1 – сетчатка; 2 – зрительный нерв; 3 – перекрест зрительных нервов; 4 – зрительный тракт; 5 – боковое коленчатое тело; 6 – подушка зрительного бугра; 7 – верхние бугорки четверохолмия; 8 – зрительный бугор; 9 – кора; 10 – скорлупа; 11 – бледный шар; 12 – хвостатое ядро; 13 – переднее ядро зрительного бугра; 14 – боковое ядро зрительного бугра; 15 – медиальное ядро зрительного бугра; 16 – срединный центр; 17 – полулунное ядро; 18 – неопределенная зона; 19 – субталамическое ядро; 20 – красное ядро; 21 —черное вещество; 22 – миндалевидное ядро
 
   Однако для обоснования принципов структурно-функциональной организации мозга необходимо было и выявление механизмов, факторов надежности мозга и мозговых систем, и построение хотя бы теоретических предположений о том, как, возникнув в процессе эволюции, мог сохраниться орган с таким количеством степеней свободы, с такой избыточностью. Этим вопросом наша лаборатория целенаправленно занимается с начала 70-х годов (Бехтерева, 1971). Что касается механизмов надежности мозговых систем, то, по-видимому, первым обусловливающим их фактором является уже доказанный факт обеспечения различных функций мозга не одной структурой, а системой со многими звеньями различной степени необходимости. Наличие системы допускает принципиальную, хотя нередко и трудно реализуемую возместимость потери ее отдельного звена. По-видимому, хотя разрушение (лечебный лизис) даже нескольких гибких звеньев мозговых систем обеспечения психических функций может не вызывать заметного дефекта, наличие таких звеньев – и прежде всего с точки зрения возможностей функционирования системы в разных условиях внешнего мира и внутренней среды мозга – также является одним из факторов надежности. Фактором, обеспечивающим увеличение возможностей мозга в целом и надежности мозговых систем, является их медиаторная полибиохимичность при преимущественном значении какого-то определенного вида медиации для системы, обеспечивающей какой-то, также определенный вид деятельности.
   Рис. 5. Схема проводящих путей и связей слухового анализатора с другими образованиями мозга. 1 – предвернослуховой нерв; 2 – дорсальное улитковое ядро; 3 – вентральное улитковое ядро; 4 – верхняя олива; 5 – трапециевидное тело; 6 – ядро боковой петли; 7 – медиальное коленчатое тело; 8 – нижние бугорки четверохолмия; 9 – кора; 10 – скорлупа; 11 – бледный шар; 12 – хвостатое ядро; 13 – переднее ядро зрительного бугра; 14 – боковое ядро зрительного бугра; 15 – медиальное ядро зрительного бугра; 16 – срединный центр; 17 – полулунное ядро; 18 – неопределенная зона; 19 – субталамическое ядро; 20 – красное ядро; 21 – черное вещество; 22 – миндалевидное ядро; 23 – ограда
 
