В настоящее время достаточно широко используются как теоретические подходы к сравнению инвестиционных проектов (см. например, [2-4]), так и компьютерные системы, в частности, Computer Model of Feasibility Analysis and Reporting (COMFAR), Project Profite Screening and Preappraisal Information System (PROPSIN), Project Expert, Альт-Инвест. При этом иногда системы поддержки принятия решений (т.е. инструментарий менеджера) вносят необоснованные ограничения. Так, в известном программном продукте Project Expert горизонт планирования ограничен 30 годами. Значит, с помощью Project Expert трудно точно рассчитывать экономический эффект от долговременных проектов типа строительства электростанции или моста, разработки новой марки автомашины или - в масштабах фермерского хозяйства - улучшения качества земельного участка, строительства нового амбара или выведения новой породы скота. Тем более необходима осторожность при использовании подобных программных средств для анализа последствий применения имеющих долговременное влияние управляющих воздействий на процессы налогообложения.
   3.3. Дисконт-функция
   Рассмотрим основные для дальнейшего понятия дисконт-функции и нормы дисконта. (Термины используем в соответствии с отраженной в монографии [5] традицией.)
   Важно с самого начала осознать, что 1 руб. сейчас и 1 руб. через год это совсем разные экономические величины. Дисконт-функция как функция от времени как раз и показывает, сколько стоит 1 рубль в заданный момент времени, если его привести к начальному моменту. Например, "инфляционная" дисконт-функция на 27 мая 1996 г. равна 1/12000, поскольку индекс инфляции на этот момент равен 12000 (округленно), если в качестве начального момента принять март 1991 г. (по данным Лаборатории эконометрических исследований Московского государственного института электроники и математики). При этом индекс инфляции показывает сравнительную покупательную способность рубля на 12000 руб. мая 1996 г. можно купить (в среднем) столько же, сколько на 1 рубль в марте 1991 г.
   В то же время "банковская" дисконт-функция учитывает упущенную выгоду если бы 1 рубль был вложен в банк с фиксированной процентной ставкой в неизменных ценах, равной, например, 10% годовых, то за 5 лет и 2 месяца (март 1991 г. - май 1996 г.) он превратился бы в 1,64 руб. в неизменных ценах (марта 1991 г.), т.е., с учетом инфляции, в 19655 руб. мая 1996 г. Отметим, что, строго говоря, реальная дисконт-функция, как и индекс инфляции, является функцией двух аргументов - начального и текущего моментов времени. Очевидно, в определении дисконт-фактора есть неопределенность, по крайней мере такая же, как в определении индекса инфляции, для которого неопределенность связана с возможностью выбора той или иной потребительской корзины (естественная потребительская корзина для данного региона или инвестиционного проекта может отличаться от таковой для экономики в целом и для товаров народного потребления в частности, поскольку завод потребляет иные виды материальных ценностей, чем человек), тех или иных цен в реально имеющемся диапазоне, а также зависит от степени заинтересованности организации, рассчитывающей индекс. Так, индекс Госкомстата (при отсчета от марта 1991 г.) в два с лишним раза меньше индекса независимых исследователей, в частности, рассчитанного по нашей методике. Причины коренятся в печальной истории статистики в нашей стране. Коротко говоря, одна группа причин связана с желанием угодить заказчикам (высшим государственным органам), другая - с профессиональной некомпетентностью. Подробнее "история с инфляцией" изложена в монографии [6].
   Подведем итоги. Дисконт-функцию можно разложить на две составляющие общую для экономики в целом и специфическую для данной отрасли или данного инвестиционного проекта. Если дисконт-функция - константа для разных отраслей, товаров и проектов, то эта константа называется дисконт-фактором, или просто дисконтом..
   Общая дисконт-функция определяется совместным действием реальной процентной ставки и индекса инфляции. Реальная процентная ставка описывает "нормальный" рост экономики (т.е. без учета инфляции). В стабильной ситуации (при "долговременном конкурентном равновесии"), как известно из экономической теории, доходность от вложения средств в различные отрасли, в частности, в банковские депозиты, должна быть одинакова. В современных условиях эта величина (норма рентабельности) равна примерно 6-12% (см., например, [7]). Примем для определенности максимальное значение, равное 12%. Другими словами, 1 рубль через год превращается в 1,12 руб., а потому 1 рубль через год соответствует 1/1,12 = 0,89 руб. сейчас - это и есть максимально возможное значение дисконта.
