Страница:
В итоге Цицерон внес немалый вклад в развитие идей вероятности – термин probabilis, который он использовал, лег в основу современного термина. И лишь в «Дигестах», одной из частей римского права, составленного императором Юстинианом I, появляется документ, в котором впервые вероятность упоминается как юридический термин[46]. Чтобы оценить то, как римляне применили математические суждения в теории права, необходимо представлять себе те времена: римское право в Средние века основывалось на обычном, т. е. основанном на обычаях, праве германских племен. Которые мягкостью не отличались. Взять, к примеру, свидетельские показания. Правдивость мужа, отрицающего любовную связь с портнихой жены, определялась бы не способностью муженька выдержать уколы адвоката противной стороны, а тем, станет ли он придерживаться своей версии даже после уколов – настоящих, каленым железом. (Вот увидите: стоит только вернуться к такому обычаю, как очень многие будут разводиться без всякой помощи со стороны суда.) И если обвиняемый скажет, что колесница даже не пыталась затормозить, а привлеченный в качестве эксперта свидетель по следам лошадиных копыт заявит, что пыталась, германское право предписывало довольно-таки простой рецепт: «Пусть спор разрешится посредством поединка на копьях между двумя с обеих сторон. Проигравший будет сочтен лжесвидетелем, и ему отсекут правую руку»[47].
Заменяя или скорее дополняя судебную практику сражением, римляне стремились с помощью математической точности исправить недостатки своей старой, произвольной системы. Как мы видели, римская идея справедливости включала в себя прогрессивные понятия. Признавая, что доказательства и свидетельские показания зачастую вступают в противоречие и что наилучший способ разрешить такое противоречие – выразить неизбежную неопределенность в количественном виде, римляне ввели понятие неполного доказательства. Оно применялось в тех случаях, когда отсутствовали неопровержимые основания для того, чтобы верить или не верить доказательствам или свидетельским показаниям. В некоторых случаях римская теория допускала еще более детальные степени доказательства, как, например, в положении о церкви: «епископ может быть осужден только при наличии семидесяти двух свидетелей… иерей может быть осужден только при наличии сорока четырех свидетелей, дьякон города Рима – при наличии тридцати шести свидетелей, иподьякон, пономарь, заклинатель, изгоняющий беса, псаломщик или дверник – при семи свидетелях[48]». Чтобы человека осудили при таких правилах, он должен не только совершить преступление, но и убедить в этом других. И все же признание того, что вероятность истины в показаниях может варьировать и что необходимы правила для сочетания таких вероятностей, – уже что-то. И вот в таком маловероятном месте, как древний Рим, впервые возник упорядоченный набор правил, в основе которых лежала вероятность.
К сожалению, едва ли возможно с ловкостью жонглировать числами вроде «VIII» или «XIV». В конце концов, хотя римское право было не лишено определенной доли юридического рационализма и связности, ему недоставало математической обоснованности. К примеру, в римском праве два неполных доказательства составляли полное доказательство. Это может показаться резонным тому, чей ум не привык мыслить категориями количества. При сегодняшней распространенности дробей напрашивается вопрос: если два неполных доказательства составляют полное доказательство, то чему равны три неполных доказательства? Согласно правильному методу сложения вероятностей, полное доказательство невозможно составить не только из двух неполных доказательств, но и из любого количества неполных доказательств, потому что при сложении вероятностей нужно не складывать их, а умножать.
Что подводит нас к очередному закону, правилу сложения вероятностей: «Если два вероятных события, А и B, не зависят друг от друга, то вероятность того, что А и B произойдут, равна произведению их отдельных вероятностей». Предположим, каждый год у человека женатого вероятность развестись равна примерно 1 к 50. С другой стороны, каждый год у полицейского вероятность погибнуть при исполнении равна 1 к 5 000. Какова вероятность для женатого полицейского развестись и погибнуть в одном и том же году? Согласно вышеприведенному принципу, если события независимы друг от друга, шансы окажутся примерно такими: 1/50 × 1/5 000, то есть 1/250 000. Конечно же, события эти не являются независимыми друг от друга, они связаны: если полицейский погибнет, как он, черт возьми, может развестись? В таком случае вероятность такого исключительного невезения на самом деле получается чуть менее 1 из 250.000.
Но почему умножение, а не сложение? Предположим, у вас фотографии 100 парней, с которыми вы познакомились через сайт знакомств в Интернете, тех самых парней, в профиле у которых висит фотография, напоминающая Тома Круза, а в жизни они скорее смахивают на Дэнни Де Вито. И вот вы подбираете наиболее привлекательных кандидатов. Предположим также, что на оборотной стороне каждой фотографии вы пишете два качества парня, к примеру, честный («да» или «нет») и привлекательный («да» или «нет»). И, наконец, предположим, что 1 из 10 возможных родственных душ получает в каждом случае «да» или «нет». Сколько парней из 100 пройдут тест по обеим категориям? Возьмем честность как основную черту (впрочем, можно основной сделать и привлекательность). Поскольку 1 из 10 получает «да» в категории «честный», в итоге останутся 10 парней из 100. Сколько парней из этих 10 окажутся привлекательными? Снова 1 из 10. В итоге у вас остается одна фотография. Первые 10 из 100 снижают вероятность на 1/10, то же самое происходит и при следующем отборе – 1 из 10. Как результат, 1 из 100. Вот почему мы умножаем. И если ваши требования не ограничиваются честностью и привлекательностью, придется все умножать и умножать, так что… удачи!
