе части равенства на U,получим формулу подсчета общей проводимости: 1 /R=1/R1+1/r2+ 1/R3.
   Таким образом, при параллельном соединении увеличивается не сопротивление, а проводимость.
   При подсчете общего сопротивления разветвления оно получается всегда меньше, чем самое меньшее сопротивление, входящее в разветвление.
   Если сопротивления, включенные параллельно, равны между собой, то общее сопротивление Rрав-но сопротивлению одной ветви R1, деленному на число ветвей п: R=R1/п.
   Смешанным соединением проводников называется такое соединение, где имеются и последовательное, и параллельное соединения отдельных проводников.

57. ВТОРОЙ ЗАКОН КИРХГОФА. МЕТОД НАЛОЖЕНИЯ

   При расчете электрических цепей часто приходится встречаться с цепями, которые образуют замкнутыеконтуры.В состав таких контуров, помимо сопротивлений, могут входить еще электродвижущие силы. Рассмотрим участок сложной электрической цепи. Задана полярность всех ЭДС.
 
   Произвольно выбираем положительные направления токов. Обходим контур от точки А в произвольном направлении, например, по часовой стрелке. Рассмотрим участок АБ. На этом участке происходит падение потенциала (ток идет от точки с высшим потенциалом к точке с низшим потенциалом).
   На участке АБ: ?А + E1 – I1R1=?Б.
   На участке БВ: ?Б – E2 – I2R2 = ?В.
   На участке ВГ: ?В = I3R3 + E3 = ?Г.
   На участке ГА: ?Г – I4R4 =?А.
   Складывая почленно четыре приведенных уравнения, получим:
   ?А + E1– I1R1 + ?Б – E2 – I2R2 + ?В – I3R3 + E3 + ?Г– I4R4 – ?Б + ?В + ?Г + ?А или E1 – I1R1 – E2 – I2R2 – I3R3 + E3 – I4R4 = 0.
   Перенеся произведение I-R вправую часть, получим: Ё1 – Ё2 + Ё3 = I1R1 + I2R2 + I3R3 +I4R4.
   Это выражение представляет собой второй закон Кирхгофа.Формула показывает, что во всяком замкнутом контуре алгебраическая сумма электродвижущих сил равна алгебраической сумме падений напряжений.
   Метод наложения применяется для расчета электрических цепей, имеющих несколько ЭДС. Сущность метода наложения состоит в том, что ток в какой-либо части цепи можно считать состоящим из ряда частичных токов, вызванных каждой отдельной ЭДС, причем остальные ЭДС принимаются равными нулю.
   В задачах встречаются цепи, имеющие всего две узловые точки. Между узловыми точками может быть включено произвольнее количество ветвей. Расчет таких цепей значительно упрощается Ё, если пользоваться методом узлового напряжения.
    и = (Ё1д1 + Ё2д2+Ё3д3) /(д1 + д2+ д3+ д4).
   В числителе формулы узлового напряжения представлена алгебраическая сумма произведений ЭДС ветвей. В знаменателе формулы дана сумма прово-димостей всех ветвей. Если ЭДС какой-либо ветви имеет направление, обратное тому, которое указано на схеме, то она входит в формулу для узлового напряжения со знаком минус.
   Метод контурных токов применяется для расчета сложных электрических цепей, имеющих больше двух узловых токов. Сущность метода заключается в предположении, что в каждом контуре проходит свой ток. Тогда на общих участках, расположенных на границе двух соседних контуров, будет протекать ток, равный алгебраической сумме токов этих контуров.
 
