Совершенно противоположную точку зрения на происхождение шаровой молнии высказал академик П. Л. Капица. Прежде всего он считает неприемлемой первую гипотезу, так как она якобы противоречит закону сохранения энергии. «Если в природе, – пишет П. Л. Капица, – не существует источников энергии, еще нам неизвестных, то на основании закона сохранения энергии приходится принять, что во время свечения шаровой молнии непрерывно подводится энергия, и мы вынуждены искать этот источник энергии вне объема шаровой молнии».
   При этом П. Л. Капица ссылается на так называемое «высвечивание», то есть прекращение сияния шаровой молнии. Время высвечивания сияющего шара прямо пропорционально его диаметру. Экспериментальные ядерные взрывы показали, что огненное облако диаметром 150 м высвечивается примерно за 10 с. Стало быть, шаровая молния диаметром 10 см (наиболее вероятный ее размер) высветится всего за 0,01 секунды!
   Исходя из этого П. Л. Капица полагает, что шаровую молнию, существующую в тысячи раз дольше расчетного времени, питают приходящие извне радиоволны, преимущественно длиной от 35 до 70 см. Взрыв шаровой молнии объясняется внезапным прекращением подвода энергии (например, если резко меняется частота электромагнитных колебаний) и представляет собой простое «схлопывание» разреженного воздуха.
   Хотя гипотеза П. Л. Капицы нашла горячих приверженцев, многое в ней не соответствует наблюдениям. Во-первых, радиоволны в диапазоне 35—70 см, появляющиеся в результате атмосферных разрядов, современными радиоустановками не зафиксированы. Во-вторых, эта теория не соответствует «опыту с бочонком», описанному профессором Б. Л. Гудлетом. Дело в том, что вода является практически непреодолимой преградой для радиоволн. Если бы даже их энергия передалась воде мгновенно, это не вызвало сколько-нибудь заметного ее нагрева.
   Неувязка получается и со взрывом шаровой молнии. Хорошо известно, что этот взрыв способен вызвать большие разрушения. Шаровая молния легко переламывает при соприкосновении толстенные бревна, волочит по земле тяжелые предметы, переворачивает трактора, совершает другие «силовые» трюки. Взрыв молнии, нередко оглушительный, способен разнести на куски прочнейшие предметы. Был даже случай, когда шаровая молния «нырнула» в реку и взорвалась там, подняв огромный фонтан воды. «Схлопывание» же шаровой молнии по своему эффекту напоминало бы скорее звук лопающегося резинового воздушного шарика.
   Что касается высвечивания, которое приводят в качестве основного аргумента критики гипотезы внутренней энергии шаровой молнии, то длительность его вовсе не противоречит закону сохранения энергии при допущении, что энергия переходит в свечение не сразу, а постепенно. Если внутренняя энергия шаровой молнии как аккумулятора выделяется медленно, то свечение может продолжаться достаточно долго. Так, например, легкий газ ацетилен, взятый в объеме 1 литра, сгорает в воздухе в течение нескольких десятков секунд, образуя при этом яркое свечение, интенсивность которого соизмерима с силой света шаровой молнии. А ведь вещество шаровой молнии может таить энергию и в сотни раз больше. Поэтому мне показалась более правдоподобной первая гипотеза.
   Я уже почти не сомневался, что шаровая молния несет свою энергию внутри себя, то есть она и есть настоящая «энергетическая капсула», только созданная не человеком, а искусницей-природой.
   Однако загадка шаровой молнии до сих пор остается неразгаданной, ибо пока не удалось получить шаровую молнию искусственно. Возможно, добившись этого, человек будет иметь едва ли не самый емкий аккумулятор энергии! Но в нынешнем виде «грозовая материя» показалась мне слишком опасной, чтобы строить «капсулу» на ее основе.

ДЕРЖУ МЕЧТУ!

Мечте – 5500 лет!

