Принцип действия лоренсовского ускорителя довольно прост и в основных чертах используется в последующих проектах, включая самые современные. Заряженные частицы нужно гонять по кругу, периодически подхлестывая высокочастотным электрическим полем так, чтобы в каждом цикле они приобретали дополнительный импульс. А удерживать их на круговой траектории должно особое магнитное поле, причем чем сильней действует магнит, тем меньше радиус окружности, по которой несутся частицы.
   Но возможности проникновения в область миллиардов электрон-вольт с помощью такого циклотрона оказались закрытыми. На пути замечательной идеи стояли основные принципы теории относительности. Чем больше скорость частицы, тем больше ее масса, и этот рост массы разрушает цикличность процесса - поле начинает не вовремя подстегивать отяжелевшие частицы.
   Выход из трудного положения был найден только в 1944 году советским физиком В. Векслером. Раз массы ускоряемых частиц растут, рассуждал он, значит, для сохранения их "нормальных отношений" с полями последние должны также меняться синхронным образом. При этом можно идти одним из двух путей: либо менять частоту электрического поля, либо - интенсивность магнитного. Выбор пути предоставлялся экспериментаторам и конструкторам.
   Метод Векслера получил название автофазировки. Соответственно ускорители, где подстраивается частота электрического поля, стали называться красивым "высоконаучным" словом синхрофазотрон, а те, в которых нарастает магнитное поле, - немного короче: синхротрон. Как это нередко случается, краткость оказалась родной сестрой таланта - именно синхротроны обеспечили прорыв к самым высоким из достигнутых энергий.
   В 1957 году в Дубне вступил в строй самый крупный в мире синхрофазотрон, разгоняющий протоны до энергии 10 гигаэлектрон-вольт. На этой машине физики Объединенного института ядерных исследований - крупнейшей международной организации, объединяющей усилия ученых социалистических стран, - выполнили ряд важных работ в ранее недоступном диапазоне энергий.
   С той поры прошло немало лет. За это время свершилось множество замечательных событий. Энергии, полученные на ускорителях, возросли в 40(!) раз. В 1967 году, словно отмечая юбилейное десятилетие дубненского ускорителя, заработал синхротрон Института физики высоких энергий в небольшом лесном поселке на берегу Протвы, вблизи старинного русского города Серпухова. А уже через пять лет неподалеку от Чикаго, в Батавии, вошел в строй еще более мощный ускоритель.
   На серпуховской машине была достигнута рекордная для своего времени энергия протонов - 76 гигаэлектрон-вольт. В 1972 году на батавийском синхротроне был поставлен новый "мировой рекорд" - после многих переживаний и даже крупного срыва удалось получить 200-гэвный пучок протонов. Трудное начало словно подхлестнуло американских физиков. К настоящему времени в Национальной ускорительной лаборатории имени Э. Ферми - так стал официально именоваться батавийский центр - достигнут рубеж в 400 ГэВ, и, по-видимому, когда вы будете читать эти строки, в научных журналах появятся первые сообщения о результатах экспериментов при 500 ГэВ.
   Замечательных успехов добились и в Европейском центре ядерных исследований, ЦЕРНе (так звучит сокращенное название этого центра, составленное из начальных букв французского выражения). Часть пучка "старого" ускорителя на 30 ГэВ, расположенного вблизи Женевского озера в Швейцарии, отводилась в специально построенное накопительное кольцо, а потом устраивалось почти лобовое столкновение основного и накопленного пучков. Благодаря этому физики смогли заглянуть в мир процессов, которые при использовании обычной неподвижной мишени могли бы наблюдаться только при 2000 ГэВ!
   Мы не станем теперь по традиции останавливаться на главных итогах прорыва в мир высоких энергий - этому посвящены следующие главы книги. Отметим лишь следующее.
   Появление мощных ускорителей сделало протоны основным инструментом исследований микромира, и в то же время они сами стали наиболее доступным предметом изучения. Поэтому не следует удивляться, что на передний план современной физики высоких энергий выдвинулись определяющие свойства этой замечательной частицы, прежде всего ее способность сильно взаимодействовать с веществом. Следующий этап развития физики элементарных частиц представляет собой преимущественно "адронную эру", которая пришла на смену "электронно-радиационной эре".
   Советский физик, член-корреспондент Академии наук СССР Л. Окунь назвал адронами (от греческого "хадрос" - тяжелый) семейство сильновзаимодействующих элементарных частиц, в основном потому, что они обладают большими массами. Впрочем, адроны оправдали свое название и в ином отношении - их описание оказалось, пожалуй, весьма тяжелой проблемой даже для закаленной в электронных, квантовых, релятивистских и многих других сражениях, неустрашимой физики XX века...