Прежде чем мы продолжим, стоит обратить внимание на одну важную деталь: условие «если два вероятных события, А и В, не зависят друг от друга». Предположим, в самолете осталось 1 свободное место, а регистрацию не прошли еще 2 пассажира. Предположим, что работники аэропорта по своему опыту знают: в 2 из 3 случаев пассажир, забронировавший место, все же прибывает. Воспользовавшись правилом умножения, бортпроводница у входа на посадку может прийти к следующему выводу: вероятность того, что ей придется иметь дело с недовольным пассажиром, равна 2/3 × 2/3, то есть примерно 44 %. С другой стороны, вероятность того, что пассажир не явится вовсе, а самолет так и улетит с одним незанятым местом, равна 1/3 × 1/3, то есть примерно 11 %. Но это при условии того, что пассажиры не зависят друг от друга. А если, скажем, они летят вместе? В таком случае вышеприведенные выкладки не действуют. Вероятность того, что прибудут оба пассажира, равна 2 из 3 – такая же, что и вероятность появления одного пассажира. Важно не забывать, что суммарная вероятность из простых вероятностей получается только при условии, если события никоим образом не связаны друг с другом.
Правило, которым мы только что воспользовались, вполне возможно применить и к римской идее неполных доказательств: вероятность ошибочности двух независимых друг от друга неполных доказательств равна 1 из 4, таким образом, два неполных доказательства составляют 3/4 доказательства, а не целое. Римляне применили сложение там, где следовало применить умножение.
Однако существуют ситуации, в которых вероятности следует суммировать, и тут мы переходим к следующему закону. Потребность в нем возникает, когда нам надо узнать: каковы шансы того, что произойдет одно либо другое событие, в противоположность предыдущей ситуации, когда нужно было узнать: каковы шансы того, что и одно и другое событие произойдут вместе. Закон гласит: «Если событие состоит из ряда элементарных исходов A, B, C и т. д., то вероятность A или B равна сумме отдельных вероятностей A и B, а сумма вероятностей всех возможных исходов (A, B, C и т. д.) равна 1 (те. 100 %)». Если вы хотите узнать, какова вероятность того, что два независимых друг от друга события, А и В, произойдут, вам надо будет произвести умножение; если вы хотите узнать вероятность того, что любое из двух взаимоисключающих событий, А или В, произойдет, вы производите сложение. Вернемся к нашему самолету. Когда бортпроводнице нужно будет суммировать вероятности, а не умножать их? Предположим, она хочет узнать, какова вероятность того, что явятся либо оба пассажира, либо не явится ни один. В таком случае она должна сложить отдельные вероятности, которые согласно произведенным нами выше подсчетам будут равны 55 %.
Эти три правила, такие простые, и лежат в основе теории вероятностей. Если применять их должным образом, можно многое понять в механизмах природы и повседневной жизни. Принимая решения, мы постоянно пользуемся этими правилами. Однако, как и римские законодатели, не всегда корректно.
Легко задним числом качать головами и писать книжки вроде «Этих ужасных римлян» («Схоластик», 1994). Но чтобы предупредить ничем не оправданное самодовольство, в заключение этой главы рассмотрим некоторые способы, при помощи которых те самые основные правила, о которых я рассказал, могут быть применены и к нашей правовой системе. Оказывается, этого достаточно, чтобы отрезвить любого опьяненного своим культурным превосходством.
Радует тот факт, что в наше время неполных доказательств не существует. Однако существует что-то вроде 999.000/1.000.000 доказательства. Об этом знают специалисты, которых привлекают на уголовном процессе к анализу ДНК с места преступления на предмет ее совпадения с ДНК подозреваемого. Насколько надежны такие сравнения? Когда впервые ввели анализ ДНК, целый ряд специалистов отметили: теперь ошибка исключена. В наше же время признают, что вероятность совпадения ДНК с места преступления с ДНК случайного человека равна менее 1 из 1 млн или 1 из 1 млрд. При такой-то вероятности едва ли можно винить присяжного за мысли вроде: «Тюрьма по нему плачет!». Но существует и другая статистика, в которую присяжных обычно не посвящают, и связана она с тем фактом, что совершают ошибки лаборатории: когда берут образец или производят с ним манипуляции, когда случайно путают образцы, подменяют один другим, неверно интерпретируют результаты или же ошибаются в отчетах. Каждая из этих ошибок случается редко, однако не реже совпадения образца ДНК с ДНК случайного человека. К примеру, в филадельфийской криминалистической лаборатории признались, что при расследовании случая изнасилования перепутали контрольный образец обвиняемого с образцом жертвы, да и в компании «Селлмарк Диагностикс», выполняющей анализы, рассказали о подобном случае[49]. К сожалению, сила данных по ДНК анализу такова, что оклахомский суд, основываясь на этих данных, приговорил некого Тимоти Дарема к более чем 3 тыс. лет тюремного заключения, и это несмотря на показания одиннадцати свидетелей, которые утверждали, что на момент совершения преступления Дарем находился в другом штате. Оказалось, что на начальном этапе анализа в лаборатории не удалось полностью разделить ДНК насильника и ДНК жертвы, в результате чего получившаяся комбинация дала положительный результат при сравнении с ДНК Дарема. Позднее повторный анализ выявил ошибку и Дарема выпустили, однако к тому времени он провел за решеткой почти четыре года[50].
