Страница:
Использование свободного электролита ограничивает возможности применения автономных и в основном используется в стационарных ХИТ. Поэтому многочисленные исследования направлены на создание так называемых сухих элементов, или элементов с загущенным электролитом, свободных от таких элементов, как ртуть и кадмий, которые представляют серьезную опасность для здоровья людей и окружающей среды.
Такая тенденция является следствием преимуществ щелочных ХИТ в сравнении с классическими солевыми элементами:
существенное повышение разрядных плотностей тока за счет применения пастированного анода;
повышение емкости ХИТ за счет возможности увеличения закладки активных масс;
создание воздушно-цинковых композиций (элементы типа 6F22) за счет большей активности существующих катодных материалов в реакции электровосстановления дикислорода в щелочном электролите [11].
Батарейки компании Duracell (США)
Фирма Duracell -- признанный лидер в мире по производству щелочных гальванических источников одноразового действия. История фирмы насчитывает более 40 лет.
Сама фирма расположена в Соединенных Штатах Америки. В Европе ее заводы находятся в Бельгии. По мнению потребителей как у нас, так и за рубежом по популярности, продолжительности использования и соотношению цены и качества батарейки фирмы Duracell занимают ведущее место.
Появление Duracell на рынке Украины привлекло внимание наших потребителей.
Плотности разрядного тока в литиевых источниках не велики (по сравнению с другими ХИТ), порядка 1 мА/см2 (см. стр.14). При гарантированном сроке хранения 10 лет и разряде малым током рационально использовать литиевые элементы Duracell в высокотехнологичных системах.
Запатентованная в США технология EXRA-POWER с применением двуокиси титана (TiO2) и других технологических особенностей способствует повышению мощности и эффективности использования марганцево-цинковых ХИТ фирмы Duracell.
Внутри стального корпуса щелочных элементов "Duracell" расположен цилиндрический графитовый коллектор, в котором находится пастообразный электролит в контакте с игольчатым катодом.
Гарантированный срок хранения элементов 5 лет, и при этом -- емкость элемента, указанная на упаковке, гарантируется в конце срока хранения.
Технические характеристики ХИТ фирмы Duracell приведены в таблице 1.8.
Батарейки концерна Varta (Германия)
Концерн Varta -- один из мировых лидеров по производству ХИТ. 25 заводов концерна расположены в более чем 100 странах мира и выпускают более 1000 наименований аккумуляторов и батареек.
Основные производственные мощности занимает Департамент стационарных промышленных аккумуляторов. Однако порядка 600 наименований гальванических элементов от батареек для часов до герметичных аккумуляторов производятся на заводах концерна Департаментом приборных батарей в США, Италии, Японии, Чехии и т.д., при гарантии неизменного качества вне зависимости от географического расположения завода. В фотографической камере первого человека, ступившего на Луну, были установлены батарейки концерна Varta.
Они достаточно хорошо известны нашим потребителям и пользуются устойчивым спросом.
Технические характеристики ХИТ концерна Varta с указанием отечественных аналогов приведены в таблице 1.9.
ГЛАВА 2
АККУМУЛЯТОРЫ
Аккумуляторы являются химическими источниками электрической энергии многоразового действия. Они состоят из двух электродов (положительного и отрицательного), электролита и корпуса. Накопление энергии в аккумуляторе происходит при протекании химической реакции окисления-восстановления электродов. При разряде аккумулятора происходят обратные процессы. Напряжение аккумулятора -- это разность потенциалов между полюсами аккумулятора при фиксированной нагрузке.
Для получения достаточно больших значений напряжений или заряда отдельные аккумуляторы соединяются между собой последовательно или параллельно в батареи. Существует ряд общепринятых напряжений для аккумуляторных батарей: 2; 4; 6; 12; 24 В.
Количество аккумуляторов, необходимое для укомплектования батареи при последовательном соединении, определяется по формуле:
N = Uп / Uа, где
N -- число аккумуляторных батарей,
Uп -- напряжение питания потребителя,
Uа -- напряжение одного полностью заряженного аккумулятора.
Под отдаваемой емкостью следует понимать максимальное количество электричества в кулонах (ампер часах) ( 1 Ач = 3600 Кл), которое аккумулятор отдает при разряде до выбранного конечного напряжения. В условном обозначении типа аккумулятора приводится номинальная емкость, т.е. емкость при нормальных условиях разряда (при разряде номинальным током и, обычно, при температуре 20oС).
Аккумуляторы следует выбирать по следующим параметрам:
коэффициент отдачи -- это отношение количества электричества в кулонах (Ач)* [3], отданного аккумулятором при полном разряде, к количеству электричества, полученному при заряде;
коэффициент полезного действия аккумулятора -- это отношение количества электричества, Кл (Ач)*, которое он отдает потребителю, разряжаясь до установленного предела для продолжения нормальной работы последнего, к количеству, полученному им при заряде, Кл (Ач)*.
Значение коэффициента полезного действия всегда меньше значения коэффициента отдачи.
При параллельном соединении аккумуляторов, т.е. при соединении между собой положительных и отрицательных полюсов всех элементов соответственно, можно составить батарею большой емкости с напряжением, равным номинальному напряжению одного аккумулятора и емкостью, равной сумме емкостей составляющих ее аккумуляторов.
Для облегчения выбора соответствующего потребителю энергии аккумулятора сравним некоторые характеристики.
Из табл. 2.1 [4] видно, что весовая удельная энергия серебряно-цинковых аккумуляторов в значительно большей степени зависит от температуры. Примерно так же зависит от температуры объемная удельная энергия аккумуляторов.
Очень важной характеристикой аккумуляторов является ориентировочная относительная стоимость 1 Втч энергии, полученной от различных типов аккумуляторов одинаковой емкости.
Как видно из табл. 2.2 дороже всего обходится энергия, получаемая от серебряно-цинковых и кадмиевых аккумуляторов, и дешевле от свинцово-кислотных, принятых в данном случае за единицу.
Характеристики наиболее распространенных типов аккумуляторов приведены в табл. 2.3 [1].