    Автор, запутавшись в сложном поиске «энергетической капсулы», решил искать ее самым простым путем и, кажется, не ошибся…

Метеорит на привязи

   Итак, я перебрал почти все идеи, казавшиеся мне сколько-нибудь перспективными, но «капсулы» так и не нашел. Каждый раз все складывалось вроде бы отлично, появлялись радужные надежды, а затем возникали непредвиденные осложнения, они громоздились друг на друга, и мои надежды в конце концов рушились.
   Неужели всякая победа в технике достается только многолетним кропотливым трудом? Известно, что так работал, например, великий Эдисон, тратя на отдых и другие «бесполезные», с его точки зрения, занятия минимум времени. Но ему же принадлежат слова: «Огромное большинство людей предпочитает безмерно трудиться, лишь бы немного не подумать».
   Конечно, хорошо бы найти в природе какой-нибудь аналог накопителя и, взяв его за основу, попытаться создать «энергетическую капсулу». Однако попробуй найди такой аналог.
   Раскаленное Солнце? Было, это же тепловой аккумулятор. Сила гравитации? Тоже было – аккумулятор Армстронга, или, попросту, поднятый груз. Упругие ветви деревьев? Пружина. Электрический скат? Электроаккумуляторы. Грозовые облака? Конденсаторы. Шаровая молния? От нее я отказался только что.
   Может, метеориты? Они все-таки имеют гигантскую скорость, способны насквозь пробить космический корабль. Пусть даже их скорость будет весьма небольшой по космическим масштабам, километров десять в секунду, но и тогда кинетическая энергия каждого килограмма массы метеорита составит половину квадрата скорости, или… 50 МДж. Это ведь столько, сколько накапливает шаровая молния! А есть метеориты гораздо быстрее.
   Разгонишь метеорит до скорости вдвое большей – накопишь вчетверо большую энергию.
 
Метеориты «на привязи» очень напоминают маховик со спицами
   Я не поверил себе. Решение лежало на поверхности. Возможно ли, что никто раньше не додумался накапливать энергию в бешено мчащемся метеорите?
   Ну хорошо, а как эту энергию отобрать у метеорита? Гнаться за ним на космическом корабле? Неудобно, сам при этом превратишься в аккумулятор такой же по величине энергии. Стало быть, надо привязать метеорит тросом к некой оси, и пусть он ходит вокруг нее по кругу. Вращая эту ось, а вернее, вал, можно разгонять метеорит – накапливать в нем энергию и, напротив, замедлять его бег при отборе энергии. Пожалуй, лучше даже взять несколько таких метеоритов на привязи и состыковать их между собой, чтобы
   получилось кольцо. И пространство Метеориты «на привязи» очень напоминают маховик со спицами удастся сэкономить, и…
   К моему удивлению, вышло нечто очень знакомое. Так это же маховик – обычный маховик в виде тяжелого колеса со спицами! Маховики давным-давно применяют для выравнивания хода машин, они присутствуют в любом автомобильном двигателе, в магнитофонах, в швейных машинах, механических ножницах, прессах… В общем трудно, наверное, назвать машину, в которой нет маховика или какого-нибудь тяжелого колеса, выполняющего ту же роль.
   Почему же тогда маховики не используют для накопления больших количеств энергии? Ведь если даже плотность энергии маховика окажется в сотни раз меньше, чем я подсчитал для метеорита, все равно он будет на уровне лучших аккумуляторов, созданных когда-либо человеком!
   Любое серьезное дело, как я уже понял, требует основательной подготовки. Мне теперь предстояло подробнее ознакомиться с маховиками, и начать я решил прямо с той поры, когда они появились.