Данные подсчетов частоты ошибок, возникших по вине человека, различаются, однако многие специалисты говорят о примерно 1 %. Но так как частоту ошибок по многим лабораториям никто не проверял, в судах редко принимают во внимание показания относительно подобной общей статистики. Даже если бы и принимали, как бы присяжные смогли оценить их? Большинство присяжных допускают, что при наличии двух типов ошибок – 1 из 1 млрд при случайном совпадении и 1 на 100 при ошибочном совпадении в лаборатории – общая частота ошибок должна находится где-то посередине, скажем, 1 из 500 млн. Цифра, по мнению присяжных, не дающая поводов для обоснованного сомнения.
А ход мысли такой. Раз обе ошибки крайне маловероятны, можно не обращать внимания на вероятность и случайного совпадения, и ошибки лаборатории. Следовательно, находим вероятность того, что случится либо одна ошибка, либо другая. Что, по правилу сложения, равно: вероятность ошибки лаборатории (1 из 100) + вероятность случайного совпадения (1 из 1 млрд). Поскольку второе в 10 млн меньше первого, то в весьма хорошем приближении вероятность обеих ошибок равна вероятности более вероятной ошибки, то есть, 1 из 100. Таким образом, можно пренебречь предупреждением специалистов о возможности случайного совпадения, и обратить внимание на гораздо более вероятный риск лабораторных ошибок. А ведь зачастую суды не позволяют адвокатам предоставлять эти данные! Выходит, что мнения о надежности анализа ДНК преувеличены.
И это не отдельный вопрос. Использование математических выкладок в современной правовой системе сопряжено с затруднениями ничуть не в меньшей степени, чем в Риме много столетий назад. Одним из наиболее известных дел, служащих примером правильного и неправильного применения вероятности в юриспруденции, является дело «Штат против Коллинзов», слушания по которому проходили в 1968 г. в калифорнийском Верховном суде[51]. Вот выдержка из судебного решения:
«18 июня 1964 г. около 11:30 миссис Хуанита Брукс, совершавшая покупки, шла вдоль переулка в Сан-Педро, г. Лос-Анджелес. За собой она катила тележку с плетеной корзиной, в которой лежали продукты, а поверх – кошелек. Миссис Брукс опиралась на трость. Когда она наклонилась, чтобы поднять пустую коробку, ее внезапно сбил человек – она не видела и не слышала его приближения. После падения миссис Брукс не сразу пришла в себя – она больно ударилась. Подняв голову, миссис Брукс успела заметить убегавшую молодую женщину. По словам миссис Брукс, женщина была среднего сложения, одета «во что-то темное», а о цвете волос миссис Брукс отозвалась как о «чем-то среднем между русым и светлой блондинкой», но светлее, чем волосы обвиняемой Джанет Коллинз, как выяснилось во время суда. Сразу после случившегося миссис Брукс обнаружила, что исчез ее кошелек, в котором было долларов 35 или 40.
Примерно в то же самое время, как произошло ограбление, Джон Басс, живущий в том же переулке, только в самом конце, поливал газон перед домом. Его внимание привлекли «плач и крики». Он повернулся на звуки и увидел, как из переулка выбегает женщина и садится в желтую машину через дорогу. Машину тут же завели; она рванула, на скорости объезжая другую машину, и при этом проехала совсем рядом с Бассом. Басс заметил, что за рулем сидел негр с усами и бородой… Другие свидетели описывали машину как желтую, желтую с кремово-белым верхом, желтую с верхом цвета яичной скорлупы. О самой машине отзывались как о большой либо средних размеров».
Через несколько дней после ограбления лос-анджелесский полицейский заметил желтый «линкольн» с кремово-белым верхом – машина стояла у дома обвиняемых. Полицейский вступил с ними в разговор, объясняя, что расследует ограбление. Он отметил, что внешность подозреваемых соответствовала описанию свидетелей, за исключением бороды у мужчины, впрочем, мужчина сказал, что раньше носил бороду. В тот же день, только позднее, полиция арестовала подозреваемых, ими оказались Малькольм Рикардо Коллинз и его жена Джанет.
Улик против подозреваемой пары было недостаточно, и дело строилось в основном на их опознании жертвой и свидетелем, Джоном Бассом. К несчастью для обвиняющей стороны, ни миссис Брукс, ни Джон Басс не годились в качестве главных свидетелей. Миссис Брукс не могла опознать Джейн как исполнителя преступления, а водителя машины вообще не видела. Джон Басс не видел саму преступницу, а из нескольких лиц, предъявленных к опознанию, не смог с уверенностью показать водителя. Казалось, дело разваливается.
