В Кронштадте разработки конструкции аккумулятора начались в 1881 г., а уже в 1884-м на Неве прошел испытание электрический катер. Он мог пройти 30 миль при скорости до 6 узлов.
   К 1890 году в промышленно развитых странах свинцово-кислотные аккумуляторы выпускались серийно. Первой патенты Фора, Фолькмара и Селлона купила Electrical Power Storage Company.
   В 1900 году фирма VARTA выпустила стартерный аккумулятор для запуска автомобильного двигателя. VARTA является поставщиком заводов "Мерседес", "Фольксваген", "Ауди" и "Опель".
   В 1938 году, Леопольд Джунгфер основал фирму Baren. Начиная с 1939 года фирмой были изготовлены батареи почти для каждой области применения.
   В 1942 году в Италии Гиулио Долсетта основал фирму FIAMM. FIAMM выпускает стартерные, тяговые и стационарные аккумуляторы (см. гл. 2.3).
   С появлением электростанций понадобились мощные стационарные аккумуляторы. На станциях постоянного тока они служили дополнительным источником энергии в моменты пиковых нагрузок. На станциях переменного тока стационарные аккумуляторы используются для вспомогательных целей. Так городские сети постоянного тока имели батареи аккумуляторов, которые развивали в 1927 году мощность:
   80000 кВт -- Берлин,
   95000 кВт -- Нью-Йорк.
   Кроме аварийного освещения их используют для средств связи, в системах автоматики на железной дороге, в устройствах охранной и пожарной сигнализации и пр. Для телефонных станций они служили единственным источником постоянного напряжения.
   Из большого разнообразия стационарных аккумуляторов, которые обеспечивают питание нагрузок на время отключения электроснабжения, в большей мере используются только свинцовые и никель-кадмиевые аккумуляторы (см. табл. П4 приложения).
   Основные черты свинцовый аккумулятор приобрел на рубеже ХIХ...ХХ веков. Вместе с ними и проблемы, часть из которых не решены по сегодняшний день. Конструкция аккумуляторов непрерывно совершенствуется. Они давно являются объектом пристального внимания изобретателей.
   Критерием состояния отрасли промышленности являются экономические показатели. На рис. p001 представлен объем продаж стартерных аккумуляторов мировыми производителями.
   Начиная с 1970 года выпускаются малоуходные (требующие незначительного ухода) и герметизированные (необслуживаемые) аккумуляторные батареи. В таких аккумуляторах используют электроды с малым содержанием сурьмы -- не более 3%.
   С использованием сорбированного и гелеобразного электролита удалось получить герметизированный аккумулятор, который может работать в любом положении. В качестве загустителя электролита используется силикагель, алюмогель, сульфат кальция и др. Примерно в это же время были разработаны такие материалы для изготовления пластин, как медно-кальциевые сплавы покрытые оксидом свинца, титановые, алюминиевые и медные решетки.
   Свинцовые аккумуляторы изготавливаются в различных исполнениях в зависимости от области применения. Основные типы -- стартерные, тяговые и стационарные аккумуляторы. Выпускаемые серийно свинцово-кислотные аккумуляторы обладают емкостью от 0,5 до 12000 Ач.
   Активные вещества аккумулятора заключены в положительном и отрицательном электродах и электролите. Совокупность активных веществ, применяемых в химическом источнике тока, называется электрохимической системой.
   Распространенные электрохимические системы стационарных аккумуляторов приведены в табл. t032 [7].
   В аккумуляторах находящихся в эксплуатации непрерывно повторяется последовательность электрохимических преобразований. Период заряда-разряда аккумулятора называют циклом. С каждым циклом аккумуляторы изнашиваются. Долговечность аккумулятора оценивают количеством циклов.
   Долговечность аккумуляторов зависит от:
   ресурса заложенного в электрохимическую систему и конструкцию аккумулятора,
   условий ввода в эксплуатацию;
   условий эксплуатации.
   Наиболее широкое применение, как более дешевые, получили свинцовые аккумуляторы. Они обеспечивают срок службы до 20 лет, что обусловлено соответствующим конструктивным исполнением.