   (C) Александр Потупа (Alexander Potupa) Бег за бесконечностью. Молодая гвардия (Эврика), Москва, 1977 (Run for Infinity; переводы: на венгерский - Utazas az elemi reszecskek vilagaba. Muszaki Konyvkiado,Budapest, 1980; на болгарский - Гонене на безкрайността. Наука и изкуство (Еврика), София, 1980)
   ГЛАВА ЧЕТВЕРТАЯ, ПОВЕСТВУЮЩАЯ О ПОТОПЕ ОТКРЫТИЙ И СПОСОБАХ НАСКОРО СООРУДИТЬ КОМФОРТАБЕЛЬНЫЙ КОВЧЕГ
   Кстати, о призраках... На днях я с огромным интересом прочел книгу одного ученого-психиатра "Записки о встречах с призраками" По этой книжке выходит, что призраки поддаются довольно точному определению.
   К. Абэ
   СЧАСТЛИВЫЕ "ДОПОТОПНЫЕ ВРЕМЕНА"
   Тридцатые годы. Время великих свершений и иллюзий... Посудите сами. Устройство микромира постепенно выстраивалось в не столь уж сложную систему. Есть фотоны, и есть электроны. С помощью фотонов осуществляется взаимодействие между электронами и любыми другими электрическими зарядами. Электроны вместе с ядрами формируют атомы. Ядра состоят из протонов и нейтронов. Все пригоже и целесообразно - ничего лишнего. Правда, имеются две нерешенные задачки - явные пробелы в общей картине.
   Первая из них восходит к 1914 году, когда Дж. Чэдвик (будущий открыватель нейтрона) обнаружил странное свойство бета-радиоактивности. Быстрые бета-электроны явно испускались из атомного ядра в результате какого-то внутриядерного катаклизма. Но вместо того, чтобы нести одну постоянную и строго определенную энергию, они создавали целый спектр, притом довольно широкий.
   Если бета-электроны с таким непрерывным спектром вылетали непосредственно из ядер, возникала явная энергетическая катастрофа - в каждом акте испускания частицы обладали различными значениями энергии. Н Бор со свойственной ему смелостью выдвинул гипотезу, что в этих конкретных актах энергия не сохраняется, а закон сохранения следует относить только к среднему значению энергии электрона. Простой путь к спасению великого закона указала немка Л. Мейтнер. В 1922 году она высказала предположение, что электроны "размазываются" по широкому энергетическому интервалу из-за вторичных соударений. Однако к концу 20-х годов ее гипотеза была опровергнута экспериментально
   И все-таки спасение закона сохранения энергии пришло. Пришло в виде письма, которое адресовал участникам небольшой конференции в Тюбингене в декабре 1930 года молодой В. Паули.
   В послании из Цюриха выдвигалась гипотеза, будто вместе с бета-электроном ядро испускает новую частицу с очень малой массой и высокой проникающей способностью, причем суммарная энергия бета-электрона и новой частицы остается постоянной, то есть строго сохраняется в каждом акте. В. Паули окрестил "спасителя" нейтроном. Это тяжеловесное название продержалось недолго - лишь до открытия Дж. Чэдвиком настоящего, полноправного нейтрона.
   Новая частица понравилась многим, но особые симпатии к ней стал испытывать молодой итальянский физик Э. Ферми. По его предложению она стала называться нейтрино (по-итальянски: нейтрончик), и конфликт между достойными партнерами по ядерному миру был ликвидирован. В 1933 году Э. Ферми построил первую теорию испускания бета-электронов, которая сыграла исключительную роль в развитии представлений о микромире.
   Прежде всего в ней была впервые четко зафиксирована идея о том, что в атомном ядре содержатся только протоны и нейтроны, а бета-электроны образуются лишь в результате реакции распада нейтрона. Тем самым было защищено наиболее уязвимое место в протон-нейтронной гипотезе о строении ядра, которая была выдвинута в работах В. Гейзенберга, советского физика-теоретика Д. Иваненко и итальянца Э. Майорана. Эта гипотеза появилась вслед за открытием нейтрона, но некоторое время физики думали, что в ядре наряду с протонами и нейтронами все-таки должны содержаться электроны - те, которые испускаются в виде бета-излучения. Во-вторых, теория Э. Ферми сделала гипотезу В. Паули выдающимся примером предоткрытия. Между предсказанием и прямой регистрацией нейтрино прошло около 35 лет, и некоторые вполне естественные сомнения, возникавшие за столь долгий срок, не идут ни в какое сравнение с редчайшим обстоятельством - на шатком, казалось бы, фундаменте гипотетического нейтрино вырос целый раздел физики элементарных частиц. И именно в этом главная заслуга работы Э. Ферми, где впервые было показано, что бета-радиоактивность обусловлена новыми особыми силами, которые значительно слабее электромагнитных. Благодаря слабому взаимодействию нейтрон превращается в протон, испуская одновременно электрон и антинейтрино.