При выборе аккумуляторной батареи необходимо спрогнозировать режим работы, характер изменения нагрузки, диапазон изменения силы тока и напряжения, температуру окружающей среды и др.
Параметры наиболее распространенных типов аккумуляторов приведены в табл. 2.4.
Ограничимся рассмотрением следующих аккумуляторов:
кислотных аккумуляторов, выполненных по традиционной технологии;
стационарных свинцовых и приводных (автомобильных и тракторных);
герметичных необслуживаемых аккумуляторов, герметичных никель-кадмиевых и кислотных "dryfit" А400 и А500 (желеобразный электролит).
Они удовлетворяют любые требования по емкости батарей от 0,3 до 200 Ач.
2.1. КИСЛОТНЫЕ АККУМУЛЯТОРЫ
Аккумулятор состоит из положительного и отрицательного электродов, раствора серной кислоты (27...39%-ный раствор) и сепаратора, разделяющего положительные и отрицательные пластины.
Батареи состоят из последовательно соединенных между собой секций (аккумуляторов). Номинальное напряжение каждого аккумулятора составляет 2 В. Обычно батареи состоят из трех (общее напряжение батареи 6 В) и шести аккумуляторов (общее напряжение батареи 12 В). Количество батарей в аккумуляторе обозначается N.
Применяются два типа электродов: поверхностные и пастированные. Поверхностный электрод состоит из свинцовой пластины, на поверхности которой электрохимическим способом формируется слой активной массы. Пастированные электроды подразделяются на решетчатые (намазные), коробчатые и панцирные.
В решетчатых (намазных) электродах активная масса удерживается в решетке из свинцово-сурьмяного сплава толщиной 1...4 мм. В коробчатых пластинах решетки с активной массой закрываются с двух сторон перфорированными свинцовыми листами.
Панцирные пластины состоят из свинцово-сурьмяных штырей, которые помещаются внутри пластмассовых перфорированных трубок, заполненных активированной массой. Для отрицательных электродов используются намазные и коробчатые пластины, для положительных -- поверхностные, намазные и панцирные. В качестве сепараторов применяют микропористые пластины из вулканизированного каучука (мипор), поливинилхлорида (мипласт) и стекловолокна.
Свинцовые аккумуляторы обычно соединяют в батарею, которую помещают в моноблок из эбонита, термопласта, полипропилена, полистирола, полиэтилена, асфальтопековой композиции, керамики или стекла.
Одной из важнейших характеристик аккумулятора является срок службы или ресурс-наработка (число циклов). Ухудшение параметров аккумулятора и выход из строя обусловлены в первую очередь коррозией решетки и оползанием активной массы положительного электрода. Срок службы аккумулятора определяется в первую очередь типом положительных пластин и условиями эксплуатации.
Аккумуляторы и батареи имеют условное буквенно-цифровое обозначение. Первая цифра (для отечественных аккумуляторов) указывает число последовательно соединенных аккумуляторов. Так как номинальное напряжение свинцового аккумулятора равно двум вольтам, то номинальное напряжение аккумуляторной батареи равно числу последовательно соединенных элементов, умноженному на два.
Для некоторых аккумуляторов указываются климатическое исполнение и размещение. Например, стартерная батарея из шести аккумуляторов емкостью 55 Ач в моноблоке из эбонита и с сепаратором из стекловолокна имеет условное обозначение: батарея 6СТ-55ЭС, ГОСТ 959.0-79.
Свинцовые аккумуляторы имеют высокие разрядные напряжения (рис. 2.1) и удельную мощность (до 100...150 Вт/кг) и относительно недороги. К основным их недостаткам следует отнести низкую удельную энергию и относительно малый ресурс.
Буква после первой цифры обозначает тип или назначение аккумулятора или батареи:
С стационарные
СТ стартерные
А авиационные
В вагонные
Совершенствование свинцовых аккумуляторов идет по пути изыскания новых сплавов для решеток (например свинцово-кальциевых), облегченных и прочных материалов корпусов (например, на основе сополимера пропилена и этилена), улучшения качества сепараторов.
Ниже рассматриваются герметичные свинцовые аккумуляторы, которые не требуют доливки воды при эксплуатации, не имеют газовыделения и кислотного тумана. В последние годы возникли новые сферы применения батарей. Речь идет о резервных источниках питания ЭВМ и систем, накапливающих энергию для возможных пиковых нагрузок.
2.1.1. СТАЦИОНАРНЫЕ СВИНЦОВЫЕ АККУМУЛЯТОРЫ
Предназначены для эксплуатации на постоянном месте или в условиях, исключающих перемещение аккумуляторов или машин, в которых они установлены. В большинстве выпускаемых аккумуляторов (типов С, СЗ, СК и СКЭ) положительными электродами служат поверхностные пластины, отрицательными -коробчатые пластины. Корпуса стационарных аккумуляторов изготавливают из стекла, эбонита и дерева (выложенного изнутри свинцом).
Параметры стационарных свинцовых аккумуляторов приведены в табл. 2.5.
Максимальный ток заряда аккумуляторов с N = 1 равен 9 А. Емкости и токи заряда и разряда для батарей аккумуляторов с соответствующим N можно найти, перемножив соответствующие значения, приведенные в табл. 2.5, на N аккумулятора. Саморазряд аккумуляторов не более 23% при хранении в течение 29 суток. Удельная энергия стационарных аккумуляторов составляет 10...12 Втч/кг. Гарантийный срок хранения 1 год. Гарантийный срок службы 4 года, наработка 200...1000 циклов.
Стационарные аккумуляторы с поверхностными пластинами содержат относительно большую долю свинца по отношению к активной массе. Большинство из них не имеет крышек, поэтому требуют частой заливки воды и хорошо вентилируемого помещения.
Указанные недостатки устранены в стационарных аккумуляторах с намазными пластинами типа СН. Эти аккумуляторы собираются на заводах и имеют крышки.
Буквенные обозначения аккумулятора:
С стационарный
длительный разряд
К короткий разряд
З закрытое исполнение
Э эбонит (материал корпуса)
На базе аккумуляторов СН созданы аккумуляторы СНУ емкостью от 80 до 2240 Ач, обладающие повышенной механической прочностью. К стационарным также относятся автоблокировочные свинцовые аккумуляторы АБН-72-УХЛ2 и АБН-80-УХЛ2 (ГОСТ 21728-76).