   Почти все свинцовые аккумуляторы используют так называемую баночную конструкцию. При изготовлении корпусов используются: эбонит, полипропилен, и т.п. Эти материалы стойки к длительному воздействию серной кислоты.
   Блок электродов каждой аккумуляторной ячейки помещается в изолированной банке. Между электродами устанавливаются сепараторы. Крайними всегда являются отрицательные электроды (рис. p070). Горизонтальные перемычки, соединяющие одноименные пластины в банке, называются баретками.
   Во всех малоуходных аккумуляторах пластины приподняты над дном. В образующемся пространстве скапливается шлам -отделившаяся от электродов активная масса. В герметизированных аккумуляторах выполненных по технологии PLT пространство под пластинами отсутствует.
   Для получения достаточно больших значений напряжений или разрядных токов отдельные ячейки соединяются между собой последовательно или параллельно в батареи.
   Батареей аккумуляторов называется источник тока, состоящий из нескольких параллельно или последовательно соединенных аккумуляторных ячеек. Аккумуляторы содержащие несколько последовательно соединенных банок в одном корпусе называются моноблочными.
   Все европейские производители и большая часть в Азии руководствуются стандартами DIN. Перечень стандартов по стационарным аккумуляторам приведен в табл. П3 приложения. Ряд условных обозначений стационарных аккумуляторов стандартизован.
   Согласно DIN VDE 0510 ч. 2 расшифровка условных обозначений аккумуляторов приведена в табл. t035.
   Номинальной емкостью аккумулятора называется емкость, гарантированная заводом изготовителем при определенных условиях разряда. Зарядной емкостью называется количество электричества, сообщаемое аккумулятору при заряде. Зарядная емкость всегда несколько больше разрядной из-за необратимых процессов, протекающих при заряде и разряде.
   Величина разрядной емкости аккумулятора зависит от типа и конструкции используемых пластин, количества содержащихся в них активных веществ, материала электродов, режима разряда и температуры.
   Совершенствование свинцовых аккумуляторов идет по пути изыскания новых сплавов для решеток, облегченных и прочных материалов корпусов (сополимер пропилена и этилена) и улучшения качества сепараторов.
   2.1.1. СЕПАРАТОРЫ
   Во всех аккумуляторах между электродами устанавливаются изолирующие пластины. Они выполняются в виде:
   разделителей;
   пористых сепараторов;
   мембран.
   Разделители используются для отделения электродов друг от друга. Они изготавливаются в виде прокладок или решеток из перфорированного или гофрированного синтетического диэлектрика (рис. p009). Разделители имеют отверстия диаметром от 1 до 5 мм.
   Пористые сепараторы, кроме непосредственного разделения пластин, удерживают активную массу электродов и препятствуют росту дендритов (дендриты -- незавершенные в своем развитии кристаллы, по форме напоминающие ветвистое дерево, папоротник, хвою и т.п.) при заряде аккумулятора.
   В некоторых типах аккумуляторов пористый сепаратор удерживает электролит за счет капиллярных сил вблизи поверхности электродов. Диаметр пор таких сепараторов находится в интервале от 0,001 до 200 мкм. Такой вид сепараторов имеет наибольшее распространение в современных моделях аккумуляторов.
   Мембраны (набухающие сепараторы) изготавливаются из материалов без геометрически четко выраженной системы пор. В отличие от пористых сепараторов в них ярко выражены силы взаимодействия между определенными видами ионов и молекул.
   Сепараторы изготавливают из диэлектрических материалов с ребрами, гофрированными или тиснеными для предупреждения плотного прилегания к электродам. Размер сепаратора всегда больше размера пластины аккумулятора. В первых аккумуляторах в качестве сепараторов использовались керамические сосуды или перегородки. До второй мировой в качестве сепараторов использовался шпон (шпон -- тонкий лист древесины, получаемый лущением кряжей различных пород дерева).
   Длительное время сепараторы изготавливали из мипора -вулканизированного натурального каучука с присадками. В современных аккумуляторах широкое применение нашел мипласт, получаемый спеканием порошкообразной поливинилхлоридной смолы.