   Эта идея была в значительной степени основана на аналогии с квантовой электродинамикой, которая трактовала взаимодействие как испускание или поглощение фотона электрическими зарядами.
   В теории Э. Ферми вместо электрических рассматривались особые "слабые заряды", а аналогом фотона стали пары электрон - нейтрино.
   В том, что решающий эксперимент по обнаружению новой частицы произошел не скоро, "виноваты" сами нейтрино, точнее, их фантастическая проникающая способность. Оценка, которой пользовался В. Паули в своем знаменитом письме в Тюбинген, означала, что нейтрино должно свободно прошивать примерно 10-сантиметровую свинцовую пластинку. Впоследствии он любил приводить такой наглядный пример: нейтрино может "не заметить" и свинцовой стены толщиной в 100 световых лет.
   Пример, конечно, не столько наглядный, сколько сногсшибательный. Посудите сами: световой год - это расстояние, которое способен пройти свет в пустоте за один земной год. Скорость света составляет примерно 3.1010 сантиметров в секунду, а год длится 3,16.107 секунд (кстати, удобнейшая приближенная формула для запоминания: п .107 секунд, где п - обычное школьное "пи"!), то есть один световой год равен 1018 сантиметров, а 100 световых лет соответственно равны 1020 сантиметров. Это на 10(!) порядков превышает радиус Солнца и примерно в три раза радиус ядра нашей Галактики. Отсюда ясно, по крайней мере, одно: нейтрино способно приносить информацию из таких уголков вселенной, откуда ни одна другая частица не выберется "живьем".
   Разумеется, о проникающей способности говорят лишь в среднем, то есть каждое отдельное нейтрино может застрять в первом же миллиметре вашего письменного стола, а может и проскочить всю вселенную. Просто оба эти события маловероятны. Рассуждая о гигантской космической преграде, имеют в виду, что вероятность застревания нейтрино при наличии более толстой преграды, скажем, свинцовой стены толщиной более 100 световых лет, весьма велика. В общем, здесь все происходит по правилам квантовой механики: запустив на какую-либо мишень достаточно интенсивный пучок нейтрино, мы вскоре обнаружим редкие события его столкновений с частицами вещества. Но именно в этом и скрывались основные трудности в постановке решающего опыта нужен был действительно мощный поток нейтрино.
   Необходимый поток антиподов нейтрино - антинейтрино достигался на некоторых ядерных реакторах, и благодаря этому американские физики сумели зарегистрировать реакцию такого типа: антинейтрино налетает на протон, они взаимодействуют, и в результате возникают нейтрон и позитрон. Это открытие состоялось в 1956 году. В 1962 году был обнаружен другой тип нейтрино, так называемое мюонное нейтрино, возникающее при распаде уже встречавшегося нам мю-мезона. Таким образом, "дублер" появляется не только у электрона (мюон!), но и у электронного нейтрино (мюонное нейтрино).
   А теперь обсудим вторую нерешенную задачку, где в ответе появится пи-мезон - частица с едва ли не прямо противоположными свойствами, для которой буквально каждый сантиметр вещества таит смертельную опасность. Эта задачка возникла в связи с уже упоминавшейся неприятностью - в красивой картине протон-нейтронной модели ядра не хватало одной "мелкой детали" неясно было, что же удерживает рядом протоны и нейтроны, почему одноименно заряженные протоны не разлетаются в разные стороны.