   Обозначим дисконт буквой С. Как установлено выше, С - число между 0 и 1, точнее, максимально возможное значение дисконта равно 0,89. В общем случае, если q - банковский процент (плата за депозит), т.е. вложив в начале года в банк 1 руб., в конце года получим (1+ q) руб., то дисконт определяется по формуле
   С = 1 / (1+ q) (1).
   Отметим, что при таком подходе полагают, что банковские проценты платы за депозит одинаковы во всех банках. Более правильно было бы считать q, а потому и С, нечисловыми величинами, а именно, интервалами [q1 , q2] и [С1 , С2] соответственно. При этом связь между интервалами определяется формулой (1):
   С1 = 1 / (1+ q2) , С2 = 1 / (1+ q1) .
   Следовательно, выводы, полученные с помощью рассматриваемых величин, должны быть исследованы на устойчивость (в инженерной среде принят термин "чувствительность") по отношению к отклонениям этих величин в пределах заданных интервалов.
   Обозначим дисконт-функцию C(t) как функцию времени t. Тогда при постоянстве дисконт-фактора во времени дисконт-фунция имеет вид
   C(t) = С^t, (2)
   т.е. С возводится в степень t. Согласно формуле (2) через 2 года 1 руб. превращается в 1,12 х 1,12 = 1,2544, через 3 - в 1,4049, следовательно, 1 руб., полученный через 2 года, соответствует 79,72 копейки сейчас, а 1 руб., обещанный через 3 года, соответствует 0,71 руб. сейчас. Другими словами, С(2) = 0.80 (с точностью до двух знаков после запятой), а С(3) = 0,71.
   Если дисконт-фактор меняется год от году, в первый год равен С1, во второй год - С2 , в третий год - С3 ,..., в t - ый год - Сt , то в этом общем случае дисконт-функция имеет вид
   C(t) = С1 С2 С3 ... Сt . (3)
   Пусть, например, С1 = 0,8, С2 = 0.7, С3 =.0.6, тогда согласно формуле (3) имеем C(t) = 0,8 х 0,7 х 0.6 = 0,336. Если С1 = С2 = С3 =... = Сt , то формула (3) переходит в формулу (2).
   Индекс инфляции А (в разах, а не в процентах) за год дает дисконт 1/(1,12А), т.е. 1 руб. сейчас соответствует 1,12А руб. через год. Долговременная динамика индекса инфляции плохо предсказуема.
   Частная дисконт-функция зависит от динамики цен и темпов технологического обновления (физического износа, морального износа, научно-технического прогресса) в отрасли. Так, вложения в компьютеры обесцениваются гораздо быстрее, чем вложения в недвижимость (здания, землю) - для покупки недвижимости, которая сейчас стоит 1 руб., через год может понадобиться 1,12А руб., а для покупки компьютера, который сейчас стоит 1 руб., может понадобиться через год лишь 0,8 руб. (в ценах, которые будут через год). Не будем касаться здесь достаточно сложных проблем оценки социальных, технологических, экономических и технологических факторов (короче, СТЭП-факторов), связанных с вложениями, например, в развитие образовательных учреждений, и подходов к налогообложению таких учреждений.
   4. Характеристики потоков платежей
   Как уже говорилось, инвестиционные проекты, результаты применения управляющих воздействий к процессам налогообложения и другие экономические реалии описываются потоками платежей и поступлений, т.е. функциями (временными рядами), а сравнивать функции естественно с помощью тех или иных характеристик. Рассмотрим несколько характеристик потоков платежей и поступлений.
   4.1. Различные способы расчета срока окупаемости
   Срок окупаемости - тот срок, за который доходы покроют расходы. Предполагается, что после этого проект (инвестиционный проект, или проект изменения налоговой системы, в частности, ставок налогов, или же какой-либо иной) приносит только прибыль. Очевидно, это верно не для всех проектов. Потому понятие "срок окупаемости" применяют к тем проектам, в которых за единовременным вложением средств следует ежегодное получение прибыли.
   Простейший (и наименее обоснованный) способ расчета срока окупаемости состоит в делении объема вложений А на ожидаемый ежегодный доход В. Тогда срок окупаемости равен А/В. Пусть, например, А - это разовое уменьшение налоговых сборов в результате снижения ставок, а В - ожидаемый ежегодный прирост поступлений в бюджет, обеспеченный расширением налоговой базы в результате ускоренного развития производства.