   В Англии разработан материал порвик, изготавливаемый из поливинилхлоридной смолы. Отечественный аналог -- поровинил. Юмикрон -- материал для сепараторов разработанный в Японии -выпускается в виде тонкой пленки или тисненых "вафлеобразных листов" (рис. p010).Наиболее дешевыми материалами для сепараторов являются картон и бумага на основе целлюлозы и асбеста (асбест [гр. asbestos] -- группа минералов (серпентин, амфиболы) волокнистого строения; огнестойкий, кислотостойкий, и неэлектропроводный материал).
   В качестве дополнительных разделителей, в комбинации с сепараторами, применяются нетканные маты. Они изготавливаются из полипропилена или стекловолокна с добавлением связующих веществ.
   В современных моделях аккумуляторов используют многослойные сепараторы. Использование нескольких слоев одного вида сепараторов более выгодно, так как в этом случае дефекты в одном из слоев защищены другими и рост дендритов затруднен при переходе от слоя к слою.
   Если в аккумуляторах используются многослойные сепараторы из разных материалов, то каждый из них выполняет определенную функцию. Так же используются сочетания простых разделителей с мембранами.
   В ряде случаев в аккумуляторах используют конверты-сепараторы. Конверт-сепаратор полностью окружает один из электродов аккумулятора для ограничения возможного проникновения нежелательных веществ или распространения дендритов в обход сепаратора по краям электродов.
   2.1.2. ЭЛЕКТРОЛИТ
   В качестве электролита для аккумуляторных батарей применяют раствор серной кислоты в дистиллированной воде. Для различных климатических и температурных условий, в которых батарее предстоит работать, используют электролит различной плотности.
   Плотность электролита зависит от концентрации раствора серной кислоты -- чем больше концентрация раствора, тем больше плотность электролита и от температуры раствора -- чем выше температура, тем ниже плотность.
   Концентрация или плотность электролита является точным критерием степени разряженности аккумулятора. В качестве точки отсчета, для определения текущей степени разряженности аккумулятора, принимается нормативная плотность электролита, т.е. плотность, приобретенная после первого полного заряда.
   Для уравнивания плотности электролита, т.е. доведения ее до плотности, равной плотности в начале эксплуатации, следует измерить фактическую плотность и температуру. Уравнивание можно проводить только в полностью заряженном аккумуляторе, когда электролит имеет плотность, не искаженную недозаряженностью последнего.
   Для свинцовых аккумуляторов характерно сильное разбавление электролита во время разряда из-за участия в реакции серной кислоты с образованием воды. В заряженных аккумуляторах концентрация кислоты равна 30...40%.
   Чем меньше объем электролита, в сравнении с массой электродов, тем быстрее снижается концентрация кислоты при разряде. В конце разряда она составляет от 10 до 25%.
   Многие вещества, например, незначительное количество солей железа попадая в электролит ускоряют выделение водорода и увеличивают саморазряд аккумулятора. Поэтому при приготовлении электролита следует использовать только дистиллированную воду и использовать неметаллическую посуду.
   2.2. СТАЦИОНАРНЫЕ АККУМУЛЯТОРЫ VARTA
   Применение различных типов положительных пластин отражается на электрических характеристиках аккумуляторов. В первую очередь это связано с внутренним сопротивлением, которое состоит из омического внутреннего сопротивления аккумулятора и сопротивления поляризации.
   Поляризацией называется изменение электродных потенциалов под влиянием прохождения постоянного тока вызывающего изменения концентрации электролита, химического состава активных веществ и поверхности электродов.
   В зависимости от причин вызывающих поляризацию, она делится на концентрационную, химическую и электрохимическую, а в зависимости от того, исчезает или остается поляризация при отключении тока, последнюю делят на устранимую и неустранимую.
   Химическая поляризация и частично концентрационная относятся к неустранимой поляризации не исчезающей при прекращении тока [6].
   Сопротивление поляризации является мерой увеличения внутреннего сопротивления химического источника тока обусловленного поляризацией. Оно имеет размерность сопротивления, но не подчиняется закону Ома, так как зависит от величины проходящего тока. Значения внутреннего сопротивления 100 Ач пластин различных типов аккумуляторов приведены на рис. p073.
