Мы уже говорили, что при нагревании заряженные частицы в стекле приобретают подвижность (поэтому и зажглась лампа, когда трубку нагревали спичкой). Главные действующие лица - ионы натрия: уже при температуре выше 300+С они становятся достаточно подвижными. Само стекло остается при этом совершенно твердым.
   Когда вы погрузили включенную лампочку в расплав селитры, то стекло, из которого сделан баллончик, оказалось в электрическом поле: спираль отрицательный полюс, расплав, который соприкасается с полоской жести, положительный. Подвижные ионы натрия начали двигаться в стекле в сторону катода, т. е. по направлению к спирали. Иными словами, они перемещались к внутренней стенке баллона.
   Значит, зеркальный налет изнутри натриевый? Да. Но как же ионы превратились в металл?
   Раскаленные металлы (в том числе и те, из которых изготовлена спираль) испускают электроны. От спирали они попали на внутреннюю поверхность стекла и соединились там с ионами натрия. Так образовался металлический натрий.
   Но почему для опыта не годится калиевая селитра? Ведь нитрат вроде бы и не участвует в процессе... Нет, участвует. Когда ион натрия стал нейтральным атомом, в стекле осталась отрицательно заряженная ионная дырка. Тут и нужна натриевая селитра: из ее расплава под действием электрического поля в стекло проникают ионы натрия и заполняют дырки. А ионы калия примерно в полтора раза больше ионов натрия, они не смогут войти в стекло. В калиевой селитре лампа просто треснет.
   Такой необычный электролиз через стекло иногда применяют на практике, чтобы получить слой очень чистого натрия, или, более строго, - спектрально чистого.
   ДОЛГАЯ ЖИЗНЬ БАТАРЕЙКИ
   Представьте, что случилось такое: вы принялись за электрохимический опыт, собрали цепь - а батарейка вдруг "села", и запасной батарейки нет. Как быть? Но это еще полбеды. Гораздо хуже, когда карманный фонарик гаснет темным вечером, да еще в лесу. И как обидно, если батарейки транзисторного приемника отказывают как раз в ту минуту, когда по радио передают вашу любимую песню, или во время трансляции футбольного матча. Но что уж тут поделаешь...
   А между тем кое-что предпринять можно. Если запасной батарейки нет, не спешите выбрасывать старую, а попробуйте ее "оживить".
   Многиеї современныеї батарейки - "Крона", "Марс", "Сатурн", КБС и другие состоят из элементов марганцево-цинковой системы. При работе отрицательный электрод этих батареек - цинковый стаканчик - постепенно, но очень медленно, растворяется, а положительный электрод - диоксид марганца МnО2, восстанавливается до гидроксида трехвалентного марганца (его формулу можно представить как МnООН). Он постепенно покрывает зерна оксида, проникает вглубь зерен и закрывает доступ электролиту. Еще и половина оксида марганца не использована, а элемент уже перестает работать; цинка же к тому времени остается еще больше, до четырех пятых! Словом, почти годную батарейку приходится выбрасывать.
   Но если снять "скорлупу" МnООН, то электролит вновь сможет поступать к зернам и батарейка оживет. Только как ее снять? Самый простой способ: постучать по батарейке как следует молотком или камнем. Тогда зерна внутри элементов расколются, и электролит снова сможет в них проникнуть. Этот способ не ахти как хорош, но в лесу, пожалуй, лучшего не найти...
   Если же батарейка отказала дома, то активировать диоксид марганца можно гораздо эффективнее. В цинковом стаканчике батарейки пробейте гвоздем отверстие и опустите батарейку в воду. Электролит в элементе не жидкий (это было бы неудобно), а загущенный. Он размокает в воде, разжижается, и ему легче проникнуть к зернам диоксида марганца. Этот нехитрый прием позволяет увеличить срок службы батарейки почти на треть. Но его можно еще более упростить.
   Заливать батарейку водой совсем необязательно. Достаточно только пробить отверстие в цинковом стаканчике. Оксид марганца в элементе смешан с графитовым порошком - это нужно для того, чтобы увеличить электропроводность. Как только воздух начнет поступать внутрь, графит будет поглощать кислород, и наряду с диоксидом марганца появится еще один положительный электрод - так называемый воздушный, на котором кислород восстанавливается. Словом, простой гвоздь превращает марганцево-цинковый элемент вї воздушно-цинковый!
   Справедливости ради скажем, что после такой процедуры батарейка будет разряжаться малым током - таковы уж свойства самодельного воздушно-цинкового элемента. Зато служить будет очень долго.