И тут появляется главный свидетель, который в бумагах суда записан всего лишь как «учитель математики из государственного колледжа». Этот свидетель сделал заявление: факта того, что обвиняемые были «белой женщиной со светлыми волосами, завязанными в хвост… [и] негром с бородой и усами», который сидел за рулем частично желтой машины, достаточно для признания пары виновной. Чтобы наглядно доказать свое утверждение, обвиняющая сторона представила следующую таблицу, слово в слово приведенную из решения суда:
Учитель математики, выступавший со стороны обвинения, сказал, что к этим данным применимо правило умножения вероятностей. Умножая все вероятности, можно прийти к выводу, что шанс Коллинзов на соответствие всем этим четким характеристикам равен 1 из 12 млн. Соответственно, по словам обвинителя, можно заключить, что вероятность Коллинзов оказаться невиновными равна 1 из 12 млн. Затем обвинитель отметил, что эти отдельные вероятности являются оценочными показателями, и предложил присяжным высказать свои собственные догадки, а затем перейти к математическим подсчетам. Сам он, продолжал обвинитель, полагает, что показатели достаточно скромные; у него вероятность с учетом факторов приближается к 1 из млрд. Присяжные согласились и вынесли обвинительный приговор.
Что здесь не так? Во-первых, как мы уже убедились, чтобы получить суммарную вероятность путем умножения отдельных вероятностей, эти отдельные вероятности должны быть независимыми друг от друга, а в данном случае это явно не так. К примеру, в таблице вероятность «негра с бородой» равна 1 из 10, а «мужчины с усами» – 1 из 4. Но большинство бородатых мужчин носят и усы, поэтому если был замечен «негр с бородой», вероятность того, что у наблюдаемого мужчины есть усы, уже не равна 1 из 4, она гораздо выше. Это несоответствие может быть устранено, если убрать категорию «негр с бородой». В таком случае согласно правилу умножения вероятностей получится 1 из 1 млн.
Однако в анализе допущена и другая ошибка: вероятность, указанная выше, – что произвольно выбранная пара совпадет по описанию с описанием подозреваемых – не является искомой вероятностью. Скорее, это вероятность того, что пара, отвечающая всем приведенным характеристикам, является виновной. Первая вероятность может быть равной 1 из 1 млн. Что до второй, то при условии, что население района, прилегающего к району совершения преступления, составляет несколько миллионов, можно с достаточным основанием говорить о 2–3 парах, соответствующих описанию. В таком случае вероятность того, что пара, отвечающая описанию, виновна, основывается на одном только этом доказательстве (в принципе, единственном, имевшемся в распоряжении обвинения) и равна всего 1 из 2 или 3. И где здесь отсутствие обоснованного сомнения? В результате Верховный суд отменил решение об обвинительном приговоре.
Применение принципов вероятности и статистики во время судебных заседаний наших дней все еще вопрос спорный. В деле Коллинзов калифорнийский Верховный суд осмеял так называемое «математическое разбирательство дела», однако не исключил возможности «корректного использования математических методов». В последующие годы в судах редко рассматривались доводы с использованием математических доказательств, но даже когда адвокаты с судьями и не прибегали к вероятности или математической теореме открыто, зачастую они все же использовали их при обосновании своих доводов, как и присяжные, когда оценивали доказательства. Более того, доводы с привлечением статистических данных становятся все более значимыми благодаря необходимости оценивать доказательства с привлечением анализа ДНК. К сожалению, все возрастающая необходимость не обернулась все возрастающим пониманием со стороны адвокатов, судей, присяжных. Томас Лайон, преподающий теорию вероятностей и право в Университете Южной Калифорнии, объясняет это так: «Очень немногие студенты-правоведы выбирают в качестве дополнительной дисциплины курс теории вероятностей, и очень немногие адвокаты считают, что такая теория вообще применима в юриспруденции»[52]. В области права, как нигде, благодаря пониманию теории случайности возможно докопаться до самой глубины, открыв истину, однако под силу это только тем, кто умеет пользоваться соответствующими методами. В следующей главе мы познакомимся с жизнью первого человека, взявшегося за систематическое изучение этих методов.
Глава 3. Продираясь через дебри вероятностей
Заменяя или скорее дополняя судебную практику сражением, римляне стремились с помощью математической точности исправить недостатки своей старой, произвольной системы. Как мы видели, римская идея справедливости включала в себя прогрессивные понятия. Признавая, что доказательства и свидетельские показания зачастую вступают в противоречие и что наилучший способ разрешить такое противоречие – выразить неизбежную неопределенность в количественном виде, римляне ввели понятие неполного доказательства. Оно применялось в тех случаях, когда отсутствовали неопровержимые основания для того, чтобы верить или не верить доказательствам или свидетельским показаниям. В некоторых случаях римская теория допускала еще более детальные степени доказательства, как, например, в положении о церкви: «епископ может быть осужден только при наличии семидесяти двух свидетелей… иерей может быть осужден только при наличии сорока четырех свидетелей, дьякон города Рима – при наличии тридцати шести свидетелей, иподьякон, пономарь, заклинатель, изгоняющий беса, псаломщик или дверник – при семи свидетелях[48]». Чтобы человека осудили при таких правилах, он должен не только совершить преступление, но и убедить в этом других. И все же признание того, что вероятность истины в показаниях может варьировать и что необходимы правила для сочетания таких вероятностей, – уже что-то. И вот в таком маловероятном месте, как древний Рим, впервые возник упорядоченный набор правил, в основе которых лежала вероятность.