   При высокой скорости разряд реально оказывается ограниченным, поскольку из-за наличия внутреннего сопротивления аккумулятора напряжение уменьшается ниже напряжения отсечки (напряжением отсечки называется минимальное напряжение, при котором аккумулятор способен отдавать полезную энергию).
   При времени разряда свыше трех часов отличие внутренних сопротивлений не сказывается на разрядных характеристиках различных типов пластин. Для более короткого времени разряда величина внутреннего сопротивления в значительной степени влияет на разрядные характеристики (рис. p074):
   100 Ач аккумулятор OPzS за 10 минут отдает ток 100 А;
   100 Ач аккумулятор Vb за то же время отдает 170 А.
   2.2.1. ТИПЫ ПЛАСТИН АККУМУЛЯТОРОВ
   Пластины аккумуляторов бывают поверхностные и пастированные.
   Поверхностный электрод состоит из свинцовой пластины на поверхности которой электрохимическим способом формируется слой активной массы (рис. p012).
   Аккумуляторы с поверхностными пластинами содержат относительно большую долю свинца по отношению к активной массе. Они используются в моделях GroE фирмы VARTA.
   Пастированные электроды подразделяются на решетчатые (намазные), коробчатые, стержневые (рис. p079) и панцирные (рис. p078). Основой пастированных пластин является решетка-токовод.
   При циклической работе аккумуляторов с большим содержанием сурьмы в материале решетки сурьма переходит в раствор в результате коррозии решетки положительного электрода. Осаждаясь на активной массе отрицательного электрода сурьма способствует выделению водорода и увеличивает скорость коррозии свинца. Такой процесс называется сурьмяным отравлением аккумулятора.
   Осыпание активной массы и внутреннее сопротивление аккумулятора при использовании кальциевых решеток несколько больше, чем в случае свинцово-сурьмяных. Разрушение пластин преимущественно происходит при заряде аккумулятора и является одним из важнейших факторов ограничивающих ресурс аккумулятора. Для уменьшения осыпания в активную массу вводят волокнистые материалы, например, фторопласт и используют нетканные маты из стекловолокна прижатые к пластинам.
   Сульфатация пластин -- результат хранения аккумулятора в недозаряженном состоянии. Образующийся при этом плохо растворимый в воде сульфат свинца ограничивает емкость аккумулятора и способствует выделению водорода при заряде. Для восстановления емкости аккумулятора с сульфатированными электродами его заполняют электролитом низкой плотности или даже дистиллированной водой и заряжают малыми токами (примерно в сто раз меньше номинального зарядного тока).
   2.2.2. МАТЕРИАЛ ПОЛОЖИТЕЛЬНОГО ЭЛЕКТРОДА
   Ухудшение электрических характеристик аккумулятора и выход из строя обусловлены коррозией решетки и оползанием активной массы положительного электрода. Срок службы аккумулятора определяется, в первую очередь, типом положительных пластин и условиями эксплуатации.
   В аккумуляторном производстве используется как чистый свинец, так и сплавы содержащие сурьму, которая неоднозначно воздействует на эксплуатационные характеристики аккумуляторов.
   Положительное воздействие сурьмы связано с тем, что положительные электроды с легированными сурьмой решетками выдерживают более сильные циклические зарядно-разрядные нагрузки. Наличие сурьмы способствует более прочному электрическому контакту активного материала с решеткой, в то время, как в бессурьмянистых решетках активная масса полностью отслаивается и отпадает уже после нескольких циклов разряда-заряда. Поэтому все изготовители аккумуляторных батарей применяют в решетке положительных пластин сплавы содержащие 1...10% сурьмы (см. рис. p069). В тяговых батареях используют сплав содержащий более 4% сурьмы.
   Следующим преимуществом решеток, выполненных из содержащих сурьму сплавов, является то, что на них не возникает блокирующего эффекта, который часто наблюдается в случае с бессурьмянистыми пластинами. Блокирующий эффект состоит в образовании токонепроводящих прослоек между решеткой и активным материалом. Это, в свою очередь, может привести к большим колебаниям емкости даже на новых батареях.