   И последнее: сделаем так, что старая батарейка станет почти совсем как новая. Для этого батарейку надо зарядить электрическим током, т. е. поступить с ней так же, как с аккумулятором. Реакция, идущая в батарейке, обратима, и МnООН может вновь превратиться в МnO2.
   Заметьте, что подзаряжать можно не все батарейки, а только те, в которых не засохла паста и корпус не поврежден. И заряжать надо не обычным постоянным током, как заряжают аккумуляторы. В этом случае цинк станет осаждаться на корпусе батарейки в виде разветвленных нитей - дендритов, и очень скоро это приведет к тому, что произойдет короткое замыкание и батарейка выйдет из строя. Заряжать ее надо так называемым асимметричным током. Чтобы получить его, надо выпрямлять переменный ток не полностью, например: включить в цепь диод-выпрямитель и параллельно ему - сопротивление (около 50 Ом). Напряжение источника должно быть около 12 В, поэтому использовать ток непосредственно от сети нельзя, нужен понижающий трансформатор.
   Марганцево-цинковые элементы можно заряжать до трех раз, их емкость при этом падает совсем незначительно. А маленькие, так называемые пуговичные элементы (в них использована ртутно-цинковая система) можно подзаряжать до десяти раз. Но пробивать их гвоздем или стучать по ним молотком нет смысла - в этих элементах после разряда практически не остается активных веществ.
   ИСТОЧНИКИ ТОКА ИЗ ПОДРУЧНЫХ СРЕДСТВ
   Чтобы оживить старую батарейку, действительно требуется ловкость рук. Но. в еще большей степени она будет вам нужна, если вы решите изготовить самодельный источник тока. Он может пригодиться для различных электрохимических опытов, например с анодированием алюминия или с никелированием.
   Есть множество химических источников тока, но, пожалуй, самый простой в изготовлении - элемент Грене. Для него нужны две пластинки - цинковая и угольная такого размера, чтобы они входили в стеклянную банку. Подберите к ней полиэтиленовую крышку, проколите ее в двух местах шилом и пропустите в отверстия проволочки. На этих проволочках подвесьте пластинки-электроды так, чтобы они не касались друг друга.
   Электролитом будет служить водный раствор, содержащий 16% серной кислоты и 12% бихромата калия (хромпика). Когда вы будете готовить раствор, лейте, как всегда, кислоту в воду и будьте очень осторожны.
   Электролит аккуратно перелейте в банку; раствор должен закрывать пластинки примерно на три четверти. Банку плотно закройте заготовленной крышкой с проводами и электродами. В тот момент, когда электроды, соприкоснутся с электролитом, возникнет электрический потенциал. Если цепь замкнуть, по ней пойдет электрический ток. Это легко проверить, подсоединив к проволочкам вольтметр: он покажет напряжение около 2 В. Однако сила тока не слишком велика, от элемента не будет даже работать лампочка для карманного фонаря. Но если вы изготовите не один, а два или три элемента Грене и соедините их последовательно - цинковую пластину с угольной, то лампочка будет гореть. А для опыта с никелированием достаточно и одного элемента Грене.
   Хотя элемент Грене работает надежно, у него есть как минимум два недостатка: во-первых, неудобно иметь дело с жидким электролитом, да к тому же содержащим серную кислоту, во-вторых, не всегда есть под рукой цинковые и угольные пластинки. Поэтому займемся и другими самодельными источниками тока. Пусть они и уступают жидкостным элементам, зато не будет проблем с материалами.
   Чай и сигареты часто заворачивают в фольгу, у которой одна сторона "серебряная", а другая - бумажная. В магазинах "Юный техник" продают медную фольгу. И ту и другую нарежьте на квадраты примерно 5 х 5 см и кладите одну на другую вперемежку так, чтобы медь ложилась на "серебро". Самый нижний слой должен быть бумажным, самый верхнийї - медным. У вас получилась батарея элементов; чем выше стопка, т. е. чем больше элементов, тем выше и напряжение.
   Из медной фольги вырежьте полоски - токоотводы, приложите их к стопке сверху и снизу и обмотайте изоляционной лентой, а потом погрузите батарейку в электролит - раствор поваренной соли. Чтобы убедиться в том, что батарейка начала работать, поднесите к ее полюсам, как вы это уже делали прежде, полоску фильтровальной бумаги, смоченной раствором фенолфталеина. У отрицательного полюса раствор покраснеет. Напряжение у такой батарейки может достигать нескольких вольт, но ток, к сожалению, слабоват.