   Этот способ не учитывает дисконтирование. К чему приведет введение в расчет дисконт-фактора? Пусть, как и ранее, объем единовременных вложений равен А, причем начиная с конца первого года проект дает доход В ежегодно (точнее, доход поступает порциями, равными В, с момента, наступающего через год после вложения, и далее с интервалом в год). Если дисконт-фактор равен С, то максимально возможный суммарный доход равен
   ВС + ВС2 + ВС3 + ВС4 + ВС5 + ... = ВС ( 1 + С + С2 + С3 + С4 + ... )
   В скобках стоит сумма бесконечной геометрической прогрессии, равная, как известно, величине 1/(1-С). Следовательно, максимально возможный суммарный доход от первого года после вложения до скончания мира равен ВС/(1-С).
   Отсюда следует, что если А/В меньше С/(1-С), то можно указать (рассчитать) срок окупаемости проекта, но он будет существенно больше, чем А/В. Если же А/В больше или равно С/(1-С), то проект не окупится никогда. Поскольку максимально возможное значение С равно 0,89, то проект не окупится никогда, если А/В не меньше 0,89/ 0,11 = 8,09.
   Пусть вложения равны 1 миллиону рублей, ежегодная прибыль составляет 500 тысяч, т.е. А/В = 2. Пусть дисконт-фактор С = 0.8. Каков срок окупаемости? При примитивном подходе (соответствующем С = 1) он равен 2 годам. А на самом деле?
   За k лет будет возвращено
   ВС ( 1 + С + С2 + С3 + С4 + ...+ Сk )= ВС ( 1 - Сk+1) / (1-С) ,
   согласно формуле для суммы конечной геометрической прогрессии. Для срока окупаемости получаем уравнение
   1 =0,5 х 0,8 ( 1 - 0,8 k+1) / (1- 0,8), (4)
   откуда 0,5 = ( 1 - 0,8 k+1), или 0,8 k+1 = 0,5. Прологарифмируем обе части последнего уравнения: (k+1) ln 0,8 = ln 0,5 , откуда
   (k+1) = ln 0,5 / ln 0,8 = (- 0,693) / ( - 0,223) = 3,11, k = 2,11.
   Срок окупаемости оказался в данном примере равном 2,11 лет, т.е. увеличился примерно на 4 недели. Это немного. Однако если В = 0,2, то вместо (3) мы имели бы
   1 =0,2 х 0,8 ( 1 - 0,8 k+1) / (1- 0,8),
   Это уравнение не имеет решения, поскольку А / В = 5 > С/(1-С) = 0.8 / (10,8) =4, проект не окупится никогда. Окупаемости можно ожидать лишь в случае А/В < 4. Рассмотрим и промежуточный случай, В = 0,33, с "примитивным" сроком окупаемости 3 года. Тогда вместо (4) имеем уравнение
   1 =0,33 х 0,8 ( 1 - 0,8 k+1) / (1- 0,8), (5)
   откуда 0,76 = ( 1 - 0,8 k+1), или 0,8 k+1 = 0,24. Прологарифмируем обе части последнего уравнения: (k+1) ln 0,8 = ln 0,24 , откуда
   (k+1) = ln 0,24 / ln 0,8 = (- 1.427) / ( - 0,223) = 6,40, k = 5,40.
   Итак, реальный срок окупаемости - не три года, а согласно уравнению (5) чуть менее пяти с половиной лет.
   Если вложения делаются не единовременно или доходы поступают по иной схеме, то расчеты усложняются, но суть дела остается той же.
   Таким образом, срок окупаемости зависит от неизвестного дисконт-фактора С или даже от неизвестной дисконт-функции - ибо какие у нас основания считать будущую дисконт-функцию постоянной? Иногда (даже в официальных изданиях [8] !) рекомендуется использовать норму дисконта (дисконт-фактор), соответствующую ПРИЕМЛЕМОЙ для инвестора норме дохода на капитал. Мы не знаем, какую норму дисконта тот или иной инвестор сочтет приемлемой. Однако ясно, что она зависит от ситуации в экономике в целом. То, что представляется выгодным сегодня, может оказаться невыгодным завтра, или наоборот. Тем самым решение перекладывается на инвестора, который выступает в роли эксперта по выбору нормы дисконта.