К сожалению, едва ли возможно с ловкостью жонглировать числами вроде «VIII» или «XIV». В конце концов, хотя римское право было не лишено определенной доли юридического рационализма и связности, ему недоставало математической обоснованности. К примеру, в римском праве два неполных доказательства составляли полное доказательство. Это может показаться резонным тому, чей ум не привык мыслить категориями количества. При сегодняшней распространенности дробей напрашивается вопрос: если два неполных доказательства составляют полное доказательство, то чему равны три неполных доказательства? Согласно правильному методу сложения вероятностей, полное доказательство невозможно составить не только из двух неполных доказательств, но и из любого количества неполных доказательств, потому что при сложении вероятностей нужно не складывать их, а умножать.
Что подводит нас к очередному закону, правилу сложения вероятностей: «Если два вероятных события, А и B, не зависят друг от друга, то вероятность того, что А и B произойдут, равна произведению их отдельных вероятностей». Предположим, каждый год у человека женатого вероятность развестись равна примерно 1 к 50. С другой стороны, каждый год у полицейского вероятность погибнуть при исполнении равна 1 к 5 000. Какова вероятность для женатого полицейского развестись и погибнуть в одном и том же году? Согласно вышеприведенному принципу, если события независимы друг от друга, шансы окажутся примерно такими: 1/50 × 1/5 000, то есть 1/250 000. Конечно же, события эти не являются независимыми друг от друга, они связаны: если полицейский погибнет, как он, черт возьми, может развестись? В таком случае вероятность такого исключительного невезения на самом деле получается чуть менее 1 из 250.000.
Но почему умножение, а не сложение? Предположим, у вас фотографии 100 парней, с которыми вы познакомились через сайт знакомств в Интернете, тех самых парней, в профиле у которых висит фотография, напоминающая Тома Круза, а в жизни они скорее смахивают на Дэнни Де Вито. И вот вы подбираете наиболее привлекательных кандидатов. Предположим также, что на оборотной стороне каждой фотографии вы пишете два качества парня, к примеру, честный («да» или «нет») и привлекательный («да» или «нет»). И, наконец, предположим, что 1 из 10 возможных родственных душ получает в каждом случае «да» или «нет». Сколько парней из 100 пройдут тест по обеим категориям? Возьмем честность как основную черту (впрочем, можно основной сделать и привлекательность). Поскольку 1 из 10 получает «да» в категории «честный», в итоге останутся 10 парней из 100. Сколько парней из этих 10 окажутся привлекательными? Снова 1 из 10. В итоге у вас остается одна фотография. Первые 10 из 100 снижают вероятность на 1/10, то же самое происходит и при следующем отборе – 1 из 10. Как результат, 1 из 100. Вот почему мы умножаем. И если ваши требования не ограничиваются честностью и привлекательностью, придется все умножать и умножать, так что… удачи!
Прежде чем мы продолжим, стоит обратить внимание на одну важную деталь: условие «если два вероятных события, А и В, не зависят друг от друга». Предположим, в самолете осталось 1 свободное место, а регистрацию не прошли еще 2 пассажира. Предположим, что работники аэропорта по своему опыту знают: в 2 из 3 случаев пассажир, забронировавший место, все же прибывает. Воспользовавшись правилом умножения, бортпроводница у входа на посадку может прийти к следующему выводу: вероятность того, что ей придется иметь дело с недовольным пассажиром, равна 2/3 × 2/3, то есть примерно 44 %. С другой стороны, вероятность того, что пассажир не явится вовсе, а самолет так и улетит с одним незанятым местом, равна 1/3 × 1/3, то есть примерно 11 %. Но это при условии того, что пассажиры не зависят друг от друга. А если, скажем, они летят вместе? В таком случае вышеприведенные выкладки не действуют. Вероятность того, что прибудут оба пассажира, равна 2 из 3 – такая же, что и вероятность появления одного пассажира. Важно не забывать, что суммарная вероятность из простых вероятностей получается только при условии, если события никоим образом не связаны друг с другом.
Правило, которым мы только что воспользовались, вполне возможно применить и к римской идее неполных доказательств: вероятность ошибочности двух независимых друг от друга неполных доказательств равна 1 из 4, таким образом, два неполных доказательства составляют 3/4 доказательства, а не целое. Римляне применили сложение там, где следовало применить умножение.
Однако существуют ситуации, в которых вероятности следует суммировать, и тут мы переходим к следующему закону. Потребность в нем возникает, когда нам надо узнать: каковы шансы того, что произойдет одно либо другое событие, в противоположность предыдущей ситуации, когда нужно было узнать: каковы шансы того, что и одно и другое событие произойдут вместе. Закон гласит: «Если событие состоит из ряда элементарных исходов A, B, C и т. д., то вероятность A или B равна сумме отдельных вероятностей A и B, а сумма вероятностей всех возможных исходов (A, B, C и т. д.) равна 1 (те. 100 %)». Если вы хотите узнать, какова вероятность того, что два независимых друг от друга события, А и В, произойдут, вам надо будет произвести умножение; если вы хотите узнать вероятность того, что любое из двух взаимоисключающих событий, А или В, произойдет, вы производите сложение. Вернемся к нашему самолету. Когда бортпроводнице нужно будет суммировать вероятности, а не умножать их? Предположим, она хочет узнать, какова вероятность того, что явятся либо оба пассажира, либо не явится ни один. В таком случае она должна сложить отдельные вероятности, которые согласно произведенным нами выше подсчетам будут равны 55 %.