Открытие древнего гончара

   Один из величественнейших городов Междуречья – древний Ур. Он громаден и многолик. Это почти целое государство. Сады, дворцы, мастерские, сложные гидротехнические сооружения, культовые постройки.
   В небольшой гончарной мастерской, с виду довольно старой, служившей, вероятно, не одному поколению, перед гончарным станком сидит смуглый мужчина с остроконечной бородкой. Грубая крепкая деревянная тренога поддерживает массивный диск из обожженной глины диаметром около метра. На глаз в нем никак не меньше центнера. Гончар кладет на этот диск кусок размятой глины и принимается колдовать над ней. Диск, несмотря на явную громоздкость, легко вращается – по-видимому, он достаточно искусно посажен на ось, подвижно закрепленную в треноге. Но вот его вращение замедлилось. Мастер завел правую руку под диск, нащупал там рукоятку, с силой потянул ее на себя, откидываясь в мощном движении…
   Эта сценка из далекого прошлого ожила передо мной благодаря знаменитому английскому археологу Леонарду Вулли, который в 1929 году в развалинах города Ура нашел не совсем обычный гончарный круг. Гончарное ремесло в те времена получило уже довольно широкое распространение, и найденный диск едва ли мог особенно заинтересовать археологов. Но Леонард Вулли оказался весьма проницательным, обратив внимание на некоторые странности в устройстве диска.
 
Гончарный круг из города Ура – первый маховик
   Во-первых, зачем понадобилось делать гончарный круг столь большим и тяжелым? В Египте, например, находили гончарные круги лет на тысячу старше. Изготовленные из дерева, они были гораздо меньше по размерам, легче и прекрасно служили в качестве простой вращающейся подставки. Такими же кругами пользовались и в Междуречье. И все-таки гончар из Ура сделал свой круг тяжелым и громоздким, как будто назло самому себе.
   Во-вторых, для чего было проделано маленькое отверстие в торце диска? Если большое отверстие в центре предназначалось для закрепления в нем оси, то маленькое отверстие сбоку поначалу казалось археологам совсем ненужным.
   И тут Леонард Вулли высказал блестящую мысль: в маленькое отверстие втыкалась деревянная рукоятка, с помощью которой древний мастер вращал массивный диск. А большой вес и внушительные размеры диска ему нужны были для того, чтобы подольше сохранять это вращение и работать на своего рода «механизированном» станке. Гончар из города Ура сделал гениальное открытие – он изобрел маховик! Как и миллионы нынешних маховиков, их предок – гончарный круг, вращаясь, переносил энергию во времени. Именно он, по признанию ученых, положил начало эре механизированного труда.

В поисках серьезной работы

   Прошло еще 1200 лет, прежде чем в Древнем Китае был изготовлен другой гончарный круг маховичного типа. Известно даже имя хозяина гончарной мастерской близ Желтой реки. Звали его Ланг Шан, и он, по-видимому, сам дошел до идеи маховика. К чести китайца, его маховик был значительно совершеннее. Вытесанный из камня, что придавало ему большую прочность и долговечность, массивный диск приводился в действие ногами. Это позволяло развивать немалую скорость – ноги ведь гораздо сильнее рук.
   Очередное маховичное устройство появилось примерно через полторы тысячи лет, и снова в Китае. В долине реки Ло Ланг Хо постоянно дули сильные ветры, которые сдували слои земли, образуя глубокие овраги. В этих оврагах на глубине 10—12 м можно было найти воду, необходимую для орошения полей. Китайцы сооружали большие колеса с парусами на шестах, к колесам цепями крепили кожаные ковши для воды. Ветер надувал паруса и вращал колеса, поднимая воду из оврагов.
   Однако когда ветер вдруг стихал, такое колесо останавливалось, а затем под тяжестью ковшей с водой начинало крутиться в обратную сторону, сливая воду в овраг. Чтобы этого не происходило, у колеса оставляли дежурить двух рабов, скованных одной цепью. Как только ветер прекращался, они повисали на той стороне колеса, где были пустые ковши, и удерживали его от обратного хода до следующего порыва ветра.
   Однажды хозяин колеса, которому рабы понадобились для другого дела, решил уравновесить колеса тяжелым камнем. Ничего не получилось, все равно кто-то должен был в нужный момент привязывать камень к колесу, а потом отвязывать его. Хозяин уже было махнул рукой на свою затею, но тут налетевший ветер раскрутил колесо вместе с камнем, который не успели снять, и оно стало быстро вращаться, поднимая ковши с водой, а когда ветер опять стих, колесо не сразу остановилось.
 