   Важнейшим фактором надежности мозга служит полифункциональность многих его структурных образований или, точнее, их нейронных популяций, которая предопределяет не только возможность возникновения новых звеньев мозговых систем в процессе обучения, но и объединения мозговых структур в функциональные системы, позволяя формировать в мозгу своего рода «перекрестки или узловые станции». Следует, однако, признать, что все эти четыре фактора надежности имеют относительный характер и, что важно учитывать, взаимодополняющий.
   По-видимому, факторы надежности абсолютного значения найти так же невозможно, как невозможно создать вечный двигатель. Даже если бы все клетки мозга и все их контакты можно было бы при обучении задействовать в любых желаемых направлениях, конечное количество этих клеток и контактов явилось бы ограничением, хотя в биологических размерностях оно и воспринимается как бесконечно большое. Однако, несмотря на то что целенаправленное включение любых клеток, зон и структур мозга невозможно, само количество клеточных элементов и их контактов несомненно служит одним из важнейших факторов надежности мозга. И наконец, можно утверждать, что важнейшим фактором надежности мозговых систем, их элементов является групповой ансамблевый характер их организации.
   В обобщающем руководстве 1977 года П. Г. Костюк пишет, что механизм образования временны́х связей, по-видимому, бесполезно искать в синаптических процессах отдельной корковой клетки, реальнее выявить его при изучении поведения целой их совокупности, в связи с чем интерес представляет исследование активности не отдельных клеток, а их популяций.
   Принцип ансамблевой организации нервной системы выдвигается и развивается А. Б. Коганом (1970, 1972, 1973) и поддерживается очень многими исследователями (John, 1976, 1977; Shaw, 1977). Так, Джон пишет об ансамблевой организации нейронов в обеспечении высшей нервной деятельности, а значение нейронов в этом случае определяется их участием в ансамбле. Шоу (Shaw, 1977) подчеркивает роль модификации синапсов и электротонических контактов в организации ансамблей. Элемент системы представлен не одной клеткой, а динамическим, функционалыно объединенным сообществом нейронов, в котором имеются и различные дублирующие друг друга клетки. Мы еще далеки от раскрытия природы появления у функционально объединенной группы клеток свойств, отличных от свойств суммы клеток. Предстоит еще немало работы по выяснению этого важнейшего не только для физиологии, но и общей биологии вопроса. Однако ансамблевый принцип с вероятностным функционированием не самого ансамбля, а возможностью вероятностного включения однотипных нейронов в сходных условиях, их взаимодействия также с группой однотипных нейронов в пределах динамического ансамбля, возможности которого определяются нейронной популяцией, на основе которой он формируется, – исключительно значимый фактор надежности звена системы.
   Процессы, протекающие внутри ансамбля и формирующие кодовые элементы (Бехтерева и др., 1977а), можно себе представить пока условно следующим образом. По различным причинам создаются условия для включения в деятельность одного или группы однотипных нейронов данной популяции. Далее формирование в ансамбле более или менее сложного рисунка разрядов с определенными интервалами связано с квантующей ролью синаптической передачи или включением другой группы нейронов популяции, детерминированной иным свойством сложного сигнала. О различиях близко расположенных клеток в глубоких структурах и их объединении специфическими связями по крайней мере по отношению к одному из глубоких образований мозга (ретикулярной формации) писал в 1977 году П. Г. Костюк. Иными словами, вслед за активацией нейрона (нейронов) одного типа возникает активация нейрона (нейронов) второго, затем третьего типа, возможно – четвертого. Включаются различные механизмы положительной и тормозной связи – идет мозговое описание сложного внешнего сигнала по схеме, скорее всего близкой к предложенной на основе экспериментальных разработок Эммерсом (Emmers, 1970). В популяции, ансамбле может быть, естественно, и большее, и меньшее количество групп сходных нейронов, но это уже выходит за рамки принципов структурно-функциональной организации мозга, рассматриваемых в данной главе.
   Хорошо известно, как важна постоянная деятельность органа и его элементов для сохранения его возможностей и как до обидного легко наступает утрата этих возможностей без тренировки у отдельного индивидуума. А следующий вновь появляется на свет со всеми теми же предпосылками развития. Видовые потери происходят более сложно, здесь включаются другие механизмы. Однако для того чтобы какой-то орган не только не утратил своих первоначальных возможностей (а, по-видимому, в отношении мозга человека это так), но и мог развивать их в онтогенезе, в самом мозгу должен существовать какой-то механизм. В данном случае можно думать и о том, что механизм, исключительно важный для индивидуального развития и сохранения возможностей мозга индивидуума для обучения, играет какую-то роль и в сохранении возможностей вида. Речь идет о следующем.
   Известно, что в мозгу – и не только человека – есть механизм, обеспечивающий избыточные возможности при встрече с каждой новизной. Те, кому удалось «подсмотреть», что происходит в мозгу момент, когда обстановка оказывается новой, когда неожиданно совершается переход к старой обстановке, когда есть хоть какие-нибудь основания для того, чтобы удивиться, могут сказать, что мозг в этих случаях как бы проигрывает массу готовностей к новой ситуации.
   В это время активируется огромное количество нервных элементов, включается масса связей между различными зонами мозга. Весьма вероятно, что такая реакция на новизну и является чем-то вроде естественной тренировки мозга, вроде механизма, который, обеспечивая избыточную готовность к каждой конкретной, даже маленькой новизне данной минуты, сохраняет возможности индивидуума к обучению на протяжении большей части жизни. А может быть, сохранил в прошедшие долгие века и видовые возможности мозга человека? Этим не исчерпываются, безусловно, все механизмы надежности мозга. В книге Л. П. Гримака (1978) экспериментально подтверждено высказанное нами в 1971 году предположение о возможности работы мозга по разным шкалам времени.
   В 1971 году в этом плане мы рассмотрели пример Арраго, на глазах у изумленных зрителей осуществлявшего буквально в секунды сложнейшие математические операции. Этот пример – не единственный. В «Литературной газете» (№ 29, 19 июля 1978 года) была опубликована статья об инженере Ю. З. Приходько, соперничающем по быстроте осуществления сложных вычислительных операций с ЭВМ. Увы, в век компьютерной техники его удивительные возможности не находят должного применения. Мы полагаем, что объяснить эти феномены можно, предположив, что человек решает задачи принципиально по тем же алгоритмам, что и обычно, но по другой шкале времени, на которую без его ведома (бессознательно) переключается мозг, причем, возможно, и не целиком, а в пределах структур и систем, необходимых для данной деятельности. Вполне понятно, что этот вопрос не только интересно, но и очень важно исследовать возможно детальнее.
   Вопрос о надежности работы мозга важен не только для раскрытия законов в теоретической науке о мозге. Он важен для практики медицины. Он важен для кибернетики и, вероятно, для многих других областей науки.