   Отрицательный эффект заключается в том, что увеличение содержания сурьмы увеличивает ток постоянного подзаряда и относительное его увеличение во время эксплуатации аккумуляторов (см. рис. p071).
   Между двумя крайностями -- обычным и бессурьмянистым сплавами -- располагается ряд малосурьмянистых сплавов.
   Уменьшение содержания сурьмы ниже 3% вызывает образование кристаллических структур материалов решеток, которые приводят к быстрому образованию трещин. Это делает невозможным изготовление качественных решеток.
   Фирме VARTA удалось разработать сплавы, которые даже при очень малом содержании сурьмы имеют очень тонкую структуру и, поэтому, могут использоваться для изготовления качественных решеток. При этом выполняется и такое требование, как неподверженность этого сплава повышенной коррозии. Для этих сплавов при изменении содержания сурьмы от 6% до 1,6% срок службы увеличивается в 5 раз [7].
   По сравнению с сурьмянистыми сплавами других производителей преимущество сплавов фирмы VARTA состоит в том, что в аккумуляторах с такими решетками не возникают блокирующие эффекты, мешающие при заряде и разряде, а стойкость при циклических нагрузках хотя и меньше, по сравнению с обычными сплавами, но отличается от них незначительно. Это убедительно демонстрирует рис. p069.
   Аккумуляторы, в которых используются малосурьмянистые сплавы имеют достаточно низкий ток подзаряда, что объясняется специальными добавками к активной массе. На практике саморазряд аккумуляторов с большим содержанием сурьмы доходит до 2...3% в месяц.
   Из выше сказанного следует, что малосурьмянистые сплавы представляют собой выгодный компромисс, в котором недостатки сурьмы практически полностью исключены.
   С другой стороны, остаются все преимущества которые дает сурьма обеспечивая стойкость к циклическим нагрузкам и безупречное поведение при заряде и разряде.
   Применение мало- или бессурьмянистых сплавов значительно уменьшает разложение воды, однако, неизбежно происходит некоторый расход воды на газообразование, как неотъемлемое свойство свинцовых аккумуляторов. Поэтому свинцовые аккумуляторы не могут изготавливаться полностью герметичными, как щелочные.
   Даже герметизированные свинцовые аккумуляторы, которые внешне выглядят полностью закрытыми, имеют клапан, который дает возможность газу выходить наружу. В герметизированных аккумуляторах потеря воды настолько незначительна в расчете на срок службы, что не требуется ее восполнения.
   В отличие от герметизированных свинцовые стационарные аккумуляторы больших размеров, изготавливаемые из мало- или бессурмянистых сплавов, сконструированы таким образом, что позволяют долив воды. Такие аккумуляторы получили название "малоуходные".
   В малоуходных аккумуляторах в процессе перезаряда происходит распыление электролита с выделением газов. Часть электролита разбрызгивается через вентиляционные отверстия, т.е. теряется. Уменьшение расхода жидкого электролита достигается использованием клапанов пропускающих газы, но задерживающих жидкость. В аккумуляторах используются пружинные и гидрофобные (гидрофобный [гр. hydor вода, влага + гр. phobos страх, боязнь] испытывающий слабое взаимодействие с водой) клапаны. Для увеличения интервалов между работами по уходу за аккумуляторами фирмы VARTA используются пробки с каталитическими насадки (см. рис. p072).
   Они выполняются в виде ввинчивающихся пробок, закрывающих заливочное отверстие. Гидрофобные пористые фильтры пропускают газы, но не пропускают водный электролит. Эти насадки содержат в себе металлические катализаторы. Образующийся в аккумуляторах водяной пар конденсируется каталитическим (катализ [гр. katalysis разрушение] -- возбуждение химической реакции или изменение ее скорости небольшими добавками веществ (катализаторов) состав которых в реакции не меняется) путем и стекает в аккумулятор.