Аккумуляторы АБН применяются на железных дорогах для питания устройств автоблокировки, сигнализации, телемеханики и связи в стационарных условиях. Буква Н означает намазные пластины. Номинальная емкость указана для режима 25-часового разряда. Емкость при 12-часовом разряде составляет 85%, при 5-часовом разряде -- 70% номинальной. Обозначение УХЛ-2 указывает на климатическое исполнение и категорию размещения [5].
2.1.2. АВТОМОБИЛЬНЫЕ АККУМУЛЯТОРЫ
Автомобильные аккумуляторы предназначены для обеспечения работы системы зажигания в стартерном режиме и при запуске двигателя внутреннего сгорания, а также служат источником питания аппаратуры, установленной на транспортном средстве. Основные параметры отечественных автомобильных и тракторных стартерных батарей приведены в табл. 2.6.
На рис. 2.2 показаны схемы расположения выводов и перемычек, типы выводов и присоединительные размеры.
В табл. 2.7 приведены параметры зарубежных аккумуляторов фирмы "Fiamm".
Гарантийный срок хранения не залитых раствором электролита батарей установлен 3 года, срок службы 2 года, наработка 2500...3000 часов. Батареи предназначены для работы при температуре от -35o до +60oС. Удельная энергия стартерных аккумуляторов составляет 30...40 Втч/кг.
Эксплуатация аккумуляторных батарей и уход за ними
При эксплуатации на автомашине аккумуляторные батареи разряжаются и автоматически дозаряжаются. Контроль заряда осуществляется регулятором напряжения и реле обратного тока. При исправном и хорошо отрегулированном регуляторе аккумуляторы ограждены от недозарядов и перезарядов, сокращающих их долговечность. Однако при этом требуется периодический контроль работы регулятора и перевод его на режим, соответствующий температурным и климатическим условиям.
При повреждении мастики, герметизирующей корпус аккумулятора, батарею следует разрядить и вылить электролит, для предотвращения взрыва гремучей смеси. Затем продуть сжатым воздухом, протереть и только после этого приступить к оплавлению мастики.
Следует проводить не реже одного раза в две недели:
очищать батарею от пыли и грязи, протирать чистой ветошью, смоченной в 10%-ном растворе нашатырного спирта, углекислого натрия или кальцинированной соды, места, облитые электролитом.
проверять крепление батареи в гнезде, плотность контактов на выводах, отсутствие натяжения проводов;
очищенные наконечники проводов и выводов батарей смазать техническим вазелином;
прочищать вентиляционные отверстия в пробках и крышках;
проверять уровень электролита и доливать дистиллированной водой до нормы. Доливка электролитом не допустима за исключением случаев выплескивания его из батареи. Плотность доливаемого при этом электролита должна соответствовать плотности электролита в аккумуляторе.
Контроль работы регулятора
Проводится при техническом обслуживании автомашин. При этом следует придерживаться рекомендаций, приведенных в табл. 2.8. и инструкции по эксплуатации.
Проверка и регулировка регулятора должна производиться в случаях, если регулируемое напряжение имеет значение более 15,5 В или не соответствует указанному в инструкции по эксплуатации машины.
При регулировке следует применять вольтметр класса не хуже 1,5. При регулировке реле обратного тока следует руководствоваться указаниями инструкции по эксплуатации автомашины и данными табл. 2.9.
Батарею, разряженную более чем на 25% зимой и более чем на 50% летом следует снять с автомашины и поставить на заряд.
Электролит
В качестве электролита для автомобильных аккумуляторных батарей применяют раствор серной кислоты в дистиллированной воде. При отсутствии стандартной допускается применение дождевой воды и талого снега собранных не с железных крыш и не содержавшихся в железных сосудах.
Для различных климатических и температурных условий, в которых батарее предстоит находиться в эксплуатации, применяется электролит различной плотности. Рекомендуемая плотность электролита для различных климатических районов приведена в табл. 2.10.
Для приготовления электролита применяется чистая кислотостойкая пластмассовая, керамическая, фаянсовая посуда, в которую сначала наливается вода, а затем постепенно кислота при непрерывном перемешивании кислотостойкой палочкой. Обратный порядок заливки не допускается.
Ориентировочное количество электролита, необходимое для заливки аккумуляторных батарей, приведено в таблицах вместе с их техническими характеристиками. Для получения электролита нужной плотности рекомендуется пользоваться табл. 2.11.
Плотность электролита в основном зависит от концентрации раствора серной кислоты: чем больше концентрация раствора, тем больше плотность электролита. Однако она также зависит и от температуры раствора: чем выше температура, тем ниже плотность.
Температурные поправки к показанию ареометра для приведения плотности электролита к температуре 15o, 20o и 30oC приведены в табл. 2.12. Знак "+" или "--" означает прибавить или вычесть поправку от показаний ареометра.
Для определения степени разряженности в любой момент принимается нормативная плотность электролита 1,29 г/см3, т.е. плотность, приобретенная после полного первого заряда.
Для уравнивания плотности электролита, т.е. доведения ее до плотности, равной плотности в начале эксплуатации, следует измерить фактическую плотность и температуру. Затем сравнивают приведенную (к плотности при 20oС) плотность и рекомендуемую (табл. 2.11). Если приведенная плотность окажется ниже нормы, то доливают кислоту или электролит повышенной плотности, если же выше -- доливают дистиллированную воду. Для того, чтобы при этом не превысить уровень, из аккумулятора необходимо предварительно отобрать часть электролита.
Уравнивание можно проводить только в полностью заряженном аккумуляторе, когда электролит имеет плотность, не искаженную недозаряженностью последнего, и когда еще продолжается кипение, которое содействует быстрому перемешиванию. В противном случае следует продолжать заряд после доливки в течение 30 минут для достижения лучшего перемешивания и затем через 30 минут измерить плотность и температуру, чтобы снова определить приведенную плотность. Доводка плотности до нормы обычно не получается с первого раза, тогда ее следует повторить. Промежутки между приемами доводки должны быть не менее 30...40 минут.
