Наиболее удобны для изучения годовых колец калифорнийские секвойи. Во-первых, стволы толстенные, поэтому считать годовые кольца легко – каждое кольцо толщиной в палец. Во-вторых, секвойи живут тысячи лет. Жалко, конечно, такое дерево – толщиной с дом, помнящее Джорджа Вашингтона! – спиливать, но зато, изучая спил, можно заглянуть сразу на сотни лет назад. Кстати, теперь спиливать деревья вовсе необязательно, поскольку изощренная западная наука изобрела малотравматичный способ получения нужной информации – при помощи специальных тонких буров, ими можно вынуть керн, не губя дерево.
Что же видно по кольцам? По кольцам видно, хорошо было дереву в тот период или плохо. Если дереву хорошо, оно быстро толстеет, годовые кольца получаются широкие. А вот если дереву чего-то не хватает, годовое кольцо получается узкое. Но вот чего не хватает дереву для полноценного роста – тепла или влаги? То есть холодное было время или засушливое? На этот вопрос дендрохронологический метод ответить не может. И это первый недостаток дендрохронологии.
Второй недостаток заключается в том, что ширина кольца дает представление о климатических условиях только в течение вегетационного периода, то есть когда дерево растет. А в Арктике, например, вегетационный период длится всего-то два месяца. На юге – подольше. Но в любом случае кольцо, хоть и называется годичным, содержит информацию только о том, каким было лето. Вообще-то специалисты об этом знают, но с большой охотой забывают и порой пытаются трактовать данные о полученных на основании изучения колец температурах как среднегодовых. Именно так и родилась скандально-сенсационная публикация американских ученых в 1998-99 годах.
Это была бомба! Американцы решили реконструировать среднеглобальную температуру на протяжении последней тысячи лет, используя только дендрохронологические данные, причем высокоширотные. И получилось у них, что с начала XX века на планете происходит совершенно беспрецедентное потепление, которое превзошло по масштабу все, что было на протяжении реконструируемого периода. Это абсурд, в чем мы убедимся в дальнейшем.
Классический пример того, как жестоко можно ошибиться, не осознавая возможностей метода.
Есть и еще одно обстоятельство, которое необходимо отметить. Математическая обработка полученной дендрохронологической информации настолько сложна и многоступенчата, что в силу этой сложности на руках у исследователя остаются только климатические события с временным масштабом в несколько десятилетий. Столетние колебания при математической обработке срезаются. Наиболее опытные и честные дендрохронологи прямо пишут об этом, правда, очень скромно: в 20-страничной статье – натри строчки. Типа «при фильтровании удаляются гармоники…» Какие такие гармоники там удаляются, из читающих неспециалистов мало кто понимает. Тем не менее, нам с вами нужно усвоить еще один недостаток метода – даже в самых длинных дендрохронологических рядах (несколько тысяч лет) нельзя увидеть столетних и тем паче тысячелетних колебаний: «гармоники срезаются».
Но зато у дендрохронологии есть и свое преимущество: метод дает годовое разрешение. В этом его неоспоримое достоинство. Вот пример одного из корректных дендрохронологических исследований.
У нас в России секвойи, к сожалению, не растут. Поэтому уральские ученые из Института экологии растений и животных Уральского отделения РАН (Екатеринбург) давно придумали использовать для дендрохронологических исследований сибирскую лиственницу. Это замечательное дерево позволило заглянуть на четыре тысячи лет назад и отметить годы, в которые происходили экстремальные климатические события.
Выбор лиственницы может показаться странным: ну какие там годичные кольца у дерева, растущего на краю западносибирской тундры! И вправду, тоненькие. Но есть у лиственницы и преимущество. У обычного дерева с годами растет не только диаметр ствола, но и толщина коры, то есть теплоизолятор. Поэтому толстое дерево может не почувствовать удара стихии – на спилах больших деревьев находят меньше годовых колец, поврежденных летними заморозками (так называемые морозобойные кольца). А вот лиственница стойкой опадающей корой исправно сигнализирует ученым о каждой погодной неурядице. И хоть диаметр ее ствола мал, зато и толщина коры редко превышает 3–5 мм.