   Для других источников тока проще всего будет воспользоваться готовыми уже материалами из старых, отслуживших свое батареек. Разломайте батарейки и извлеките из них активную массу оксида марганца, которой обмазаны электроды, графитовые стержни и засохшую пасту (загущенный электролит) - соскребите его и положите для набухания и воду. Оксид марганца разотрите в порошок и смешайте с несколькими каплями фотоклея или раствора желатины. Этой смесью обмажьте графитовый стержень или же грифель простого карандаша, оставив сверху свободный участок для крепления контакта. Когда смесь высохнет, обмотайте стержень "серебряной" бумагой в несколько слоев, "серебром" наружу, и обвяжите ниткой. Один проводок плотно обмотайте вокруг стержня, другой - вокруг "серебряной" бумаги и приклейте его липкой лептой. Обмотайте элемент изоляционной лентой - он готов к работе.
   Более совершенные элементы получаются, если активную массу и пасту увлажнять раствором хлорида аммония (24 г на 100 мл дистиллированной воды; полезно добавить 1 г хлорида кальция). Если этот раствор нагреть с крахмальным молоком, то получится электролит в виде пасты.
   Возьмите полиэтиленовую пробку от бутылки, проколите в дне отверстие и пропустите через него проволочку. В пробку положите кружок из оцинкованного железа, он должен быть прижат к проволочке-токоотводу. Из фильтровальной бумаги вырежьте кружок по внутреннему диаметру пробки, пропитайте его электролитом, смажьте пастой и вложите в пробку. Сверху положите размоченную активную массу с оксидом марганца из старой батарейки и прижмите кружком, вырезанным из графитового стержня - он будет служить вторым токоотводом. Из таких "пробочных" элементов тоже можно составить батарею, дающую напряжение в несколько вольт.
   Пластмассовую пробку можно заменить железной с оловянным покрытием - от бутылки с лимонадом или минеральной водой. Естественно, цинк в этом случае уже не нужен, равно как не нужно пробивать отверстие в пробке - она сама по себе электропроводна, но оловянный элемент дает невысокое напряжение.
   Еще более совершенный элемент - в виде стаканчика из алюминиевой фольги. Стаканчик можно изготовить с помощью короткого (3-4 см) отрезка пластмассового шланга. Внутрь вложите листок фольги заведомо большей высоты, прижмите к стенкам, а из "лишнего" материала сделайте донышко и распрямите его круглым стержнем, например обратной стороной шариковой ручки. Алюминиевый стаканчик вполне заменит цинковый.
   Картонный кружок положите на дно и смажьте стаканчик изнутри загущенным электролитом из старой батарейки или самодельным. Слой не должен превышать 1 мм. Мешочек из легкой ткани наполните увлажненной массой МnO2, уплотните, слегка надавливая тем же круглым стержнем, добавьте доверху массу и вдавите графитовый стержень (или грифель карандаша). Еще раз слегка уплотните массу, прикройте по возможности мешочек и наденьте на стержень второй картонный кружок с отверстием посередине - он не даст электроду наклоняться. Зажгите свечу и накапайте на эту шайбу, а потом на донышко элемента парафин для изоляции.
   Такой элемент дает напряжение около 1 В, ноток его больше, чем у элемента из пробок. Два-три "стаканчика" дают возможность слушать транзисторный приемник через наушники.
   КРИСТАЛЛЫ - БОЛЬШИЕ И МАЛЕНЬКИЕ
   О выращивании кристаллов написано так много, и эти опыты настолько эффектны и несложны в исполнении, что наверняка вы их ставили хотя бы раз и знаете, в чем принцип. Собственно, ничего мудреного тут нет: надо приготовить горячий насыщенный раствор какой-либо соли (хлорида натрия, сульфата меди или железа, квасцов, бихромата калия и т. д., перечень очень велик), осторожно охладить его, чтобы излишек растворенного вещества не выпал в осадок (такой раствор называется пересыщенным), и, наконец, ввести затравку - кристаллик той же соли, подвешенный на нитке. После этого остается только прикрыть сосуд листком бумаги, поставить в укромное место и ждать, пока не вырастет крупный кристалл, на что могут уйти недели или даже месяцы; единственное, что придется изредка делать - это подливать понемногу насыщенный раствор по мере испарения.