«Большое колесо Мандарина»
   Сообразительный хозяин тут же приказал привязать еще камней под каждый парус и стянуть шесты веревками. Так его колесо превратилось в огромный маховик, накапливающий энергию ветра и постепенно расходующий ее во время затишья. Благодаря маховику появилась возможность поднимать воду без постоянного контроля со стороны человека.
   Сейчас такое сооружение назвали бы автоматическим водоподъемником маховичного типа, а тогда его именовали «Большое колесо Мандарина». Сохранилось и другое название маховичного колеса, данное ему в память о древней китайской цивилизации, на закате которой оно было создано, – колесо Пан-По.
   Колесо Пан-По имело, по описаниям того времени, «четыре человеческих роста над землей и два – под землей». Крепкие «спицы», на концах которых были закреплены паруса и тяжелые камни, соединялись между собой распорками и канатами. Вал колеса покоился на подшипниках-втулках из твердых пород дерева, обильно поливаемых водой. Чем не современная жидкостная смазка подшипников?! Да, «Большое колесо Мандарина» было настоящим шедевром древних инженеров, на много лет опередившим техническую мысль той эпохи.
   Маховики, правда, несравненно меньших размеров, применялись в старинных смычковых сверлилках-дрелях. В них функцию маховика выполнял тяжелый диск, насаженный на сверло. Через него, обвиваясь, проходила тетива смычка. Двигая смычком вперед-назад, мастер разгонял маховик, а затем, надавливая на тупой конец сверла камешком с углублением, просверливал отверстия, используя накопленную в маховике энергию. Подобным способом можно было не только сверлить, но и добывать огонь трением.
 
Старинная смычковая дрель с маховиком
   Уже в древности появились первые маховичные игрушки. И раньше других – волчок, который радует детей до сих пор, спустя тысячелетия. Волчок заключает в себе два главных свойства маховика – он накапливает и сохраняет энергию, а также сохраняет ось вращения в пространстве – обладает гироскопическим эффектом. Указанные свойства и обусловили применение маховиков в миллионах современных машин. Детство мое и моих сверстников протекало в военные и первые послевоенные годы. Тогда стране было не до игрушек, и мы сами делали их из дерева, глины, отливали из свинца. Иногда волчки получались очень удачные – закрутишь такой, бросишь на пол и подстегиваешь кожаной плетью.
   Волчок гудит, подпрыгивает от ударов и крутится, крутится чуть ли не часами.
 
Маховичная игрушка «жужжалка» из грецкого ореха
   Не менее интересную игрушку мастерили мы из крупного грецкого ореха. Орех просверливали или прожигали гвоздем в двух местах близ центра так, чтобы расстояние между отверстиями не превышало сантиметра. Потом пропускали в эти отверстия нити, связывали концы – и игрушка готова. Мы называли ее «жужжалкой». Многие из нас в то время считали, что «жужжалку» выдумали недавно, а она, оказывается, описана еще в древних кавказских рукописях.
   Для запуска игрушки нужно было надеть концы нитяной петли на пальцы, растянуть ее, а затем, закрутив орех на несколько оборотов, отпустить его. Орех начинал раскручиваться и вскоре по инерции уже сам закручивал нить в другую сторону. Здесь следовало чуть ослабить натяжение нити, чтобы дать ей возможность закрутиться на большее число оборотов, и снова растянуть. С каждым разом орех все стремительнее вращался вперед-назад, причем с сердитым жужжанием. Скорость его вращения достигала нескольких тысяч оборотов в минуту.
   Еще одна старинная маховичная игрушка – «йо-йо». На глиняный, деревянный или металлический маховик с кольцевой проточкой посередине наматывалась нить длиной около метра. Держа свободный конец нити в руке, маховичок приподнимали над землей и отпускали. Падая, он раскручивался, приобретая все более быстрое вращение. При этом в нем накапливалась энергия, достаточная для его последующего подъема вверх по нити почти до самой руки. Если при падении маховичка нить слегка натягивали, а при подъеме чуть ослабляли, то маховичок наезжал прямо на руку.
 