Изучение морозобойных колец позволило выделить годы, в которых на Полярном Урале летом температура опускалась ниже минус 5 °C – 1466, 1573, 1601, 1708, 1783, 1797, 1811, 1857, 1862, 1872, 1882, 1891, 1968 годы. Причем самые сильные заморозки пришлись на 1601, 1783, 1857, 1882 и 1968 годы. (1601 год нам уже знаком. Морозобойные кольца, соответствующие этому году, есть и у сосен, растущих в Северной Америке. 1783 год знаком нам тоже. Сухой туман с 24 мая по 8 октября этого года покрывал территорию от Норвегии до Сирии, от Англии до Алтая. В российской столице в середине лета, как отмечали современники, «солнечный свет был слабее, чем свет полной Луны». Это постарался вулкан Лаки в Исландии. Про остальные годы, возможно, мы еще поговорим, если случай представится.)
Мало выбрать хорошую лабораторию для анализа образцов, нужно еще правильно отобрать сами образцы. Уральцы свои образцы отобрали правильно – они брали одиноко растущие лиственницы. Это принципиально! Не важно, с чем вы имеете дело – с кустами или деревьями, но отбирать в качестве образцов необходимо только отдельно стоящие деревья на границе сообщества – на границе лесотундры, леса, альпийских лугов: они острее чувствуют удары судьбы. В общем, нужны деревья-маргиналы, которые меньше зависят от сообщества и больше от климата. У них сигнал ярче.
Штук двадцать строгих правил отбора образцов честно изложены в специальных брошюрках, изданных на газетной бумаге тиражом эдак в 200 экземпляров. Никто их не читает, кроме фанатов. А зря, ибо, как мы уже отмечали, неправильно отобранный образец плюс левая лаборатория могут загубить любую работу. А поскольку фанатов и хороших лабораторий много меньше, чем любопытных исследователей, 70–80 % работ по дендрохронологии годятся только на то, чтобы вытирать ими задницу.
Палинология
Название метода произошло от английского слова pollen – «пыльца». Палинология позволяет реконструировать температуру и уровень осадков по ископаемым остаткам спор и пыльцы растений. Почему это оказывается возможным?
Уже давно в науке существует двухпараметрическая диаграмма Холдреджа. По вертикали на ней отложена среднегодовая температура, а по горизонтали – среднегодовое количество осадков. На самой диаграмме нанесены линии, ограничивающие все известные на свете растительные сообщества – арктическая тундра, тайга, широколиственные леса, пустыня, полупустыня, лесостепь, степь, саванна, тропические леса… То есть, располагая всего двумя параметрами – среднегодовыми температурой и влажностью, можно сказать, в какой конкретно зоне вы находитесь.
Если, скажем, осадков у нас 600 мм, а среднегодовая температура 5 °C – это смешанные леса в умеренной зоне, Москва. Если осадков 4 тысячи мм, а среднегодовая температура 27 °C – влажные тропические леса. Температура -5 °C и всего 200 мм осадков – арктическая пустыня.
Иными словами, если где-то в природе мы нашли законсервированные остатки пыльцы растений, которые в состоянии датировать по времени, то получаем самый настоящий палеотермометр! Прекрасными хранилищами таких остатков являются торфяные болота. Как вы, несомненно, помните из школьных уроков природоведения, торф – это недоделанный уголь. На 98 % он состоит из растительных остатков и на 2 % – из останков животных и микроорганизмов. Торф, по сути говоря, грязь. Особую ценность этой грязи придает то обстоятельство, что скорость торфонакопления очень велика – она может достигать нескольких миллиметров в год. Это вам не геологические осадки! Извлекая из болота колонки торфа, мы имеем подробную информацию – буквально по годам.
Но как в дендрохронологии для отбора палеоклиматических проб подходят не все деревья, так и в палинологии для забора кернов подходят не все болота. Только верховые! Низинные болота совершенно нас не интересуют, потому что в них стекает вода из вышерасположенных болот, полностью перемешивая всю картину. Исследователям нужны только те болота, с которых осуществляется сток.
Далее. Совершенно не подходят для исследования болота, расположенные близко от людей. Напротив, хороши лишь те, которые находятся как можно дальше от объектов хозяйственной деятельности. Дело не в том, что в болота могут попасть «цивилизационные загрязнения» – нефтепродукты или какая-нибудь химия, это не так страшно. Страшнее биологическое загрязнение. Если болото находится в километре от садов или полей, значит там за последние несколько сотен или тысяч лет все слои торфа будут забиты помехой – пыльцой культурных растений.