Ввод в действие сухозаряженных (новых) аккумуляторных батарей
Ввод в действие аккумулятора следует начинать с заливки аккумуляторов, которую рекомендуется производить следующим образом.
Электролит, приготовленный согласно требованиям, можно заливать в аккумуляторы при условии, если его температура не выше 25oС в холодной и умеренной климатических зонах и не выше 30oС в жаркой и влажной зонах. Не рекомендуется заливать аккумуляторы электролитом температурой ниже 15oС.
Заливку аккумуляторов рекомендуется производить следующим образом.
Если вентиляционные отверстия расположены в пробках, то их необходимо вывернуть и снять с них герметизирующую пленку или срезать выступ и проверить, вскрылись ли вентиляционные отверстия.
Если пробки без герметизирующей пленки или выступа, следует вынуть расположенные под ними герметизирующие диски и выбросить их.
Заливку следует производить небольшой струей до тех пор, пока зеркало электролита не коснется нижнего конца тубуса горловины или на 10...15 мм выше предохранительного щитка. Уровень электролита над предохранительным щитком можно измерить стеклянной трубочкой.
Если в крышке батареи имеются вентиляционные штуцера для автоматической регулировки уровня электролита, необходимо освободить отверстия в штуцерах от герметизирующих деталей (стержни, колпачки и др.). Последние следует выбросить. Затем необходимо отвернуть пробки и надеть их на штуцера. Заливку следует производить небольшой струей до верхнего среза горловины.
В случае проливания электролита необходимо собрать его ветошью и протереть облитые места (нейтрализовать) 10% рaствором нашатырного спирта.
После заливки пробки со штуцеров надо снять, и уровень автоматически снизится до нормы. Необходимое количество электролита для заливки батарей указано в таблицах их технических характеристик.
Как правило, не ранее, чем через 20 минут и не позже, чем через два часа после заливки, нужно измерить плотность электролита. Если плотность электролита в аккумуляторе ниже плотности заливавшегося более чем на 0,03 г/см3, такую батарею перед установкой на автомашину следует зарядить.
Если батарея хранилась не более одного года и процесс подготовки ее к вводу в эксплуатацию происходил при температуре не ниже 15oС, допускается установка ее на автомашину без проверки плотности электролита после 20 мин пропитки. Батарею, введенную в эксплуатацию, следует откорректировать спустя несколько дней.
2.1.3. УСТРОЙСТВА ДЛЯ ЗАРЯДА АККУМУЛЯТОРОВ
Заряд аккумулятора происходит, если к нему приложен потенциал, превышающий его напряжение. Ток заряда аккумулятора пропорционален разности приложенного напряжения и напряжения холостого хода.
Скорость заряда аккумулятора может быть определена в терминах емкости. Если емкость аккумулятора С заряжается за время t, то скорость заряда определяется отношением С/t. Аккумулятор емкостью 100 Ач при разряде со скоростью С/5 полностью разрядится за 5 часов, при этом ток разряда составит 100/5, или 20 А. Если аккумулятор заряжается со скоростью C/10, то ток его заряда будет равен 100/10, или 10 А. Скорость заряда можно оценить в длительностях цикла. Так, если аккумулятор заряжается за 5 часов, то говорят, что он имеет цикл 5 часов.
В зависимости от области применения аккумуляторы можно заряжать различными способами. При быстром заряде требуется от 4 до 6 часов, в то время как продолжительность разряда в штатном режиме варьируется от 10 до 15 часов. При циклическом заряде требуется постоянное напряжение или постоянный ток заряда. Иногда используется плавающий заряд (плавающий заряд -метод поддержания подзаряжаемой батареи при полном заряде путем подачи выбранного постоянного напряжения для компенсации в ней различных потерь), во время которого нагрузка и аккумулятор включаются параллельно, или компенсационный подзаряд (компенсационный подзаряд -- метод, при котором для приведения батареи в полностью заряженное состояние и поддержания ее в этом состоянии используется постоянный ток заряда), когда мощность постоянного тока подается в нагрузку, в то время как цепь заряда аккумулятора с нагрузкой не соединена.
На практике чаще всего используется быстрый заряд аккумулятора (до 90% емкости) с последующим автоматическим переключением на меньшую скорость заряда (до полной емкости).
Для маломощных аккумуляторов и заряда при постоянном напряжении можно использовать устройство [1], показанное на рис. 2.3. Для поддержания постоянного выходного напряжения, значение которого устанавливается резистором R2, применяется трехвыводной интегральный стабилизатор напряжения, например КР142ЕН5А.
Для расчета схемы следует пользоваться выражением:
U0 = Uоп (1 + R1/R2) + IустR2, где
U0 -- напряжение равное разности максимального напряжения на заряженном аккумуляторе и выходного напряжения используемого интегрального стабилизатора напряжения;
Uоп -- выходное напряжение используемого интегрального стабилизатора напряжения;
Iуст -- ток внутреннего стабилизатора используемой интегральной микросхемы [6].
Возможно использование в качестве резистора R2 переменного резистора, но с обязательным шунтированием постоянным резистором (для блокирования дребезга движка резистора) т.о., чтобы их суммарное сопротивление равнялось расчетному. С его помощью поддерживается необходимое выходное напряжение и одновременно осуществляется защита схемы от тока короткого замыкания.
Зарядное устройство с источником тока и автоматическим ограничением напряжения показано на рис. 2.4 [6]. Это устройство поддерживает постоянный ток заряда и отключает аккумулятор от зарядного устройства по достижении установленного напряжения заряда. Здесь источник тока выполнен на транзисторе VT2 и светодиоде VD1, который выполняет функцию индикатора (напряжение эмиттер-база транзистора VT2, задающее ток источника тока, определяется падением напряжения на светодиоде). Транзистор VT1 ограничивает напряжение на нагрузке, закрывая протекание тока через светодиод VD1 по достижении напряжения заряда аккумулятора, которое устанавливается подбором резистора R1. При номиналах, указанных на схеме, напряжение заряда аккумулятора 12 В при максимальном токе порядка 100 мА. Светодиод показывает степень заряда аккумулятора. При полностью заряженном аккумуляторе он гаснет.