Эти три правила, такие простые, и лежат в основе теории вероятностей. Если применять их должным образом, можно многое понять в механизмах природы и повседневной жизни. Принимая решения, мы постоянно пользуемся этими правилами. Однако, как и римские законодатели, не всегда корректно.
Легко задним числом качать головами и писать книжки вроде «Этих ужасных римлян» («Схоластик», 1994). Но чтобы предупредить ничем не оправданное самодовольство, в заключение этой главы рассмотрим некоторые способы, при помощи которых те самые основные правила, о которых я рассказал, могут быть применены и к нашей правовой системе. Оказывается, этого достаточно, чтобы отрезвить любого опьяненного своим культурным превосходством.
Радует тот факт, что в наше время неполных доказательств не существует. Однако существует что-то вроде 999.000/1.000.000 доказательства. Об этом знают специалисты, которых привлекают на уголовном процессе к анализу ДНК с места преступления на предмет ее совпадения с ДНК подозреваемого. Насколько надежны такие сравнения? Когда впервые ввели анализ ДНК, целый ряд специалистов отметили: теперь ошибка исключена. В наше же время признают, что вероятность совпадения ДНК с места преступления с ДНК случайного человека равна менее 1 из 1 млн или 1 из 1 млрд. При такой-то вероятности едва ли можно винить присяжного за мысли вроде: «Тюрьма по нему плачет!». Но существует и другая статистика, в которую присяжных обычно не посвящают, и связана она с тем фактом, что совершают ошибки лаборатории: когда берут образец или производят с ним манипуляции, когда случайно путают образцы, подменяют один другим, неверно интерпретируют результаты или же ошибаются в отчетах. Каждая из этих ошибок случается редко, однако не реже совпадения образца ДНК с ДНК случайного человека. К примеру, в филадельфийской криминалистической лаборатории признались, что при расследовании случая изнасилования перепутали контрольный образец обвиняемого с образцом жертвы, да и в компании «Селлмарк Диагностикс», выполняющей анализы, рассказали о подобном случае[49]. К сожалению, сила данных по ДНК анализу такова, что оклахомский суд, основываясь на этих данных, приговорил некого Тимоти Дарема к более чем 3 тыс. лет тюремного заключения, и это несмотря на показания одиннадцати свидетелей, которые утверждали, что на момент совершения преступления Дарем находился в другом штате. Оказалось, что на начальном этапе анализа в лаборатории не удалось полностью разделить ДНК насильника и ДНК жертвы, в результате чего получившаяся комбинация дала положительный результат при сравнении с ДНК Дарема. Позднее повторный анализ выявил ошибку и Дарема выпустили, однако к тому времени он провел за решеткой почти четыре года[50].
Данные подсчетов частоты ошибок, возникших по вине человека, различаются, однако многие специалисты говорят о примерно 1 %. Но так как частоту ошибок по многим лабораториям никто не проверял, в судах редко принимают во внимание показания относительно подобной общей статистики. Даже если бы и принимали, как бы присяжные смогли оценить их? Большинство присяжных допускают, что при наличии двух типов ошибок – 1 из 1 млрд при случайном совпадении и 1 на 100 при ошибочном совпадении в лаборатории – общая частота ошибок должна находится где-то посередине, скажем, 1 из 500 млн. Цифра, по мнению присяжных, не дающая поводов для обоснованного сомнения.
А ход мысли такой. Раз обе ошибки крайне маловероятны, можно не обращать внимания на вероятность и случайного совпадения, и ошибки лаборатории. Следовательно, находим вероятность того, что случится либо одна ошибка, либо другая. Что, по правилу сложения, равно: вероятность ошибки лаборатории (1 из 100) + вероятность случайного совпадения (1 из 1 млрд). Поскольку второе в 10 млн меньше первого, то в весьма хорошем приближении вероятность обеих ошибок равна вероятности более вероятной ошибки, то есть, 1 из 100. Таким образом, можно пренебречь предупреждением специалистов о возможности случайного совпадения, и обратить внимание на гораздо более вероятный риск лабораторных ошибок. А ведь зачастую суды не позволяют адвокатам предоставлять эти данные! Выходит, что мнения о надежности анализа ДНК преувеличены.
И это не отдельный вопрос. Использование математических выкладок в современной правовой системе сопряжено с затруднениями ничуть не в меньшей степени, чем в Риме много столетий назад. Одним из наиболее известных дел, служащих примером правильного и неправильного применения вероятности в юриспруденции, является дело «Штат против Коллинзов», слушания по которому проходили в 1968 г. в калифорнийском Верховном суде[51]. Вот выдержка из судебного решения:
«18 июня 1964 г. около 11:30 миссис Хуанита Брукс, совершавшая покупки, шла вдоль переулка в Сан-Педро, г. Лос-Анджелес. За собой она катила тележку с плетеной корзиной, в которой лежали продукты, а поверх – кошелек. Миссис Брукс опиралась на трость. Когда она наклонилась, чтобы поднять пустую коробку, ее внезапно сбил человек – она не видела и не слышала его приближения. После падения миссис Брукс не сразу пришла в себя – она больно ударилась. Подняв голову, миссис Брукс успела заметить убегавшую молодую женщину. По словам миссис Брукс, женщина была среднего сложения, одета «во что-то темное», а о цвете волос миссис Брукс отозвалась как о «чем-то среднем между русым и светлой блондинкой», но светлее, чем волосы обвиняемой Джанет Коллинз, как выяснилось во время суда. Сразу после случившегося миссис Брукс обнаружила, что исчез ее кошелек, в котором было долларов 35 или 40.