Поэтому палинологи лезут в чащи тропических лесов, в сибирскую медвежью глушь, на плоскогорья Патагонии. Кстати, Россия для палинологов – отличное место, поскольку почти вся она представляет собой сплошной медвежий угол – от Чукотки до Белоруссии, и от Таймыра до Северного Кавказа.
После того как палинологи извлекают из болота торфяные керны, они изучают их по слоям: смотрят, в каком слое пыльца каких растений содержится. Причем ищется не пыльца чего-то конкретного, например, дуба или одуванчиков, а выделяется многовидовое разнообразие, ибо только десятки видов дают полную картину. Скажем, если в слоях торфа травянистые сообщества преобладают над древесно-кустарниковыми видами, значит когда-то здесь была степь. В общем принцип ясен.
Исследования показывают, что за десятки тысяч лет в одном и том же месте происходили драматические изменения. Если говорить о центральной России, то ландшафт здесь менялся от тундры и даже арктической пустыни до широколиственного леса. А дальше по соотношению пыльцы разных видов определяется среднегодовая температура и осадки. Причем точность метода составляет полградуса для среднегодовой температуры. Неплохой результат!
Клименко, занимаясь реконструкцией климата центральной части России, в свое время сам отдал дань палинологии – проводил анализы торфяных кернов западнодвинских и валдайских болот. В этих работах была воссоздана детальная климатическая история среднегодовой и среднесезонной температур, а также среднегодового количества осадков за последние 5 тысяч лет. Что же интересного выяснилось?
Оказалось, что зимы 1990-х годов не имели аналогов за пятитысячелетнюю историю климата. Они были очень теплыми! Лета же были рядовыми – гораздо более теплые лета, чем в девяностые, встречались многократно. Что же касается осадков, они были в пределах климатической нормы – здесь никаких сенсаций. Это еще раз подтвердило, что глобальное потепление более всего сказывается на высоких широтах, причем не на летних, а на зимних температурах. Что для нас с вами, любезные читатели, весьма недурственно. Впрочем, об этом мы еще поговорим в свое время. А сейчас я хочу для порядка поплакать над российской нищетой…
Из-за того, что денег у нашей науки мало, помещений для хранения образцов нет, образцы после исследования выбрасывают. Не хранят в России вещдоки былых тысячелетий. Во всем мире существуют специальные хранилища для научных образцов, а у нас душа широкая: ливанул ведро торфяной грязи в канаву – и нет образца. А зря. На Западе новые поколения исследователей порой возвращаются к старым образцам и, бывает, делают на них замечательные открытия, ведь все время появляются новые методы исследований.
Помню, когда Клименко впервые сказал мне про невозможность хранить в России образцы, я запальчиво воскликнул:
– Так надо иностранцам дарить!
– Так и делаем. Последние 10–15 лет в российскую Арктику толпами хлынули ученые из разных стран. У нас же при Совке вся Арктика была закрыта. В августе 1990 года на теплоходе «Антон Чехов» я пришел на остров Диксон. Как вы знаете, Диксон расположен необычайно далеко от всех границ. Тысячи километров в любую сторону: 3 тысячи км до Норвегии, 6 тысяч км до Аляски. Места, более далекого от каких-либо границ, в мире вообще найти сложно. И как вы думаете, кто первым поднялся на борт? Пограничники! Дурдом какой-то! Вся советская Арктика была сплошной границей неизвестно с чем. С белыми медведями, наверное. И когда этот дурдом наконец закончился, ученые всего мира на радостях поехали к нам на исследования. Они берут и вывозят образцы всего, что возможно взять, и уже забили ими все свои хранилища.
– Хорошо-то как!..