Такая тенденция является следствием преимуществ щелочных ХИТ в сравнении с классическими солевыми элементами:
существенное повышение разрядных плотностей тока за счет применения пастированного анода;
повышение емкости ХИТ за счет возможности увеличения закладки активных масс;
создание воздушно-цинковых композиций (элементы типа 6F22) за счет большей активности существующих катодных материалов в реакции электровосстановления дикислорода в щелочном электролите [11].
Батарейки компании Duracell (США)
Фирма Duracell -- признанный лидер в мире по производству щелочных гальванических источников одноразового действия. История фирмы насчитывает более 40 лет.
Сама фирма расположена в Соединенных Штатах Америки. В Европе ее заводы находятся в Бельгии. По мнению потребителей как у нас, так и за рубежом по популярности, продолжительности использования и соотношению цены и качества батарейки фирмы Duracell занимают ведущее место.
Появление Duracell на рынке Украины привлекло внимание наших потребителей.
Плотности разрядного тока в литиевых источниках не велики (по сравнению с другими ХИТ), порядка 1 мА/см2 (см. стр.14). При гарантированном сроке хранения 10 лет и разряде малым током рационально использовать литиевые элементы Duracell в высокотехнологичных системах.
Запатентованная в США технология EXRA-POWER с применением двуокиси титана (TiO2) и других технологических особенностей способствует повышению мощности и эффективности использования марганцево-цинковых ХИТ фирмы Duracell.
Внутри стального корпуса щелочных элементов "Duracell" расположен цилиндрический графитовый коллектор, в котором находится пастообразный электролит в контакте с игольчатым катодом.
Гарантированный срок хранения элементов 5 лет, и при этом -- емкость элемента, указанная на упаковке, гарантируется в конце срока хранения.
Технические характеристики ХИТ фирмы Duracell приведены в таблице 1.8.
Батарейки концерна Varta (Германия)
Концерн Varta -- один из мировых лидеров по производству ХИТ. 25 заводов концерна расположены в более чем 100 странах мира и выпускают более 1000 наименований аккумуляторов и батареек.
Основные производственные мощности занимает Департамент стационарных промышленных аккумуляторов. Однако порядка 600 наименований гальванических элементов от батареек для часов до герметичных аккумуляторов производятся на заводах концерна Департаментом приборных батарей в США, Италии, Японии, Чехии и т.д., при гарантии неизменного качества вне зависимости от географического расположения завода. В фотографической камере первого человека, ступившего на Луну, были установлены батарейки концерна Varta.
Они достаточно хорошо известны нашим потребителям и пользуются устойчивым спросом.
Технические характеристики ХИТ концерна Varta с указанием отечественных аналогов приведены в таблице 1.9.
ГЛАВА 2
АККУМУЛЯТОРЫ
Аккумуляторы являются химическими источниками электрической энергии многоразового действия. Они состоят из двух электродов (положительного и отрицательного), электролита и корпуса. Накопление энергии в аккумуляторе происходит при протекании химической реакции окисления-восстановления электродов. При разряде аккумулятора происходят обратные процессы. Напряжение аккумулятора -- это разность потенциалов между полюсами аккумулятора при фиксированной нагрузке.
Для получения достаточно больших значений напряжений или заряда отдельные аккумуляторы соединяются между собой последовательно или параллельно в батареи. Существует ряд общепринятых напряжений для аккумуляторных батарей: 2; 4; 6; 12; 24 В.
Количество аккумуляторов, необходимое для укомплектования батареи при последовательном соединении, определяется по формуле:
N = Uп / Uа, где
N -- число аккумуляторных батарей,
Uп -- напряжение питания потребителя,
Uа -- напряжение одного полностью заряженного аккумулятора.
Под отдаваемой емкостью следует понимать максимальное количество электричества в кулонах (ампер часах) ( 1 Ач = 3600 Кл), которое аккумулятор отдает при разряде до выбранного конечного напряжения. В условном обозначении типа аккумулятора приводится номинальная емкость, т.е. емкость при нормальных условиях разряда (при разряде номинальным током и, обычно, при температуре 20oС).
Аккумуляторы следует выбирать по следующим параметрам:
коэффициент отдачи -- это отношение количества электричества в кулонах (Ач)* [3], отданного аккумулятором при полном разряде, к количеству электричества, полученному при заряде;
коэффициент полезного действия аккумулятора -- это отношение количества электричества, Кл (Ач)*, которое он отдает потребителю, разряжаясь до установленного предела для продолжения нормальной работы последнего, к количеству, полученному им при заряде, Кл (Ач)*.
Значение коэффициента полезного действия всегда меньше значения коэффициента отдачи.
При параллельном соединении аккумуляторов, т.е. при соединении между собой положительных и отрицательных полюсов всех элементов соответственно, можно составить батарею большой емкости с напряжением, равным номинальному напряжению одного аккумулятора и емкостью, равной сумме емкостей составляющих ее аккумуляторов.
Для облегчения выбора соответствующего потребителю энергии аккумулятора сравним некоторые характеристики.
Из табл. 2.1 [4] видно, что весовая удельная энергия серебряно-цинковых аккумуляторов в значительно большей степени зависит от температуры. Примерно так же зависит от температуры объемная удельная энергия аккумуляторов.
Очень важной характеристикой аккумуляторов является ориентировочная относительная стоимость 1 Втч энергии, полученной от различных типов аккумуляторов одинаковой емкости.
Как видно из табл. 2.2 дороже всего обходится энергия, получаемая от серебряно-цинковых и кадмиевых аккумуляторов, и дешевле от свинцово-кислотных, принятых в данном случае за единицу.
Характеристики наиболее распространенных типов аккумуляторов приведены в табл. 2.3 [1].
При выборе аккумуляторной батареи необходимо спрогнозировать режим работы, характер изменения нагрузки, диапазон изменения силы тока и напряжения, температуру окружающей среды и др.
Параметры наиболее распространенных типов аккумуляторов приведены в табл. 2.4.