   4.2. Чистый приведенный доход (прибыль)
   Не всегда инвестиции сводятся к одномоментному вложению капитала, а возврат происходит равными порциями. Чаще приходится анализировать поток платежей и поступлений общего вида. Будем называть потоком платежей и поступлений последовательность a(0), a(1), a(2), a(3), ... , a(t), .... Если величина a(k) отрицательна, то это платеж, е если она положительна поступление. В предыдущем пункте был рассмотрен поток с одним платежом a(0) = ( - А) и дальнейшими поступлениями a(1) = a(2) = a(3) = ... = a(t) = .... = В.
   Дисконтированную прибыль, точнее, чистый приведенный доход (или эффект, или величину, по-английски - net present value, сокращенно NPV), т.е. разность между доходами и расходами, рассчитывается для потока платежей путем приведения затрат и поступлений к одному моменту времени:
   NPV = a(0) + a(1)С(1) + a(2)С(2) + a(3)С(3) + ... + a(t)С(t) + ...(6),
   где С(t) - дисконт-функция, определяемая по формулам (2) или (3). В простейшем случае, когда дисконт-фактор не меняется год от года и согласно формуле (1) имеет вид С = 1 / (1+ q), где q - банковский процент, формула для чистой приведенной величины конкретизируется:
   NPV = NPV(q) = a(0) + a(1)/ (1+ q) + a(2)/ (1+ q)^2 + a(3)/ (1+ q)^3 + ...+
   a(t)/ (1+ q)^t + .... (7)
   Пусть, например, a(0) = - 10, a(1) = 3, a(2) = 4, a(3) = 5. Пусть q = 0,12, тогда, как установлено в п.3.3, согласно формуле (2) значения дисконт-функции таковы: С(1) = 0,89, С(2) = 0.80, а С(3) = 0,71. Тогда согласно формуле (6)
   NPV(0,12) = - 10 + 3 х 0,89 + 4 х 0.80 + 5 х 0,71 = - 10 + 2,67 + 3,20 + 3,55 = - 0,58.
   Таким образом, этот проект является невыгодным для вложения капитала, поскольку NPV(0,12) отрицательно, в то время как при отсутствии дисконтирования (при С = 1, q = 0) вывод иной: NPV(0) = - 10 + 3 + 4 + 5 = 2.
   Таким образом, важной проблемой является выбор дисконт-функции. В качестве приближения обычно используют постоянное дисконтирование, хотя экономическая история последних лет показывает, что банки часто меняют проценты платы за депозит, так что формула (3) для дисконт-функции с различными процентами в разные годы более реалистична, чем формула (2).
   Часто предлагают использовать норму дисконта, равную приемлемой для инвестора норме дохода на капитал. Это предложение означает, что экономисты явным образом обращаются к инвестору как к эксперту, который должен назвать им некоторое число исходя из своего опыта и интуиции. Кроме того, при этом игнорируется изменение указанной нормы во времени (см. рассуждения в конце п.4.1 выше).
   Приведем пример исследования NPV на чувствительность. Для этого надо найти максимально возможное отклонение NPV при допустимых отклонениях значений дисконт-функции (или, если угодно, значений банковских процентов). В качестве примера рассмотрим
   NPV = NPV (a(0), a(1), С(1), a(2), С(2), a(3), С(3)) =
   = a(0) + a(1)С(1) + a(2)С(2) + a(3)С(3).
   Предположим, что изучается устойчивость (чувствительность) в ранее рассмотренной точке параметрического пространства a(0) = - 10, a(1) = 3, a(2) = 4, a(3) = 5 , С(1) = 0,89, С(2) = 0.80, С(3) = 0,71. Предположим, что максимально возможное отклонение величин С(1), С(2), С(3) равно + 0,05. Тогда, как легко видеть, максимально возможное значение NPV равно
   NPVmax = - 10 + 3 х 0,94 + 4 х 0.85 + 5 х 0,76 = - 10 + 2,82 + 3,40 + 3,80
   = 0,02,
   в то время как минимально возможное значение NPV равно
   NPVmin = - 10 + 3 х 0,84 + 4 х 0.75 + 5 х 0,66 = - 10 + 2,52 + 3,00 + 3,30
   = - 1,18.
   Таким образом, для NPV получаем интервал от ( - 1,18) до (+ 0,02). Это ширина достаточно велика. И что более интересно - в интервал входят и положительные, и отрицательные значения. Так что не удается сделать однозначного заключения - будет проект убыточным или выгодным. Есть много подходов к изучению чувствительности экономических величин и основанных на них выводах, которые нет возможности рассмотреть здесь (см. монографию [5]). Обратите, например, внимание на то, что величины a(0), a(1), a(2), a(3) в только что рассмотренном примере изучения чувствительности считались постоянными. А ведь это - упрощение ситуации, трудно предсказать на три года вперед возможность выполнения обязательств.