Гляциология
Гляциология изучает вечные льды. Причем необязательно в Арктике, Антарктике и Гренландии. Вечных льдов полно и у нас подносом – в Европе. Они есть во Франции, Швейцарии, Исландии, Германии… Автор во время написания этой книжки едва не уехал на один из австрийских ледников – не керны бурить, конечно, а на лыжах слегонца покататься. Но потом решил, что в Болгарии это будет сделать вдвое дешевле с тем же результатом, и отчалил в Болгарию…
И теперь, вернувшись из Болгарии, продолжаю работать на вечность, рассказывая вам о вечных льдах европейских ледников. Ледники в горах очень остро реагируют на колебания среднегодовой температуры. Чуть теплее стало – нижняя оконечность ледника подтаяла и ушла выше в горы. Похолодало – ледник опустил свой язык ниже.
Концы ледника можно точно датировать по сваленным им деревьям. Растущий ледник работает как бульдозер – он срезает деревья. А деревья – удобный объект исследования: возраст, когда дерево погибло, легко датируется радиоуглеродным методом или по годичным кольцам. Как определить срок гибели дерева по кольцам? Нужно найти в нем вулканическое (морозобойное) кольцо – оно обычно очень тонкое. На спилах американских секвой и европейских дубов, например, легко находятся вулканические кольца, соответствующие извержению Тамборы в 1815 году. Отсчитывая от 1815 года в сторону коры годовые кольца, можно легко определить год, когда дерево было срезано наступившим ледником. После чего несложно определить температуру этого года. Как это сделать? Очень просто! Известно, что температура падает на 6,5 градусов с каждым километром высоты. Иными словами падение температуры на три градуса эквивалентно подъему на высоту в полкилометра. То есть если температура в Альпах изменилась на градус, то ледник по высоте переместился на 160 м. 160 м – это по вертикали. А по горизонтали это могут быть и сотни метров, и километры. Слепой только не заметит, если ледник придвинулся на километр!
Есть в Альпах очень красивые ледники, которые люди рисуют столетиями. И даже на основе этих картинок и гравюр можно делать климатические выводы. На гравюре написан год, когда ее нарисовали, на ней всегда можно найти некие реперные точки (церковь, утес), относительно которых нетрудно определить, насколько сегодня по сравнению со временем создания гравюры переместился ледник. Гравюра, конечно, не микрометр, но никаких миллиметров здесь ловить и не нужно: можно ошибиться на 50 м, но это ошибка будет соответствовать ошибке всего в одну десятую градуса.
Здесь, правда, мы слегка отклонились от гляциологии в область исторической климатологии – такого метода, при котором климат прошлого восстанавливается по свидетельствам хронистов и описаниям современников, но страшного ничего нет, поскольку методы эти порой идут рука об руку. Скажем, знаменитый швейцарский ледник Гроссер Алетч – самый исследованный и самый тщательно датированный ледник на свете. Вокруг него нашли такое невероятное количество срезанной древесины и прочитали такое огромное количество исторических хроник, что, совместив то и другое, удалось с замечательной точностью восстановить температурную картину в этом регионе почти за 3 тысячи лет.
Однако более привычная публике разновидность гляциологии – изотопная. Все слышали, что ученые бурят антарктические льды, достают ледовые керны и вовсю исследуют их в своих лабораториях. Даже вице-президент Америки Альберт Гор летал в Антарктиду посмотреть на эти изыскания и очень впечатлился. На некомпетентного человека, интересующегося, куда идут деньги налогоплательщиков, легко произвести впечатление…
Впрочем, там действительно есть от чего прийти в восхищение. Диаметр ледяной колонки – пара десятков сантиметров. А длина – до 4 км. И достать колонку нужно не загрязненной бурильной смазкой, не треснутой, потому что если внутрь ледяного керна попадет воздух – пиши пропало. Невероятно сложная операция! И обработка образцов не менее сложна. Причем обрабатываются образцы не в Антарктиде. Ледяные керны привозят на исследования в Гренобль (Франция) или Колумбус (Америка). За тысячи километров ледяные столбики доставляют в специальных холодильных камерах, а после изучения помещают в холодильники на вечное хранение. Ледовые щиты планеты бурятся десятилетиями, и все добытые за все десятилетия керны хранятся. Да, это дорого. Но наука требует от налогоплательщиков жертв, иначе зачем вообще существуют налогоплательщики?
В лабораториях с помощью масс-спектрографий ученые устанавливают химический и изотопный состав кернов. По соотношению изотопов кислорода 18О и 16О в атмосферных осадках (то есть в снегах, которые выпали в Антарктиде и слежались в лед) определяют прежний климат. Дело в том, что изотопное соотношение очень четко коррелирует с температурой.