Глава третья
Общие механизмы мозга и болезнь

   Когда говорят, что в медицине есть нечто теоретическое и нечто практическое, то не следует думать, как воображают многие исследователи данного вопроса, будто этим хотят сказать, что одна часть медицины – познание, а другая часть – действие. Напротив, тебе до́лжно знать, что под этим подразумевается нечто другое. А именно: каждая из двух частей медицины – не что иное, как наука, но одна из них – это наука об основах медицины, а другая – наука о том, как ее применять.
Ибн Сина

   Все более увеличиваются возможности терапии и хирургии болезней нервной системы. В 40-е годы было страшно подойти к так называемым беспокойным отделениям психиатрических больниц. В 50-е годы началось широкое применение фенотиазиновых препаратов, которое позволило существенно изменить весь облик этих отделений. В те же 50-е годы в первых десятках публикаций звучало казавшееся законным торжество по поводу высокого эффекта этих лекарств, считавшихся тогда безвредными. Слов нет, применение фенотиазиновых препаратов действительно открыло новый этап в психиатрии. С позиций сегодняшнего дня – это почти революция.
   Почти – так как надежды на то, что эти препараты будут излечивать одно из самых тяжелых психических заболеваний – шизофрению, не оправдались. Они позволяют регулировать (контролировать) состояние больных, причем при наиболее тяжелых формах этого комплекса заболеваний, объединяемых под общим названием шизофрении, приходится применять фенотиазиновые и другие психотропные препараты нередко в заведомо токсических дозировках. Тогда, когда появились первые данные о побочных эффектах психотропных средств, речь шла о достаточно легко корригируемых соматических осложнениях. Далее выявились и значительно более грозные: применение больших дозировок при тяжелых и тяжелейших формах шизофрении вызывало паркинсоноподобный синдром или паркинсонизм в той форме, в которой он наблюдается в неврологической и нейрохирургической клиниках как самостоятельное, тяжелое неврологическое заболевание. В комплекс лечебных препаратов психически больным стали заранее включать антидот – артан – или аналогичные антипаркинсонические средства. Это позволило повышать дозировки фенотиазиновых и других психотропных препаратов. Однако с сожалением можно констатировать, что поистине трагический ранее диагноз шизофрении не перестал внушать страх врачам и родственникам больных: лечение шизофрении требует новых открытий в области фармакологии и, конечно, более глубокого проникновения в механизмы здорового и больного мозга.
   Так называемые малые транквилизаторы – и в первую очередь вещества бензодиазепинового ряда – имеют как будто бы лучшую судьбу в клинике неврозов. Они позволяют контролировать важнейший патогенетический и частично этиологический их компонент – эмоциональные расстройства со всем сопровождающим их комплексом вегетативных реакций. Однако эти препараты для успешного лечения тяжелого невроза должны применяться длительно, иногда годами, и, хотя их побочные эффекты выражены слабее, нередко, особенно при попытках применить ударную дозировку и добиться скорого явного эффекта, у больных развиваются осложнения. Правда, следует отметить, что атаксия и тремор, как правило, при уменьшении дозировки препаратов исчезают сами, не требуя дополнительного лечения.
   По поводу неврозов написано большое количество книг, предприняты попытки понять механизмы заболевания, однако до сих пор в этой проблеме остается множество теоретических пробелов, отражающихся на эффективности лечения. Так, при действии вредоносных факторов невроз развивается не у всех и не сразу, а спустя некоторое время, хотя наблюдались случаи и практически внезапного развития заболевания. Фармакологическое лечение невроза, как правило, наиболее эффективно в ранней стадии; в поздних случаях многолетнее лечение даже небольшими дозировками малых транквилизаторов создает вполне реальную необходимость поддерживающей терапии, когда заболевания уже нет. Речь идет о зависимости от препарата, но врачам хорошо известно, что эта зависимость не имеет той остроты, которая страшна при наркоманиях, той разрушительной силы, которая заставляет наркомана идти на преступление ради получения ампул с морфием. Просто в случае отмены бензодиазепиновых препаратов у некоторых, казалось бы, давно излечившихся от тяжелого невроза людей может возникнуть целый ряд вегетативных расстройств, которые наилучшим образом устраняются продолжением лечения.
   Как будто всем известная, а потому и простая проблема. Эмпирически найденные приемы борьбы с осложнениями, возникающими в период отмены препаратов, в целом помогают. Однако хорошо известны случаи, когда тяжесть заболевания требует применения огромных, чреватых осложнениями дозировок малых транквилизаторов, а также и такие варианты неврозов, при которых все хитроумные приемы эмпирически найденных противодействий осложнениям при отмене препаратов не помогают. Не будем закрывать глаза на эти факты. Они существуют. Путь к решению таких задач в медицине в создании новых фармакологических препаратов более высокой эффективности, включающих одновременно и многоплановые антидоты, и в проникновении в механизмы мозга человека. И, что очень важно подчеркнуть, не только физиологические, но и молекулярно-биологические. Весьма вероятно, что для понимания механизмов шизофрении необходима и дальнейшая расшифровка путей кодирования слов и мыслительных операций, и изучение роли состояния различных медиаторных биохимических систем и баланса пептидов в мозгу. Все большее значение приобретают исследования общих и частных механизмов мозга человека с позиций биохимии и молекулярной биологии.
   
Конец бесплатного ознакомительного фрагмента