Ограничимся рассмотрением следующих аккумуляторов:
кислотных аккумуляторов, выполненных по традиционной технологии;
стационарных свинцовых и приводных (автомобильных и тракторных);
герметичных необслуживаемых аккумуляторов, герметичных никель-кадмиевых и кислотных "dryfit" А400 и А500 (желеобразный электролит).
Они удовлетворяют любые требования по емкости батарей от 0,3 до 200 Ач.
2.1. КИСЛОТНЫЕ АККУМУЛЯТОРЫ
Аккумулятор состоит из положительного и отрицательного электродов, раствора серной кислоты (27...39%-ный раствор) и сепаратора, разделяющего положительные и отрицательные пластины.
Батареи состоят из последовательно соединенных между собой секций (аккумуляторов). Номинальное напряжение каждого аккумулятора составляет 2 В. Обычно батареи состоят из трех (общее напряжение батареи 6 В) и шести аккумуляторов (общее напряжение батареи 12 В). Количество батарей в аккумуляторе обозначается N.
Применяются два типа электродов: поверхностные и пастированные. Поверхностный электрод состоит из свинцовой пластины, на поверхности которой электрохимическим способом формируется слой активной массы. Пастированные электроды подразделяются на решетчатые (намазные), коробчатые и панцирные.
В решетчатых (намазных) электродах активная масса удерживается в решетке из свинцово-сурьмяного сплава толщиной 1...4 мм. В коробчатых пластинах решетки с активной массой закрываются с двух сторон перфорированными свинцовыми листами.
Панцирные пластины состоят из свинцово-сурьмяных штырей, которые помещаются внутри пластмассовых перфорированных трубок, заполненных активированной массой. Для отрицательных электродов используются намазные и коробчатые пластины, для положительных -- поверхностные, намазные и панцирные. В качестве сепараторов применяют микропористые пластины из вулканизированного каучука (мипор), поливинилхлорида (мипласт) и стекловолокна.
Свинцовые аккумуляторы обычно соединяют в батарею, которую помещают в моноблок из эбонита, термопласта, полипропилена, полистирола, полиэтилена, асфальтопековой композиции, керамики или стекла.
Одной из важнейших характеристик аккумулятора является срок службы или ресурс-наработка (число циклов). Ухудшение параметров аккумулятора и выход из строя обусловлены в первую очередь коррозией решетки и оползанием активной массы положительного электрода. Срок службы аккумулятора определяется в первую очередь типом положительных пластин и условиями эксплуатации.
Аккумуляторы и батареи имеют условное буквенно-цифровое обозначение. Первая цифра (для отечественных аккумуляторов) указывает число последовательно соединенных аккумуляторов. Так как номинальное напряжение свинцового аккумулятора равно двум вольтам, то номинальное напряжение аккумуляторной батареи равно числу последовательно соединенных элементов, умноженному на два.
Для некоторых аккумуляторов указываются климатическое исполнение и размещение. Например, стартерная батарея из шести аккумуляторов емкостью 55 Ач в моноблоке из эбонита и с сепаратором из стекловолокна имеет условное обозначение: батарея 6СТ-55ЭС, ГОСТ 959.0-79.
Свинцовые аккумуляторы имеют высокие разрядные напряжения (рис. 2.1) и удельную мощность (до 100...150 Вт/кг) и относительно недороги. К основным их недостаткам следует отнести низкую удельную энергию и относительно малый ресурс.
Буква после первой цифры обозначает тип или назначение аккумулятора или батареи:
С стационарные
СТ стартерные
А авиационные
В вагонные
Совершенствование свинцовых аккумуляторов идет по пути изыскания новых сплавов для решеток (например свинцово-кальциевых), облегченных и прочных материалов корпусов (например, на основе сополимера пропилена и этилена), улучшения качества сепараторов.
Ниже рассматриваются герметичные свинцовые аккумуляторы, которые не требуют доливки воды при эксплуатации, не имеют газовыделения и кислотного тумана. В последние годы возникли новые сферы применения батарей. Речь идет о резервных источниках питания ЭВМ и систем, накапливающих энергию для возможных пиковых нагрузок.
2.1.1. СТАЦИОНАРНЫЕ СВИНЦОВЫЕ АККУМУЛЯТОРЫ
Предназначены для эксплуатации на постоянном месте или в условиях, исключающих перемещение аккумуляторов или машин, в которых они установлены. В большинстве выпускаемых аккумуляторов (типов С, СЗ, СК и СКЭ) положительными электродами служат поверхностные пластины, отрицательными -коробчатые пластины. Корпуса стационарных аккумуляторов изготавливают из стекла, эбонита и дерева (выложенного изнутри свинцом).
Параметры стационарных свинцовых аккумуляторов приведены в табл. 2.5.
Максимальный ток заряда аккумуляторов с N = 1 равен 9 А. Емкости и токи заряда и разряда для батарей аккумуляторов с соответствующим N можно найти, перемножив соответствующие значения, приведенные в табл. 2.5, на N аккумулятора. Саморазряд аккумуляторов не более 23% при хранении в течение 29 суток. Удельная энергия стационарных аккумуляторов составляет 10...12 Втч/кг. Гарантийный срок хранения 1 год. Гарантийный срок службы 4 года, наработка 200...1000 циклов.
Стационарные аккумуляторы с поверхностными пластинами содержат относительно большую долю свинца по отношению к активной массе. Большинство из них не имеет крышек, поэтому требуют частой заливки воды и хорошо вентилируемого помещения.
Указанные недостатки устранены в стационарных аккумуляторах с намазными пластинами типа СН. Эти аккумуляторы собираются на заводах и имеют крышки.
Буквенные обозначения аккумулятора:
С стационарный
длительный разряд
К короткий разряд
З закрытое исполнение
Э эбонит (материал корпуса)
На базе аккумуляторов СН созданы аккумуляторы СНУ емкостью от 80 до 2240 Ач, обладающие повышенной механической прочностью. К стационарным также относятся автоблокировочные свинцовые аккумуляторы АБН-72-УХЛ2 и АБН-80-УХЛ2 (ГОСТ 21728-76).