   Все это действительно известно. Но вариантов опыта очень много, и мы выберем не самые распространенные, например, с нитратом свинца и иодидом калия. Смешайте одинаковые объемы 10%-ных растворов этих солей, и в сосуде выпадет осадок иодида свинца. Аккуратно слейте с него жидкость. Вскипятите воду в каком-либо прозрачном сосуде, подкислите ее уксусом и, пока она кипит, добавьте еще влажный осадок иодида свинца, взболтав его. При медленном остывании жидкости в ней вырастут золотистые кристаллы.
   Вариация на ту же тему: слейте в пробирку растворы нитрата свинца и иодида калия, вскипятите содержимое вместе с осадком, чтобы он растворился, а затем быстро остудите под краном. В этом случае образуются мельчайшие золотые кристаллики, взвешенные в жидкости.
   Вообще размер кристаллов сильно зависит от скорости охлаждения. Всыпьте 20 г нитрата калия небольшими порциями в сосуд с 25 мл воды. После добавления очередной порции взбалтывайте смесь, чтобы соль растворилась, а затем насыпайте следующую порцию. Когда соль перестанет растворяться, немного нагрейте сосуд, всыпьте еще порцию, взболтайте, снова нагрейте. И так до тех пор, пока вся взятая соль не растворится. Теперь разлейте раствор в два сосуда, и один оставьте остывать на воздухе (для еще более медленного остывания можно накрыть его несколькими слоями плотной ткани). В этом сосуде образуется несколько крупных кристаллов, а при удачном стечении обстоятельств - и один кристалл. Другой сосуд сразу же поставьте в кастрюлю с холодной водой, и в нем выделится множество мелких кристалликов. Это общее правило.
   Следующие два опыта настолько впечатляющи, что их смело можно показывать зрителям, конечно, тщательно все подготовив. Первый из них - опыт Пелиго. Цилиндр высотой 25-30 см вымойте изнутри горячей водой и через воронку по стенке налейте в него горячий очень концентрированный раствор гипосульфита, чтобы он заполнил цилиндр на 1/3. Этот раствор готовят так: 450 г гипосульфита растворяют при нагревании в 45 мл воды.
   Второй раствор - ацетата натрия (300 г на 45 мл воды) также горячим влейте через ту же воронку еще на 1/3 цилиндра. Лейте очень аккуратно, этот раствор не должен смешиваться с ранее налитым раствором. Наконец, верхнюю треть цилиндра столь же осторожно заполните горячей водой, которая предохранит насыщенный раствор от преждевременной кристаллизации.
   В сосуде три слоя: вода, пересыщенный раствор ацетата натрия, пересыщенный раствор гипосульфита. Накройте цилиндр стеклом, дайте остыть до комнатной температуры, а после этого можно приступать к опыту.
   К концу стеклянной палочки прикрепите кусочком воска маленький, незаметный кристаллик гипосульфита (воск слегка расплавьте, нагрев его над пламенем). На глазах у зрителей быстро опустите палочку в нижний слой. Концентрация соли столь высока, что тотчас вокруг кристаллика нагромоздится множество новых кристаллов, образуя подобие цветка. А в среднем слое "чужое" вещество вокруг кристалла гипосульфита кристаллизоваться не будет.
   Другую, точно такую же палочку с воском, но уже с маленьким кристаллом ацетата натрия (зрители не должны заметить разницы) опустите в средний слой здесь тоже вырастет цветок, но совсем другой! Цилиндр, если обращаться с ним осторожно, удается использовать несколько раз.
   Другой опыт, напоминающий фокус, - с одним только ацетатом натрия. Растворите 100-150 г соли в горячей воде (лучше в эмалированной посуде) и медленно выпаривайте, стараясь точно уловить момент, когда надо прекратить выпаривание: дуйте время от времени па поверхность горячего раствора, и как только станет появляться пленка, напоминающая жировую, это значит, что концентрация соли та, что требуется для образования кристаллогидрата состава CH3COONa*3H2O. Перелейте жидкость в чистый тонкий стакан, закройте его и поставьте остывать. В остывшую жидкость достаточно внести ничтожное количество затравки - ацетата натрия, чтобы она мгновенно закристаллизовалась и превратилась в твердую массу, напоминающую лед. Если вы немного недодержали жидкость на огне и воды в ней многовато, то над застывшей массой будет немного воды, которую надо слить. Если же воды не хватает, то на поверхности окажется налет соли. Снимать его нет смысла, проще добавить немного воды.