Примерно в то же самое время, как произошло ограбление, Джон Басс, живущий в том же переулке, только в самом конце, поливал газон перед домом. Его внимание привлекли «плач и крики». Он повернулся на звуки и увидел, как из переулка выбегает женщина и садится в желтую машину через дорогу. Машину тут же завели; она рванула, на скорости объезжая другую машину, и при этом проехала совсем рядом с Бассом. Басс заметил, что за рулем сидел негр с усами и бородой… Другие свидетели описывали машину как желтую, желтую с кремово-белым верхом, желтую с верхом цвета яичной скорлупы. О самой машине отзывались как о большой либо средних размеров».
Через несколько дней после ограбления лос-анджелесский полицейский заметил желтый «линкольн» с кремово-белым верхом – машина стояла у дома обвиняемых. Полицейский вступил с ними в разговор, объясняя, что расследует ограбление. Он отметил, что внешность подозреваемых соответствовала описанию свидетелей, за исключением бороды у мужчины, впрочем, мужчина сказал, что раньше носил бороду. В тот же день, только позднее, полиция арестовала подозреваемых, ими оказались Малькольм Рикардо Коллинз и его жена Джанет.
Улик против подозреваемой пары было недостаточно, и дело строилось в основном на их опознании жертвой и свидетелем, Джоном Бассом. К несчастью для обвиняющей стороны, ни миссис Брукс, ни Джон Басс не годились в качестве главных свидетелей. Миссис Брукс не могла опознать Джейн как исполнителя преступления, а водителя машины вообще не видела. Джон Басс не видел саму преступницу, а из нескольких лиц, предъявленных к опознанию, не смог с уверенностью показать водителя. Казалось, дело разваливается.
И тут появляется главный свидетель, который в бумагах суда записан всего лишь как «учитель математики из государственного колледжа». Этот свидетель сделал заявление: факта того, что обвиняемые были «белой женщиной со светлыми волосами, завязанными в хвост… [и] негром с бородой и усами», который сидел за рулем частично желтой машины, достаточно для признания пары виновной. Чтобы наглядно доказать свое утверждение, обвиняющая сторона представила следующую таблицу, слово в слово приведенную из решения суда:
Учитель математики, выступавший со стороны обвинения, сказал, что к этим данным применимо правило умножения вероятностей. Умножая все вероятности, можно прийти к выводу, что шанс Коллинзов на соответствие всем этим четким характеристикам равен 1 из 12 млн. Соответственно, по словам обвинителя, можно заключить, что вероятность Коллинзов оказаться невиновными равна 1 из 12 млн. Затем обвинитель отметил, что эти отдельные вероятности являются оценочными показателями, и предложил присяжным высказать свои собственные догадки, а затем перейти к математическим подсчетам. Сам он, продолжал обвинитель, полагает, что показатели достаточно скромные; у него вероятность с учетом факторов приближается к 1 из млрд. Присяжные согласились и вынесли обвинительный приговор.
Что здесь не так? Во-первых, как мы уже убедились, чтобы получить суммарную вероятность путем умножения отдельных вероятностей, эти отдельные вероятности должны быть независимыми друг от друга, а в данном случае это явно не так. К примеру, в таблице вероятность «негра с бородой» равна 1 из 10, а «мужчины с усами» – 1 из 4. Но большинство бородатых мужчин носят и усы, поэтому если был замечен «негр с бородой», вероятность того, что у наблюдаемого мужчины есть усы, уже не равна 1 из 4, она гораздо выше. Это несоответствие может быть устранено, если убрать категорию «негр с бородой». В таком случае согласно правилу умножения вероятностей получится 1 из 1 млн.
Однако в анализе допущена и другая ошибка: вероятность, указанная выше, – что произвольно выбранная пара совпадет по описанию с описанием подозреваемых – не является искомой вероятностью. Скорее, это вероятность того, что пара, отвечающая всем приведенным характеристикам, является виновной. Первая вероятность может быть равной 1 из 1 млн. Что до второй, то при условии, что население района, прилегающего к району совершения преступления, составляет несколько миллионов, можно с достаточным основанием говорить о 2–3 парах, соответствующих описанию. В таком случае вероятность того, что пара, отвечающая описанию, виновна, основывается на одном только этом доказательстве (в принципе, единственном, имевшемся в распоряжении обвинения) и равна всего 1 из 2 или 3. И где здесь отсутствие обоснованного сомнения? В результате Верховный суд отменил решение об обвинительном приговоре.