Маховичная игрушка «йо-йо»
   По принципу этой игрушки действует хорошо знакомый всем по урокам физики прибор – маятник Максвелла, демонстрирующий переход потенциальной энергии в кинетическую, и наоборот.
   Маховичные игрушки дали много для развития идеи накопления энергии во вращающихся маховиках. Во все времена не только дети, но и ученые любили наблюдать за ними, изучали их свойства. Например, великий Ньютон, поясняя открытый им закон инерции, описывал вращение волчка. Однако минуло немало лет, пока для маховика нашлась серьезная работа.
Маховичный локомотив – игрушка

Маховик берется за дело

   Средневековая Европа. Процветает схоластика, алхимия, не сидят без работы и астрологи. Странный и страшный период в истории Европы, когда на несколько веков она погрузилась во мрак отсталости и невежества.
   О маховиках тогда, конечно, никто и не думал. Да и о каких маховиках могла идти речь, когда «ученые мужи» были заняты поисками «философского камня», изгнанием дьявола, размышлениями на тему: «Сколько ангелов уместится на булавочной головке?»
   Но почти через тысячу лет после гибели высокоразвитого в техническом отношении античного Рима в Европе постепенно опять начинают заниматься делом. Медленно, но верно развиваются технические науки, появляются машины. Машины поначалу были несложные, приводимые в движение вручную с помощью рукояток.
   Тот, кто пробовал завести двигатель автомобиля рукояткой, хорошо знает, как это трудно. А каково же было людям средневековья? Для того чтобы машина работала, им приходилось крутить рукоятки с утра до вечера, изо дня в день, из месяца в месяц, из года в год. Будучи, по существу, «живыми двигателями» средневековых машин, они быстро выбивались из сил, производительность их труда заметно падала. И вот однажды кто-то догадался снабдить рукоятку маховиком. Это позволило значительно облегчить труд работников. Отныне маховик стали применять в самых различных технических устройствах.
   Характерным примером использования маховика в старинных машинах может служить ковшовый водоподъемник XV века, колесо которого должен был поворачивать вручную специально нанятый для этого работник. В те моменты, когда человеку было удобно вращать рукоятку, укрепленный на ней достаточно большой маховик «принимал» у него часть энергии и возвращал ее тогда, когда крутить рукоятку становилось уже неудобно. В результате и человек меньше утомлялся, и машина работала более равномерно.
   Другой пример – поршневой насос конца XV – начала XVI века. Помимо неудобства пользования рукояткой, здесь требовалось преодолеть еще одну сложность. Когда поршень поднимал воду, крутить рукоятку было намного тяжелее, чем во время его спуска. И нередко случалось так, что при подъеме у работника просто не хватало сил провернуть рукоятку, оказавшуюся в неудобном для него положении. Применение маховика позволило решить эти проблемы.
 
Старинный поршневой насос с маховиком
 
Старинная лесопильная машина с маховиком
   Даже тогда, когда машины стали приводить в движение с помощью водяного колеса, маховик не утратил своего значения. В XVI веке, например, его использовали в машинах для распиловки досок. Поднимать пилу вверх было легко: в это время она не пилила – наклон зубьев был в другую сторону, опускать же – совсем непросто, ведь при этом и происходила собственно распиловка доски. Без маховика пила бы часто застревала в доске, и водяное колесо не в силах было бы протянуть ее дальше. Теперь же маховик, разгоняясь при свободном ходе пилы вверх, отдавал ей свою энергию при рабочем ходе вниз. Пила не застревала, и дело шло быстро. Маховик здесь был уже гораздо больше по размерам и массе, чем на ручных машинах, – мощность тут требовалась большая.
 