   Расплавляя кристаллогидрат на водяной бане и охлаждая его, опыт можно проделывать множество раз, в том числе и на глазах изумленной публики, - а кто не изумится, увидев, как вода на глазах застывает без охлаждения? Напротив, стакан даже разогревается - это выделяется теплота кристаллизации. Стакан можно перевернуть, и из него не выльется ни единой капли.
   Показывая опыт как фокус, постарайтесь стряхнуть крупинку соли незаметно скажем, с кончика "волшебной палочки". И обязательно плотно закрывайте стакан между опытами, иначе даже случайная пылинка сможет вызвать незапланированную кристаллизацию.
   Реагент для этого опыта - ацетат натрия можно получить из уксусной кислоты и соды. Если вы будете готовить его самостоятельно, то уксусную кислоту разбавьте водой примерно втрое и всыпайте в нее соду небольшими порциями, постепенно, дождавшись, когда прекратится вспенивание от предыдущей порции соды. Без этого реакция пойдет так бурно, что жидкость может выбросить из сосуда.
   И еще необычные кристаллы - металлические, Будем выращивать кристаллы меди.
   Мелкие медные кристаллы вы уже получали, когда опускали гвоздь в раствор медного купороса. Они настолько малы, что пленка меди на поверхности кажется почти сплошной. А чтобы приготовить крупные кристаллы, надо как-то замедлить реакцию, что-бы выделяющаяся в реакции медь успевала осесть на кристаллы и достраивала их. Медленное охлаждение - возможный способ, но в том случае, когда не идет химическая реакция...
   Тормозом для реакции будет служить поваренная соль. Положите на дно сосуда (например, стеклянной банки) немного кристаллов медного купороса и засыпьте их поваренной солью, по возможности мелкой. Прикройте их кругом, вырезанным из промокательной или фильтровальной бумаги; этот круг должен касаться стенок сосуда. Сверху, прямо на бумагу, положите железный кружок несколько меньшего диаметра. Заранее протрите его наждачной бумагой и промойте.
   Налейте в банку насыщенный раствор поваренной соли, чтобы он полностью закрыл железный кружок. Дальше все пойдет без вашего участия. Сколько времени придется ждать, точно сказать нельзя - многое зависит от условий опыта. Во всяком случае, не час и не два, а несколько дней.
   Итак, спустя несколько дней вы обнаружите в сосуде красивые красные кристаллы меди. Меняя размеры сосуда, размеры кристалликов медного купороса, толщину слоя поваренной соли и температуру опыта, м.ожно получить медные кристаллы разнообразной формы, порой на редкость необычной. А иногда вырастают дендриты - незавершенные в развитии кристаллы, похожие на ветви деревьев.
   Если оставить медные кристаллы в том же сосуде, в которым они были получены, то долго они не сохранятся. Извлеките их, промойте водой, перенесите в пробирку с разбавленной серной кислотой и закройте пробкой. Вот теперь с кристаллами ничего не случится.
   КРИСТАЛЛИЧЕСКИЕ УЗОРЫ
   Есть такие вещества, которые называют изоморфными: они кристаллизуются одинаково, несмотря на разный состав. Кристаллы одного такого вещества способны расти в насыщенном растворе другого: получается как бы "кристалл в кристалле". Если его разрезать, то на срезе окажется геометрический узор.
   Самые доступные среди изоморфных веществ - квасцы, кристаллогидраты двойных сульфатов с общей формулой М'М'''(SO4)2*12H2O. Воспользуемся тремя их разновидностями: темно-фиолетовыми хромокалиевыми KCr(SO4)2*12H2O, зелеными железоаммонийными NH4Fe(SO4)2*12H2O и бесцветными алюмокалиевыми КАl(SO4)2* 12Н2О.
   В эмалированную или стеклянную посуду налейте воду, насыпьте каких-либо квасцов (одного вида) и нагревайте, размешивая стеклянной или деревянной палочкой, но не до кипения. Когда соль растворится, добавьте еще порцию тех же квасцов и снова нагревайте. Когда раствор станет насыщенным, быстро профильтруйте его через ватный тампон, помещенный в стеклянную или эмалированную воронку, ополоснутую крутым кипятком. Если воронка будет холодной, может начаться преждевременная кристаллизация и кристаллы закупорят воронку.