Применение принципов вероятности и статистики во время судебных заседаний наших дней все еще вопрос спорный. В деле Коллинзов калифорнийский Верховный суд осмеял так называемое «математическое разбирательство дела», однако не исключил возможности «корректного использования математических методов». В последующие годы в судах редко рассматривались доводы с использованием математических доказательств, но даже когда адвокаты с судьями и не прибегали к вероятности или математической теореме открыто, зачастую они все же использовали их при обосновании своих доводов, как и присяжные, когда оценивали доказательства. Более того, доводы с привлечением статистических данных становятся все более значимыми благодаря необходимости оценивать доказательства с привлечением анализа ДНК. К сожалению, все возрастающая необходимость не обернулась все возрастающим пониманием со стороны адвокатов, судей, присяжных. Томас Лайон, преподающий теорию вероятностей и право в Университете Южной Калифорнии, объясняет это так: «Очень немногие студенты-правоведы выбирают в качестве дополнительной дисциплины курс теории вероятностей, и очень немногие адвокаты считают, что такая теория вообще применима в юриспруденции»[52]. В области права, как нигде, благодаря пониманию теории случайности возможно докопаться до самой глубины, открыв истину, однако под силу это только тем, кто умеет пользоваться соответствующими методами. В следующей главе мы познакомимся с жизнью первого человека, взявшегося за систематическое изучение этих методов.
Глава 3. Продираясь через дебри вероятностей
Во второй половине XVI в. и до 1576 г. на улицах Рима можно было встретить странно одетого старика с неровной походкой, который время от времени что-то кричал, адресуя свои вопли непонятно кому. Когда-то он был знаменит по всей Европе – известный астролог, врач, лечивший придворную аристократию, профессор кафедры медицины в Университете Павии. Ему принадлежат изобретения, актуальные и поныне, в том числе первый замок с секретом и карданный вал, используемый в наше время в автомобилестроении. Он опубликовал 131 книгу по самым разным темам в философии, медицине, математике и прочих науках. Однако к 1576 г. он превратился в человека с богатым прошлым и без будущего, доживая свой век в забвении и унизительной бедности. В конце лета того года он в последний раз сел за стол и написал оду своему любимому сыну, старшему, которого казнили шестнадцать лет назад, в возрасте двадцати шести лет. Старик умер 20 сентября, когда до юбилея – семидесяти пяти лет – оставалось всего несколько дней. Он пережил двух из трех своих детей; пока он умирал, его единственный оставшийся в живых сын поступил на службу Инквизиции – пытать еретиков. Такое теплое местечко досталось ему в качестве награды за свидетельствование против своего же отца.
Перед смертью Джероламо Кардано сжег 170 неопубликованных рукописей[53]. Те, кто просматривал потом вещи Кардано, нашли 111 сохранившихся рукописей. Одна из них, написанная несколько десятилетий тому назад, выглядела так, будто к ней не раз возвращались – это было исследование из тридцати двух главок. Называлось оно «Трактат об азартных играх» и было первым письменным трудом по теории вероятностей. Люди тысячелетиями сталкивались с различными факторами неопределенности, причем это были не только азартные игры. Получится ли у меня перейти пустыню до того, как кончится вся вода? Опасно ли оставаться под скалой, когда землю трясет вот как прямо сейчас? Означает ли улыбка этой пещерной девчонки, которая любит рисовать бизонов на скалах, что я ей приглянулся? И все же Кардано первым дал обоснованный анализ того направления, в котором развиваются игры или другие неопределенные процессы. Его проникновение в суть механизма действия вероятности обернулось принципом, который мы назовем законом пространства элементарных событий. Закон этот представил новую идею и новую методологию, он лег в основу математического описания неопределенности, которым стали пользоваться в последующие столетия. Методология проста, это аналог законов вероятности, которыми пользуются при погашении чековой книжки. Однако, применяя этот простой метод, мы сможем рассмотреть многие вопросы системно, в то время как иной, несистемный подход породил бы лишь путаницу. Чтобы на деле показать и применение, и силу закона, рассмотрим одну задачу. Ее постановка проста, да и решение не требует знаний высшей математики, но об нее наверняка споткнулось больше народу, чем о любую другую задачу за всю историю изучения случайности.
Перед смертью Джероламо Кардано сжег 170 неопубликованных рукописей[53]. Те, кто просматривал потом вещи Кардано, нашли 111 сохранившихся рукописей. Одна из них, написанная несколько десятилетий тому назад, выглядела так, будто к ней не раз возвращались – это было исследование из тридцати двух главок. Называлось оно «Трактат об азартных играх» и было первым письменным трудом по теории вероятностей. Люди тысячелетиями сталкивались с различными факторами неопределенности, причем это были не только азартные игры. Получится ли у меня перейти пустыню до того, как кончится вся вода? Опасно ли оставаться под скалой, когда землю трясет вот как прямо сейчас? Означает ли улыбка этой пещерной девчонки, которая любит рисовать бизонов на скалах, что я ей приглянулся? И все же Кардано первым дал обоснованный анализ того направления, в котором развиваются игры или другие неопределенные процессы. Его проникновение в суть механизма действия вероятности обернулось принципом, который мы назовем законом пространства элементарных событий. Закон этот представил новую идею и новую методологию, он лег в основу математического описания неопределенности, которым стали пользоваться в последующие столетия. Методология проста, это аналог законов вероятности, которыми пользуются при погашении чековой книжки. Однако, применяя этот простой метод, мы сможем рассмотреть многие вопросы системно, в то время как иной, несистемный подход породил бы лишь путаницу. Чтобы на деле показать и применение, и силу закона, рассмотрим одну задачу. Ее постановка проста, да и решение не требует знаний высшей математики, но об нее наверняка споткнулось больше народу, чем о любую другую задачу за всю историю изучения случайности.