   Что с точки зрения экономической теории означает приравнивание дисконт-функции константе? В монографии [5] показано, что необходимым и достаточным условием, выделяющим модели с постоянным дисконтированием среди всех моделей динамического программирования, является устойчивость результатов сравнения планов на 1 и 2 шага. Другими словами, модели с постоянным дисконтированием игнорируют изменение предпочтений людей, научно-технический прогресс, вообще любые изменения в экономике, вызванные СТЭП-факторами, а потому не могут быть полностью адекватны реальности.
   Чистый приведенный доход, очевидно, зависит от общего объема платежей. Как правило, чем проект крупнее, тем эта характеристика проекта больше по абсолютной величине (изменения ставок налога в масштабе страны приносит больший эффект, чем в масштабах региона). При этом при одних значениях нормы дисконта она может быть положительной, а при других - отрицательной. Крайние значения С = 0 (банковский процент крайне высок) и С=1 ( он крайне низок) могут дать эти две возможности.
   4.3. Рентабельность
   В отличие от (валовой) прибыли, рентабельность - это частное от деления прибыли на расходы. Обозначим доходы как Д, расходы как Р, тогда прибыль П = Д - Р, а рентабельность Ре = Д / Р - 1. Другими словами, рентабельность это относительная прибыль, она показывает, какой доход приносит 1 руб. вложений.
   Прибыль и рентабельность - два принципиально разных критерия. Максимизация по ним весьма часто приводит к разным результатам. В отличие от прибыли рентабельность выше для небольших проектов, как правило, использующих побочные результаты реализации крупных проектов. Например, организация розничной торговли среди строителей ГЭС опирается на использование дорог и наличие потребительского спроса. И то, и другое результаты реализации проекта строительства ГЭС. При этом рентабельность торгового проекта, очевидно, во много раз выше рентабельности строительства ГЭС, что, например, должно учитываться при налогообложении.
   Замечания в предыдущем пункте, касающиеся дисконт-функции и нормы дисконта, справедливы и для такой характеристики налогового или инвестиционного проекта, как рентабельность.
   4.4. Внутренняя норма доходности
   Неопределенности, связанной с произволом в выборе нормы дисконта инвестором, можно избежать, рассчитав так называемую. внутреннюю норму доходности (или прибыли, по-английски Internal Rate of Return, сокращенно IRR), т.е. то значение дисконт-фактора, при котором чистый приведенный доход оказывается равным 0. Ожидается, что при меньшем значении дисконт-фактора прибыль положительна, а при большем - отрицательна. К сожалению, такая интерпретация не всегда допустима, поскольку для некоторой совокупности потоков платежей чистый приведенный доход равен 0 не для одного значения дисконт-фактора, а для многих (см. об этом, например, монографии [3,4]). Однако традиционная интерпретация корректна в подавляющем большинстве реальных ситуаций, в частности, если платежи всегда предшествуют поступлениям. Поэтому многие экономисты считают наиболее целесообразным использование внутренней нормы доходности как основной характеристики при сравнении потоков платежей.
   Внутреннюю норму доходности для рентабельности можно было бы определить из условия равенства 0 рентабельности как функции от нормы дисконта. Однако это условие означает, что доходы и расходы равны, т.е. прибыль равна 0. Поэтому внутренние нормы доходности для прибыли и рентабельности совпадают.
   4.5. Проблема горизонта планирования
   Выше рассмотрен ряд характеристик налоговых и инвестиционных проектов. Этот перечень можно существенно расширить. Например, комбинируя прибыль и рентабельность, можно строить характеристику, которая была бы пригодна для сравнения как малых, так и больших проектов.
   Во многих ситуациях продолжительность проекта не определена объективно (типичная ситуация для инноваций налоговой системы) либо горизонт планирования инвестора не охватывает всю продолжительность реализации проекта до этапа утилизации. В таких случаях важно изучить влияние горизонта планирования на принимаемые решения.