   Банку с раствором квасцов прикройте и оставьте медленно остывать. На дно выпадут небольшие кристаллы. Если они будут срастаться, нагрейте раствор, добавив немного воды, и вновь охладите. Кристаллы извлеките, обсушите, переложите в пробирку и закройте ее пробкой. Так же приготовьте кристаллу других квасцов. Насыщенные растворы сохраняйте! Чтобы не перепутать их, наклейте на банки этикетки.
   Отберите по одному кристаллику каждого вида, обвяжите тоненькими нитями (например, от капронового чулка) и опустите каждый в "свой" раствор. Банки держите подальше от сквозняков; накройте их бумажными крышками.
   Примерно за неделю кристаллы заметно вырастут. Поменяйте их местами. Если с самого начала подвесить в каждой банке по два кристалла, то будет еще больше чередований цветов. Чтобы не запутаться, к концам нитей прикрепите ярлычки и записывайте в лабораторном журнале, сколько времени и в каком растворе находятся кристаллы.
   Правильный кристалл квасцов имеет форму октаэдра, но нам и не нужен идеальный кристалл. Напротив, чем причудливее форма, тем интереснее рисунок на срезе. Одновременно вы можете выращивать кристаллические сростки - друзы, взяв для затравки уже сросшиеся кристаллики. Если они начали ветвиться во время роста, не исправляйте их; более того, вы сами можете управлять ростом граней. Смажьте грань вазелином, и она перестанет расти, смойте вазелин ацетоном - и грань будет расти снова.
   Готовый кристалл разрежьте мокрой суровой ниткой; эта работа требует аккуратности и терпения. Поверхность среза подровняйте наждачной бумагой и отполируйте на влажной ватманской бумаге круговыми движениями.
   В зависимости or того, как выбрана плоскость разреза, сколько в кристалле слоев и какова их толщина, получатся самые разнообразные геометрические узоры. У друзы вариантов еще больше. Разрезанный кристалл с узором тотчас покройте бесцветным лаком (годятся лак для ногтей), иначе он потускнеет и рассыплется в порошок.
   Намного проще в изготовлении узор из кристаллов нашатыря - хлорида аммония. Правда, он бесцветен, зато рисунком так напоминает... Впрочем, не будем забегать вперед.
   Всыпая хлорид аммония в теплую воду и тщательно перемешивая, приготовьте насыщенный раствор. Возьмите стеклянную пластинку или зеркальце, вымойте поверхность, кисточкой нанесите на нее приготовленный раствор. Пусть пластинка с раствором медленно охлаждается на воздухе, а чтобы на нее не попадала пыль, можно спрятать ее в шкаф. Спустя несколько часов вода испарится и на стекле образуется узор. Не надо даже всматриваться, чтобы понять, что же он напоминает: морозный узор на зимнем окне.
   Такой опыт, конечно, лучше всего ставить под Новый год. Тепло искусственному морозному узору не грозит, но от воды его надо держать подальше...
   КЛАД НА ТАРЕЛКЕ
   Поиски кладов - занятие хлопотное и, как правило, бесполезное. И все-таки предлагаем вам попытать счастья, гарантируя полный успех. Мы будем искать настоящее золото, причем не в пещере и не в лесу, а на самой обычной тарелке с золотой каемочкой. И даже не на целой, а на разбитой.
   Может быть, вас это удивит, но золотая каемка на посуде состоит действительно из золота. Правда. его там совсем мало, потому что слой очень тонкий. Возьмите стакан с золотым ободком и посмотрите на просвет: слой золота кажется прозрачным.
   Золото на посуду наносят из раствора. И мы начнем этот опыт с приготовления раствора, содержащего золото.
   Запаситесь черепками с позолотой - их вы получите бесплатно в посудном магазине. Для опытов вам достаточно будет примерно 10 см2 позолоты. Из нее мы приготовим около 5 мл разбавленной золотохлороводородной кислоты H[AuCl4]. Для этого растворите золото в смеси концентрированных кислот - 3 мл соляной и 1 мл азотной. Такую смесь принято называть царской водкой. Обращаться с концентрированными кислотами надо крайне осторожно! Работать в резиновых перчатках! Ставить опыт только в химическом кружке!
   Перед растворением тщательно вымойте слой позолоты на битой посуде и удалите следы жира, протерев его ватным тампоном, смоченным в ацетоне. В стеклянную пипетку наберите несколько капель царской водки и растворите позолоту. Образовавшийся раствор золотохлороводородной кислоты аккуратно соберите в небольшую пробирку, прорытую дистиллированной водой. Все растворы в этом опыте также надо готовить на дистиллированной воде и в чистой посуде.