    58. ЭЛЕКТРОЛИЗ. ПЕРВЫЙ И ВТОРОЙ ЗАКОНЫ ФАРАДЕЯ
   Ток, проходя по жидким проводникам, разлагает их на составные части. Поэтому жидкие проводники называют электролитами.Разложение электролитов под действием электрического тока называется электролизом.Электролиз проводят в гальванических ваннах. Гальваническая ваннапредставляет собой сосуд, куда налита жидкость – электролит, подвергающаяся разложению током.
   В сосуд с электролитом опускают две пластины (например, угольные), которые будут являться электродами. Присоединим отрицательный полюс источника постоянного тока к одному электроду (катоду), а положительный полюс – к другому электроду (аноду) и замкнем цепь. Явление электролиза будет сопровождаться выделением вещества на электродах. При электролизе водород и металлы всегда выделяются на катоде. Отсюда следует, что происхождение тока по жидким проводникам связано с движением атомов вещества.
   Нейтральная молекула вещества, попадая в растворитель, распадается (диссоциируется) на части – ионы, несущие на себе равные и противоположные электрические заряды. Это объясняется тем, что сила взаимодействия между зарядами, помещенными в среду с электрической проницаемостью е, уменьшается в е раз. Поэтому силы, связывающие молекулу вещества, находящуюся в растворителе с большой электрической проницаемостью, ослабевают и достаточно тепловых соударов молекул, чтобы они начали делиться на ионы,т. е. диссоциировать.
   Наряду с диссоциацией молекул в растворе происходит обратный процесс – воссоединение ионов в нейтральные молекулы (молизация).
   Кислоты диссоциируют на положительно заряженные ионы водорода и отрицательно заряженные ионы кислотного остатка. Щелочи диссоциируют на ионы металла и ионы водного остатка. Соли диссоциируют на ионы металла и ионы кислотного остатка.
   Если приложить к электродам постоянное напряжение, то между электродами образуется электрическое поле. Положительно заряженные ионы будут двигаться по направлению к катоду, отрицательно заряженные ионы – к аноду. Достигая электродов, ионы нейтрализуются.
   Явление электролиза с количественной и качественной стороны исследовано фарадеем. Им установлено, что количество вещества, выделяющегося при электролизе на электродах, пропорционально току и времени его прохождения, или, иначе говоря – количеству вещества, протекшего через электролит. Это первый закон фарадея.
   Один и тот же ток, проходя одинаковое время через различные электролиты, выделяет на электродах различное количество вещества. Количества вещества в миллиграммах, выделяемое на электроде током в 1А в течение 1с, называется электрохимическим эквивалентом и обозначается б. Первый закон Фарадея выражается формулой: m=a/t.
   Химическим эквивалентом (m) вещества называется отношение атомного веса (А) к валентности (n): m = А/n.Второй закон Фарадея показывает, от каких свойств вещества зависит величина его электрохимического эквивалента.
   Электролиз нашел широкое применение в технике. 1. Покрытие металлов слоем другого металла при помощи электролиза (гальваностегия). 2. Получение копий с предметов при помощи электролиза (гальванопластика). 3. Рафинирование (очистка) металлов.

59. АККУМУЛЯТОРЫ

   Для питания цепей управления, приборов защиты, сигнализации, автоматики, аварийного освещения, приводов и держащих катушек быстродействующих выключателей, вспомогательных механизмов на электрических станциях и подстанциях должен находиться такой источник электрической энергии, работа которого не зависела бы от состояния основных агрегатов электростанции или подстанции. Этот источник энергии обязан обеспечить бесперебойную и четкую работу указанных цепей как при нормальной работе установки, так и при аварии. Таким источником энергии на электростанциях и подстанциях является аккумуляторная батарея.Своевременно заряженная батарея, обладающая большой емкостью, может питать токоприемники в течение всего времени аварии.
   Аккумуляторы применяются также для освещения автомобилей, железнодорожных вагонов, движения электрокар и подводных лодок, для питания радиоустановок и различных приборов, в лабораториях и для других целей.
   Аккумулятор является вторичным источником электрического напряжения, так как он в отличие от гальванических элементов может отдавать энергию лишь после предварительного заряда. Заряд аккумулятора состоит в том, что его подключают к источнику постоянного напряжения. В результате процесса электролиза химическое состояние пластин аккумулятора меняется и между ними устанавливается определенная разность потенциалов.
   Аккумуляторная батарея комплектуется из некоторого количества свинцово-кислотных или щелочных аккумуляторов.
   Свинцово-кислотный аккумулятор состоит из нескольких положительных и отрицательных пластин, опущенных в сосуд с электролитом. Электролитом служит раствор серной кислоты в дистиллированной воде. Пластины аккумулятора бывают поверхностные и массовые. Поверхностные пластины изготовляются из чистого свинца. Для увеличения площади поверхности пластин их делают ребристыми.
   Массовые пластины представляют собой свинцовую решетку, в ячейки которой вмазывают окислы свинца. Для предупреждения выпадания массы из ячеек пластинку с обеих сторон покрывают свинцовыми листами с отверстиями. Обычно положительную пластину аккумулятора изготовляют поверхностной, а отрицательную – массовой. Отдельные положительные пластины, так же как и отрицательные пластины, спаиваются в два изолированных один от другого блока. Для того чтобы положительные пластины могли работать с двух сторон, их берут на одну больше, чем отрицательных.
   Щелочные аккумуляторы бывают двух типов: кад-миево-никелевые и железоникелевые.
   Пластины щелочных аккумуляторов представляют собой стальные никелированные рамки с ячейками, в которые помещают пакетики из тонкой никелированной перфорированной стали. В пакетики запрессовывается активная масса.
   Сосудом щелочных аккумуляторов служит стальная сваренная коробка, в крышке которой имеются три отверстия: два для вывода зажимов и одно для заливки электролита и выхода газов. Преимущества: не употребляется дефицитный свинец; обладают большой выносливостью и механической прочностью; при длительном воздействии несут малые потери на саморазряд и не портятся; выделяют меньшее количество вредных газов и испарений; имеют меньший вес. Недостатки: меньшая ЭДС; более низкий КПД; более высокая стоимость.