Паровая машина с маховиком
   В XVIII веке изобрели паровой двигатель, а в XIX – двигатель внутреннего сгорания. Оба поршневые. Главный же недостаток поршневой машины – неравномерность выделения энергии, неравномерность хода. Машина выделяет энергию лишь в момент подачи пара в цилиндр или в момент сжигания в нем горючего. Все остальное время она только расходует энергию на свое прокручивание. Это необходимо, чтобы машина не остановилась.
   Тут-то и пригодился маховик. Посаженный на вал двигателя, маховик при сжигании горючего, то есть при рабочем ходе машины, накапливает энергию, а потом за счет нее сам прокручивает машину для подготовки следующего рабочего хода. Если кто-нибудь думает, что автомобиль постоянно приводится в движение двигателем, то он ошибается. Часть времени машину тянет двигатель, а часть – именно маховик. И изрядные расстояния автомобиль проезжает за счет маховика. Правда, такой маховик накапливает очень незначительную энергию по сравнению с другими аккумуляторами той же массы, поэтому претендовать на роль «энергетической капсулы» он не может.
   Часто маховик присутствует в машинах незримо, он «замаскирован» в них под какую-то деталь, но выполняет самую что ни на есть «маховичную» работу. Те, кто бывали на заводе, наверное, видели там механические ножницы. Мотор с помощью ремня крутит шкив, а от этого шкива приводится в движение нож. На первый взгляд, шкив как шкив. А будь он полегче, не такой массивный, каким его изготовили, не сработали бы тогда ножницы, уперевшись в заготовку, – и нож сразу бы остановился. Только маховик, «замаскированный» в этом случае под шкив, позволяет за счет накопленной энергии развивать огромные силы и мощности, необходимые для работы.
 
Один из первых двигателей внутреннего сгорания с маховиком
   «Маскируется» маховик обычно под шкивы, муфты, зубчатки, колеса и другие круглые, а подчас и не совсем круглые детали. В самом деле, почему бы и не использовать свободный обод маховика для размещения на нем ремня или зубьев? Это очень даже удобно.
   Кстати, уж коли мы заговорили про колеса, то велосипедные колеса – настоящие маховики, на которые надеты шины. Но здесь используется главным образом другое свойство маховика – гироскопический эффект. Это он помогает сохранять устойчивость велосипеду, как и волчку – игрушке, наблюдая за вращением которой этот эффект был впервые подмечен.
   Более 200 лет тому назад английский изобретатель Серсон попытался использовать это свойство волчка для создания «искусственного горизонта» – особого прибора, крайне необходимого в мореплавании: ведь нередко из-за тумана естественного горизонта не видно. Этот прибор нужен был морякам для астрономических наблюдений, чтобы выяснить, где находится в данный момент корабль. Раньше применяли для этих целей отвес, но при волнении на море отвес сильно раскачивался наподобие маятника и «поймать» горизонт было невозможно.
   Судьба оказалась несправедливо жестокой к изобретению и к самому изобретателю. Фрегат «Виктори», на котором был установлен «искусственный горизонт», потерпел крушение – Серсон погиб. О его изобретении лет на сто забыли.
 
Маховичный пресс
   Свойство маховика сохранять ось вращения в пространстве поначалу поражало меня, как, впрочем, и каждого, кто впервые сталкивался с этим свойством. Только позже я понял, чем оно объясняется. Но уже до этого, наблюдая гироскопический эффект, я твердо решил применить его при создании маховичной «энергетической капсулы».

Маховик перебирается на транспорт

   Наступил XIX век – век настоящего расцвета машиностроения. Неизменный спутник машин – маховик завоевывал все более прочное место на транспорте. А впервые он был использован на транспортном средстве в 1791 году гениальным русским механиком-самоучкой И. П. Кулибиным, который применил его в своей знаменитой «самокатке».
   Надо сказать, что «самокатки», «самобеглые коляски» и прочие «безлошадные» транспортные средства появились задолго до И. П. Кулибина. Но Кулибин не знал об этом и создавал все заново. Не подозревая о существовании иных конструкций «самокаток», где маховиков и в помине не было, он положил начало новому применению маховичных накопителей.
   Еще в Древнем Риме дети катались на досках с приделанными к ним четырьмя колесами. Это были первые примитивные бестягловые тележки, работающие на мускульной энергии самого пассажира. Существовали в античном мире и мускульные экипажи побольше, в частности в виде большой улитки.
 
Античный мускульный экипаж-улитка
   В 1257 году английский ученый и общественный деятель Роджер Бэкон предсказал скорое появление городских экипажей на мускульной тяге, которые будут иметь практическое значение. Таковые вскоре и появились.