Разумеется, как и во всяком деле, в отборе ледовых проб тоже есть свои тонкости. Лед – так называемая реологическая жидкость. То есть жидкость, не подчиняющаяся вязкостному закону трения Ньютона. Она течет по особым законам. Ледовые слои могут складываться в складки, сминаться и оказываться друг под другом. Поэтому в одном и том же керне можно найти более молодые слои под более старыми. И если об этом не знать, запросто рискуешь получить неверные результаты. Надо сказать, правильное определение точки бурения – целое самостоятельное исследование. Тут как с болотами – бурят на ледовых куполах, откуда лед может только стекать.
Упомянутый Альберт Гор привез с ледового континента одну простую мысль (у американских либеральных демократов вообще сложных мыслей не бывает) о том, что содержание углекислого газа в атмосфере хорошо коррелирует с потеплением атмосферы. Это ему в Антарктиде сказали. Данная мысль так прочно засела в голове Гора, что с той поры он стал сильно бороться против глобального потепления, за Киотский протокол и удушение мировой промышленности, активно выделяющей парниковые газы.
Действительно, в ледовых столбиках попадаются вмороженные мельчайшие пузырьки воздуха, исследуя газовый состав которых можно узнать состав атмосферы Земли в глубоком прошлом.
Действительно, содержание в атмосфере углекислого газа очень здорово коррелирует с температурой – высокие пики температуры на графиках совпадают с высокими пиками содержания СО2 в атмосфере. То есть в эпохи потепления углекислоты в атмосфере было больше, чем в эпохи похолодания. Откуда же она бралась, если никаких активно пыхтящих фабрик и заводов миллионы лет назад еще не было? Об этом Гор как-то не задумался. А бралась она из океанов. Сначала росла среднеглобальная температура, потом повышалась концентрация парниковых газов в атмосфере: из-за повышения температуры воды океаны начинали активно газить, как теплое шампанское.
Но Альберт Гор этого уже не узнал. Места на его жестком диске не хватило, чтобы записать эту информацию. Так и ходит он до сих пор отважным борцом с углекислым газом…
Лимнология
Лимнология – это анализ озерных отложений. Озера – настоящие аккумуляторы климатической информации. Существует три вида анализа озерных отложений – диатомовый, микрофаунистический и изотопный.
Очень умные люди типа меня, когда слышат слово «диатомовый», сразу же смекают, что речь идет о чем-то, состоящем из двух атомов. И ошибаются! Диатомы – класс микроводорослей. В мире существует около 5 тысяч видов диатом. Причем соотношение этих видов в водоеме зависит от температуры. В холодной воде хорошо живут одни виды диатом, в чуть более теплой – другие. Потеплела вода на градус – изменился видовой состав. Живой термометр! Исследуя диатомовый микст, можно сказать, какая температура была в ту или иную эпоху.
Кое-что можно сказать и просто по характеру озерных отложений. Скажем, если в некоторых слоях керна донной грязи африканского озера Чад много песка, значит Сахара наступала в ту эпоху. Если песка нет совсем, а есть тропическая микрофауна, значит шумели здесь тропические леса. Так один слой керна за другим рассказывают нам, как менялся климат в данной части Африки. Это клево.
Недостатки этого метода те же. Во-первых, нужно правильные озера брать – верховые, то есть те, откуда только вытекает, а не втекает, путая картину. Во-вторых, имеются сложности с датировкой. Датируют слои обычно стандартным радиоуглеродным методом с присущими этому методу погрешностями. Для возраста 2–3 тысячи лет ошибка составляет плюс-минус 100 лет. Для начала христианской эры – плюс-минус 50. А для последних 500 лет радиоуглеродный анализ вообще использовать бессмысленно – слишком уж большой получается разброс, на 300 лет ошибиться можно. Основных причин тому сразу две: высокая крутизна калибровочной кривой (это неустранимая особенность метода) и нарастающие искажения естественного хода концентрации 14С в атмосфере в результате воздействия человека (так, с середины 50-х годов ХХ века уровень концентрации 14С в атмосфере повысился вдвое в результате испытаний ядерного оружия).