Аккумуляторы АБН применяются на железных дорогах для питания устройств автоблокировки, сигнализации, телемеханики и связи в стационарных условиях. Буква Н означает намазные пластины. Номинальная емкость указана для режима 25-часового разряда. Емкость при 12-часовом разряде составляет 85%, при 5-часовом разряде -- 70% номинальной. Обозначение УХЛ-2 указывает на климатическое исполнение и категорию размещения [5].
2.1.2. АВТОМОБИЛЬНЫЕ АККУМУЛЯТОРЫ
Автомобильные аккумуляторы предназначены для обеспечения работы системы зажигания в стартерном режиме и при запуске двигателя внутреннего сгорания, а также служат источником питания аппаратуры, установленной на транспортном средстве. Основные параметры отечественных автомобильных и тракторных стартерных батарей приведены в табл. 2.6.
На рис. 2.2 показаны схемы расположения выводов и перемычек, типы выводов и присоединительные размеры.
В табл. 2.7 приведены параметры зарубежных аккумуляторов фирмы "Fiamm".
Гарантийный срок хранения не залитых раствором электролита батарей установлен 3 года, срок службы 2 года, наработка 2500...3000 часов. Батареи предназначены для работы при температуре от -35o до +60oС. Удельная энергия стартерных аккумуляторов составляет 30...40 Втч/кг.
Эксплуатация аккумуляторных батарей и уход за ними
При эксплуатации на автомашине аккумуляторные батареи разряжаются и автоматически дозаряжаются. Контроль заряда осуществляется регулятором напряжения и реле обратного тока. При исправном и хорошо отрегулированном регуляторе аккумуляторы ограждены от недозарядов и перезарядов, сокращающих их долговечность. Однако при этом требуется периодический контроль работы регулятора и перевод его на режим, соответствующий температурным и климатическим условиям.
При повреждении мастики, герметизирующей корпус аккумулятора, батарею следует разрядить и вылить электролит, для предотвращения взрыва гремучей смеси. Затем продуть сжатым воздухом, протереть и только после этого приступить к оплавлению мастики.
Следует проводить не реже одного раза в две недели:
очищать батарею от пыли и грязи, протирать чистой ветошью, смоченной в 10%-ном растворе нашатырного спирта, углекислого натрия или кальцинированной соды, места, облитые электролитом.
проверять крепление батареи в гнезде, плотность контактов на выводах, отсутствие натяжения проводов;
очищенные наконечники проводов и выводов батарей смазать техническим вазелином;
прочищать вентиляционные отверстия в пробках и крышках;
проверять уровень электролита и доливать дистиллированной водой до нормы. Доливка электролитом не допустима за исключением случаев выплескивания его из батареи. Плотность доливаемого при этом электролита должна соответствовать плотности электролита в аккумуляторе.
Контроль работы регулятора
Проводится при техническом обслуживании автомашин. При этом следует придерживаться рекомендаций, приведенных в табл. 2.8. и инструкции по эксплуатации.
Проверка и регулировка регулятора должна производиться в случаях, если регулируемое напряжение имеет значение более 15,5 В или не соответствует указанному в инструкции по эксплуатации машины.
При регулировке следует применять вольтметр класса не хуже 1,5. При регулировке реле обратного тока следует руководствоваться указаниями инструкции по эксплуатации автомашины и данными табл. 2.9.
Батарею, разряженную более чем на 25% зимой и более чем на 50% летом следует снять с автомашины и поставить на заряд.
Электролит
В качестве электролита для автомобильных аккумуляторных батарей применяют раствор серной кислоты в дистиллированной воде. При отсутствии стандартной допускается применение дождевой воды и талого снега собранных не с железных крыш и не содержавшихся в железных сосудах.
Для различных климатических и температурных условий, в которых батарее предстоит находиться в эксплуатации, применяется электролит различной плотности. Рекомендуемая плотность электролита для различных климатических районов приведена в табл. 2.10.
Для приготовления электролита применяется чистая кислотостойкая пластмассовая, керамическая, фаянсовая посуда, в которую сначала наливается вода, а затем постепенно кислота при непрерывном перемешивании кислотостойкой палочкой. Обратный порядок заливки не допускается.
Ориентировочное количество электролита, необходимое для заливки аккумуляторных батарей, приведено в таблицах вместе с их техническими характеристиками. Для получения электролита нужной плотности рекомендуется пользоваться табл. 2.11.
Плотность электролита в основном зависит от концентрации раствора серной кислоты: чем больше концентрация раствора, тем больше плотность электролита. Однако она также зависит и от температуры раствора: чем выше температура, тем ниже плотность.
Температурные поправки к показанию ареометра для приведения плотности электролита к температуре 15o, 20o и 30oC приведены в табл. 2.12. Знак "+" или "--" означает прибавить или вычесть поправку от показаний ареометра.
Для определения степени разряженности в любой момент принимается нормативная плотность электролита 1,29 г/см3, т.е. плотность, приобретенная после полного первого заряда.
Для уравнивания плотности электролита, т.е. доведения ее до плотности, равной плотности в начале эксплуатации, следует измерить фактическую плотность и температуру. Затем сравнивают приведенную (к плотности при 20oС) плотность и рекомендуемую (табл. 2.11). Если приведенная плотность окажется ниже нормы, то доливают кислоту или электролит повышенной плотности, если же выше -- доливают дистиллированную воду. Для того, чтобы при этом не превысить уровень, из аккумулятора необходимо предварительно отобрать часть электролита.
Уравнивание можно проводить только в полностью заряженном аккумуляторе, когда электролит имеет плотность, не искаженную недозаряженностью последнего, и когда еще продолжается кипение, которое содействует быстрому перемешиванию. В противном случае следует продолжать заряд после доливки в течение 30 минут для достижения лучшего перемешивания и затем через 30 минут измерить плотность и температуру, чтобы снова определить приведенную плотность. Доводка плотности до нормы обычно не получается с первого раза, тогда ее следует повторить. Промежутки между приемами доводки должны быть не менее 30...40 минут.