   Вопрос обслуживания свинцовых аккумуляторов сводится к вопросу о расходе воды. В этом смысле переход к закрытым аккумуляторам был шагом вперед, поскольку в открытых аккумуляторах 95% потерь воды происходит за счет испарения. Определенный расход воды имеется за счет электролитического разложения воды, который в известных пределах неизбежен.
   2.2.3. ГЕРМЕТИЗАЦИЯ
   Широкое распространение переносной аппаратуры, источников бесперебойного питания и другой мобильной техники потребовало разработки более удобных в эксплуатации герметизированных аккумуляторов. Герметизация затруднена тем, что при работе или хранении аккумуляторов может происходить выделение газов. Особенно интенсивное выделение газов (водорода и кислорода) наблюдается:
   в конце заряда;
   при перезаряде;
   при переполюсовке вследствие глубокого разряда.
   Важным условием хорошей герметизации является плотное химически- и термостойкое соединение конструктивных элементов. Особое значение имеет герметизация выводов -- контакта металлических токовыводящих элементов и неметаллических изоляционных материалов.
   В аккумуляторах фирмы VARTA (см. рис. p080) с целью получения минимального сопротивления внутренняя часть вывода (3) выполнена из меди. Снаружи он покрыт свинцом (6). Конструкция вывода обеспечивает герметичность соединения с корпусом (4) за счет зажимаемых элементами конструкции резиновых прокладок (5). Защитный чехол (2) механически защищает место соединения вывода с токоведущими проводниками (1).
   Для выпуска образующихся газов внутренняя полость аккумулятора должна сообщаться с атмосферой. Отрицательные последствия газовыделения -- необходимость долива воды из-за ее разложения, вредное влияние на обслуживающий персонал и увеличение коррозионной активности атмосферы.
   Частичная герметизация возможна при рекомбинации газов по кислородному циклу. Здесь используется тот факт, что при заряде аккумулятора сначала на положительном электроде выделяется кислород, а позднее на отрицательном -- водород. Правда, в таких аккумуляторах ограничены зарядные и разрядные токи из-за недопустимости большого газовыделения.
   Внутренняя циркуляция кислорода представляет собой последовательность реакций, в результате которых ионы кислорода, образующиеся на положительном электроде, перемещаются к отрицательному, соединяются с водородом и образуют воду. В свинцовых аккумуляторах такая реакция возможна благодаря использованию "связанного" электролита. "Связанный" электролит имеет внутри поры позволяющие ионам газов свободно перемещаться от одного электрода к другому.
   Для связывания электролита существует два метода:
   использование пористого материала, например, стекловолокна пропитанного электролитом;
   использование гелеобразного электролита.
   Стекловолокно, пропитанное дозированным количеством серной кислоты, образует пористую систему капиллярные силы которой удерживают электролит. Электролит дозируется таким образом, чтобы мелкие поры были заполнены, а крупные оставались пустыми. Через незаполненные поры и свободное пространство в аккумуляторе возможно свободное перемещение газа.
   В гелеобразном электролите соответствующий раствор серной кислоты содержит примерно 6% силикагеля. Перед заполнением аккумулятора такое желе интенсивно перемешивают и оно становится текучим. После заполнения аккумулятора в результате застывания геля образуется много пор, которые распространяются в разных направлениях и способствуют свободному движению газообразного кислорода.
   В герметизированных аккумуляторах VARTA со связанным электролитом используются стекловолоконные маты с дополнительными сепараторами. Желеобразный электролит применяется совместно с обычными сепараторами. Использование желеобразного электролита имеет те преимущества, что при цикличной работе аккумулятора мала разница концентрации электролита в верхней и нижней части аккумулятора.
   Высокие аккумуляторы с сорбированным электролитом производители рекомендуют использовать в стационарных условиях "лежа", чтобы ограничить высоту сепаратора.
   2.2.4. ПРОЕКТИРОВАНИЕ БАТАРЕЙНЫХ УСТАНОВОК
   Для успешной эксплуатации аккумуляторных батарей важно, чтобы в выпрямителях, используемых для заряда, были реализованы все требования, которые предъявляют к заряду аккумуляторов (см. гл. 3).