Так что те «фоменки» и злобные креационисты, которые, глумясь над радиоуглеродным методом, приводят в своих книжках и брошюрах смешные примеры, когда взяли живого моллюска, датировали его радиоуглеродно и получили, что моллюск умер тысячу лет назад, просто не знают границ применимости метода. Чем доказывают не пропажу полутора тысяч лет истории или наличие бога, а собственную недалекость…
Столь же темный период для радиоуглеродного анализа – вторая половина I тысячелетия до н. э. – античность. Там, безграмотно используя радиоуглеродный анализ, легко перепутать эпоху падения Вавилона со временем похода Ганнибала.
Поэтому, строя климатические реконструкции, лучше всего использовать не один метод датировки, а несколько. Например, датируя слои озерных осадков, можно привязаться к внешним индикаторам: известно, например, что недалеко от озера Чад есть вулкан, который извергался в 1552 и 1763 годах. Найдите два слоя с вулканическими осадками, и вот вам две точки отсчета; дальше, зная скорость накопления осадков, просто считайте слои… Точно также вулканический горизонт Тамборы (1815 год) хорошо виден и потому используется для датировки в донных озерных и морских отложениях на границе Индийского и Тихого океанов.
Индикатором может быть не только вулкан, но и любое другое историческое или геофизическое событие. И даже сооружение! Скажем, нет в мире озера, уровень которого бы не колебался. Порой размах этих колебаний поражает воображение. Взять хотя бы всем известное Мертвое море. Сейчас его поверхность лежит на отметке 400 м ниже уровня моря. Но на стенах Кумранского монастыря, который находится довольно далеко от Мертвого моря, сохранились отметки озерной воды, сделанные монахами. Это значит, в исторические времена уровень озера поднимался на 40 м.
Другой пример. Самое большое озеро на свете – Каспийское – также испытывает умопомрачительные подъемы и опускания уровня воды. Свидетели тому – остатки больших городов и портов, лежащие ныне на дне Каспия. Так, полностью ушел подводу город-остров Абескун в юго-восточной части моря. А ныряльщики с аквалангами могут наблюдать на дне морском в окрестностях Баку древние городские кварталы, памятники архитектуры…
Современный уровень Каспия ниже своего среднего значения. А бывали эпохи, когда дно обнажалось на многие километры. Прекрасный и величественный индикатор каспийских колебаний – стены Дербентской крепости. Дербент вообще весьма примечательный город, он намного старше Рима. Место, где расположен этот город, издавна называли Вратами народов. Именно тут, в узком проходе между берегом Каспия и Кавказским хребтом пролегает удобный путь из Центральной Азии в Европу.
Вы понимаете, что если место проходное, рано или поздно обязательно найдется кто-то, кто поставит в этом месте магазин или забор – чтобы взимать плату за проход. Так возник город Дербент, бывший когда-то столицей мощного государства. Великая дербентская стена высотой от 18 до 25 м, толщиной в 5 м и длиной в 75 км уходила далеко вглубь горной гряды, перекрывая бесплатный проход из Европы в Азию и наоборот.
За Дербент в течение столетий шла отчаянная борьба между Римской империей и Персией. Любые завоеватели – гунны, авары, монголы, которые следовали из глубин Центральной Азии на запад, проходили через это место. Они шли «снизу» и потом поворачивали «налево» – к Европе. Обойти благословенный Дербент было нельзя: с одной стороны Кавказ стоял сплошной стеной, с другой – море. Обогнуть Каспий с востока? Не очень удобно: придется потом форсировать полноводную в нижнем течении Волгу, преодолевать заснеженные степи или безводные солончаки. Да и что делать в этих скучных пустынных местах? А в предгорьях Кавказа испокон веку жили люди, соответственно, было с кем торговать или кого грабить. Хорошо ходить через Дербент!
Именно поэтому в Дербенте были циклопические крепостные стены. Длинные. Высокие. Две. Они защищали город как от тех неприятелей, кто шел с севера, так и от тех, кто двигался с юга. И, разумеется, они перекрывали движение тем караванщикам, кто норовил проскочить без уплаты пошлины. Между стен располагался оживленный морской порт, вход в который был также надежно защищен огромными цепями.