Ввод в действие сухозаряженных (новых) аккумуляторных батарей
Ввод в действие аккумулятора следует начинать с заливки аккумуляторов, которую рекомендуется производить следующим образом.
Электролит, приготовленный согласно требованиям, можно заливать в аккумуляторы при условии, если его температура не выше 25oС в холодной и умеренной климатических зонах и не выше 30oС в жаркой и влажной зонах. Не рекомендуется заливать аккумуляторы электролитом температурой ниже 15oС.
Заливку аккумуляторов рекомендуется производить следующим образом.
Если вентиляционные отверстия расположены в пробках, то их необходимо вывернуть и снять с них герметизирующую пленку или срезать выступ и проверить, вскрылись ли вентиляционные отверстия.
Если пробки без герметизирующей пленки или выступа, следует вынуть расположенные под ними герметизирующие диски и выбросить их.
Заливку следует производить небольшой струей до тех пор, пока зеркало электролита не коснется нижнего конца тубуса горловины или на 10...15 мм выше предохранительного щитка. Уровень электролита над предохранительным щитком можно измерить стеклянной трубочкой.
Если в крышке батареи имеются вентиляционные штуцера для автоматической регулировки уровня электролита, необходимо освободить отверстия в штуцерах от герметизирующих деталей (стержни, колпачки и др.). Последние следует выбросить. Затем необходимо отвернуть пробки и надеть их на штуцера. Заливку следует производить небольшой струей до верхнего среза горловины.
В случае проливания электролита необходимо собрать его ветошью и протереть облитые места (нейтрализовать) 10% рaствором нашатырного спирта.
После заливки пробки со штуцеров надо снять, и уровень автоматически снизится до нормы. Необходимое количество электролита для заливки батарей указано в таблицах их технических характеристик.
Как правило, не ранее, чем через 20 минут и не позже, чем через два часа после заливки, нужно измерить плотность электролита. Если плотность электролита в аккумуляторе ниже плотности заливавшегося более чем на 0,03 г/см3, такую батарею перед установкой на автомашину следует зарядить.
Если батарея хранилась не более одного года и процесс подготовки ее к вводу в эксплуатацию происходил при температуре не ниже 15oС, допускается установка ее на автомашину без проверки плотности электролита после 20 мин пропитки. Батарею, введенную в эксплуатацию, следует откорректировать спустя несколько дней.
2.1.3. УСТРОЙСТВА ДЛЯ ЗАРЯДА АККУМУЛЯТОРОВ
Заряд аккумулятора происходит, если к нему приложен потенциал, превышающий его напряжение. Ток заряда аккумулятора пропорционален разности приложенного напряжения и напряжения холостого хода.
Скорость заряда аккумулятора может быть определена в терминах емкости. Если емкость аккумулятора С заряжается за время t, то скорость заряда определяется отношением С/t. Аккумулятор емкостью 100 Ач при разряде со скоростью С/5 полностью разрядится за 5 часов, при этом ток разряда составит 100/5, или 20 А. Если аккумулятор заряжается со скоростью C/10, то ток его заряда будет равен 100/10, или 10 А. Скорость заряда можно оценить в длительностях цикла. Так, если аккумулятор заряжается за 5 часов, то говорят, что он имеет цикл 5 часов.
В зависимости от области применения аккумуляторы можно заряжать различными способами. При быстром заряде требуется от 4 до 6 часов, в то время как продолжительность разряда в штатном режиме варьируется от 10 до 15 часов. При циклическом заряде требуется постоянное напряжение или постоянный ток заряда. Иногда используется плавающий заряд (плавающий заряд -метод поддержания подзаряжаемой батареи при полном заряде путем подачи выбранного постоянного напряжения для компенсации в ней различных потерь), во время которого нагрузка и аккумулятор включаются параллельно, или компенсационный подзаряд (компенсационный подзаряд -- метод, при котором для приведения батареи в полностью заряженное состояние и поддержания ее в этом состоянии используется постоянный ток заряда), когда мощность постоянного тока подается в нагрузку, в то время как цепь заряда аккумулятора с нагрузкой не соединена.
На практике чаще всего используется быстрый заряд аккумулятора (до 90% емкости) с последующим автоматическим переключением на меньшую скорость заряда (до полной емкости).
Для маломощных аккумуляторов и заряда при постоянном напряжении можно использовать устройство [1], показанное на рис. 2.3. Для поддержания постоянного выходного напряжения, значение которого устанавливается резистором R2, применяется трехвыводной интегральный стабилизатор напряжения, например КР142ЕН5А.
Для расчета схемы следует пользоваться выражением:
U0 = Uоп (1 + R1/R2) + IустR2, где
U0 -- напряжение равное разности максимального напряжения на заряженном аккумуляторе и выходного напряжения используемого интегрального стабилизатора напряжения;
Uоп -- выходное напряжение используемого интегрального стабилизатора напряжения;
Iуст -- ток внутреннего стабилизатора используемой интегральной микросхемы [6].
Возможно использование в качестве резистора R2 переменного резистора, но с обязательным шунтированием постоянным резистором (для блокирования дребезга движка резистора) т.о., чтобы их суммарное сопротивление равнялось расчетному. С его помощью поддерживается необходимое выходное напряжение и одновременно осуществляется защита схемы от тока короткого замыкания.
Зарядное устройство с источником тока и автоматическим ограничением напряжения показано на рис. 2.4 [6]. Это устройство поддерживает постоянный ток заряда и отключает аккумулятор от зарядного устройства по достижении установленного напряжения заряда. Здесь источник тока выполнен на транзисторе VT2 и светодиоде VD1, который выполняет функцию индикатора (напряжение эмиттер-база транзистора VT2, задающее ток источника тока, определяется падением напряжения на светодиоде). Транзистор VT1 ограничивает напряжение на нагрузке, закрывая протекание тока через светодиод VD1 по достижении напряжения заряда аккумулятора, которое устанавливается подбором резистора R1. При номиналах, указанных на схеме, напряжение заряда аккумулятора 12 В при максимальном токе порядка 100 мА. Светодиод показывает степень заряда аккумулятора. При полностью заряженном аккумуляторе он гаснет.