   Рассмотрим условный пример (подробнее см. [5]). Предположим, я получил в наследство свечной заводик в Самаре. Если горизонт моего планирования один месяц, то наибольший денежный доход я получу, продав предприятие. Если же планирую на год, то я сначала понесу затраты, закупив сырье и оплатив труд рабочих, и только затем, продав продукцию, получу прибыль. Если я планирую на десять лет, то пойду на крупные затраты, закупив лицензии и новое оборудование, с целью увеличения дохода в дальнейшие годы. При планировании на тридцать лет имеет смысл вложить средства в создание и развитие собственного научно-исследовательского центра, и т.д.
   Таким образом, популярное утверждение "фирма работает ради максимизации прибыли" не имеет точного смысла. За какой период максимизировать прибыль за месяц, год, десять или тридцать лет? От горизонта планирования зависят принимаемые решения. Понимая это, ряд западных экономистов отказываются рассматривать фирмы как инструменты для извлечения прибыли, предпочитают рассматривать их как живые существа, старающиеся обеспечить свое существование и развитие. Речь идет об известной на Западе гипотезе Гэлбрейта-Баумола-Марриса (Galbraith-Baumol-Marris), в соответствии с которой в основе поведения корпораций лежит стремление к "максимальному росту", а не к "максимальной прибыли" [9, с.403].
   Подробнее проблемы устойчивости принимаемых решений к изменению горизонта планирования рассматриваются в монографии [5].
   5. Практические вопросы реализации
   инновационных и инвестиционных проектов
   Рассмотрим некоторые вопросы, связанные с практическиии вопросами подготовки и реализации инновационных и инвестиционных проектов.
   5.1. Неопределенность и риски будущего развития
   Будущее нам неизвестно. А потому неизвестны и будущие доходы и расходы, мы можем лишь прогнозировать их с той или иной степенью уверенности. Как описывать неопределенность будущего? Чем мы рискуем и что вообще понимать под "риском"? Как отражается неопределенность будущего на потоках платежей, их характеристиках и выводах об эффективности управляющих воздействий на реализацию инвестиционного проекта, включая и такие "экзотические", как процессы налогообложения, на других решениях? Как уменьшить возможные потери и защититься от рисков? Кратко эти проблемы рассмотрены в главе "Функции менеджмента".
   Понятие "риск" многогранно. При использовании статистических методов управления качеством риски - это вероятности некоторых событий (в статистическом приемочном контроле риск поставщика - это вероятность забракования партии продукции хорошего качества, а риск потребителя приемки "плохой" партии; при статистическом регулировании процессов рассматривают риск незамеченной разладки и риск излишней наладки). Тогда для управления риском задают ограничения на вероятности нежелательных событий. Иногда под уменьшением риска понимают уменьшение дисперсии случайной величины. В теории принятия решений риск - это плата за принятие решения, отличного от оптимального, он обычно выражается как математическое ожидание. В экономике плата выражается обычно в денежных единицах, т.е. в виде потока платежей в условиях неопределенности.
   Методы математического моделирования позволяют предложить и изучить разнообразные методы оценки риска. Широко применяются два вида методов статистические, основанные на использовании эмпирических данных, и экспертные, опирающиеся на мнения и интуицию специалистов. Теория и практика экспертных оценок - большое направление научно-практической деятельности, активно развиваемое в нашей стране с начала 70-х годов.
   Разработаны различные способы уменьшения экономических рисков, связанные с выбором стратегий поведения, в частности, диверсификацией, страхованием и др. Нестандартный пример: применительно к системам налогообложения диверсификация означает использование не одного, а системы налогов, чтобы нейтрализовать действия налогоплательщиков, нацеленные на уменьшение своих налоговых платежей.
   5.2. Необходимость применения экспертных оценок
   при сравнении инвестиционных проектов
   Из сказанного выше вытекает, что разнообразные формальные методы оценки инвестиционных проектов и их рисков во многих случаях (реально во всех нетривиальных ситуациях) не могут дать однозначных рекомендаций. В конце процесса принятия решения - всегда человек.
   Поэтому процедуры экспертного оценивания естественно применять не только на конечном, но и на всех остальных этапах анализа проекта, используя при этом весь арсенал теории и практики экспертных оценок, весьма развитой области научной и практической деятельности (см. главы "Принятие управленческих решений" и "Стратегический менеджмент").
   Мы не призываем отказаться от формально-экономических методов, вычисление чистого приведенного дохода и других характеристик, использование соответствующих программных продуктов полезно для принятия обоснованных решений. Однако нельзя абсолютизировать формально-экономические методы. На основной вопрос: что лучше - быстро, но мало, или долго, но много ответить могут только эксперты.