   В разрешении данной загадки значительную роль сыграла небольшая заметка советского физика-теоретика И. Тамма, опубликованная в журнале "Нэйче" ("Природа") в 1934 году. Он предположил, что силы, действующие между протонами и нейтронами, обусловлены обменом парами квантов электронного и нейтринного полей. Эта идея следовала из аналогии с картиной взаимодействия электрических зарядов, например, электронов которые обменивались между собой фотоном. По замыслу И. Тамма, электрон-нейтринные пары, должны были "замещать" фотоны в задаче о взаимодействии протонов и нейтронов. Разумеется, теперь речь шла не об электрических, а о каких-то особых "ядерных зарядах". Силу взаимодействия между протонами и нейтронами можно было оценить непосредственно, исходя из теории Ферми, по той интенсивности, с которой нейтрон испускает электрон и антинейтрино, превращаясь при этом в протон. Но оказалось, что такое взаимодействие слишком слабо для поддержания стабильности атомных ядер! Однако идея И.Тамма проложила дорогу решению проблемы ядерных сил. Физикам стало ясно, что непосредственно применять готовые модели электромагнитных или слабых взаимодействий нельзя, соответствующие силы просто не смогут склеить протоны и нейтроны в ядре. Но в ограниченном виде аналогия с электродинамикой - там, где речь шла о некоторых обменных частицах - была вовсе не плоха. Именно из этого исходил двадцативосьмилетний физик-теоретик из Осакского университета X. Юкава, приступая к анализу природы новых сил, действующих в ядре. В 1935 году появилась его знаменитая статья, где была сформулирована гипотеза о существовании новых частиц - переносчиков взаимодействия между протонами и нейтронами, - квантах некоторого особого ядерного поля, наподобие фотонов, которые, как вы помните, являются квантами электромагнитного поля. Основываясь на известных ему оценках радиуса действия ядерных сил, X. Юкава рассчитал массу такой частицы, она должна была примерно в 200 раз превышать массу электрона. Величину "ядерного заряда" теперь уже можно было выбирать, не ограничиваясь теорией Ферми, а опираясь непосредственно на экспериментальные данные по взаимодействию протонов и нейтронов. Оказалось, что силы, действующие между ними, примерно в тысячу раз интенсивней электромагнитных. В результате получилась весьма неплохая модель устройства ядра, но, как это нередко встречается, сам автор воспринял ее излишне пессимистически - в конце статьи он указал, что придуманная им теория, по-видимому, неверна, поскольку... придуманную им частицу никто экспериментально не обнаруживал.
   А судьба гипотезы о юкавских переносчиках взаимодействия между протонами и нейтронами, этих тяжелых квантах ядерного взаимодействия, оказалась и впрямь не очень простой. Начать с того, что уже в 1934 году первооткрыватель позитрона Ч. Андерсон со своим сотрудником С. Неддермейером обнаружили, что некоторые следы в камере Вильсона соответствуют частицам со значениями масс много больше электронной и много меньше протонной. Но X. Юкава ничего не знал об этих результатах! Официальное "открытие" новых частиц состоялось только в 1937 году, когда в одном и том же томе американского журнала "Физикал ревью" ("Физическое обозрение") появились сообщения сразу двух групп, изучавших следы космических лучей. Юкавское значение массы оправдывалось с поразительной точностью!
   Эти работы явились вполне достойным "открытием" новых объектов мезонов, а кавычки для слова "открытие" использованы по той простой причине, что "американские мезоны" не имели непосредственного отношения к "японским предсказаниям" - это были уже упоминавшиеся мю-мезоны, дублеры электрона по микромиру. Впрочем, первоначально никаких особых подозрений в несоответствии предсказанных и открытых частиц не возникало. Лишь постепенно, в течение десяти лет, выяснилось, что такие частицы не обладают ядерной активностью и взаимодействуют с ядрами только благодаря наличию электрических зарядов.
   Такие неприятные неувязки были окончательно осознаны к 1947 году, и не исключено, что в судьбе гипотетических тяжелых квантов Юкавы произошли бы трагические события, если бы... они не были именно в этом году открыты "всамделишно".
   Особо важную роль в благополучном исходе поисков сыграли новые, чрезвычайно чувствительные фотопластинки, вовремя попавшие в руки к исследователям космических лучей. Благодаря чудо-пластинкам группа С. Пауэлла обнаружила, что наряду с мю-мезонами появляется некоторое количество частиц с близким значением массы, но способных к расщеплению атомных ядер. Так юкавские кванты, названные в отличие от мю-мезонов пи-мезонами, получили права полноправных граждан микромира. Не остались в тени и их открыватели: X. Юкава был удостоен Нобелевской премии в 1949 году, а С. Пауэлл - ровно через год.
   Теперь, я думаю, ясно, почему примерно к 1937 году - отчасти по "святому неведению", отчасти по "стремлению к покою душевному" - у физиков создалось довольно радужное настроение по поводу того, как же лепо и пригоже устроен этот микромир. Все при деле, и все на своих местах. Две новые частицы - мезон и нейтрино - вполне оправдывают свое существование: с ними в физику вошло представление о двух новых типах взаимодействия - слабом и сильном. Похоже было, что экспериментаторы выполнили свой долг наилучшим образом. Теперь дело за теоретиками, за созданием хорошей количественной теории наблюдаемых явлений
   К моменту, когда настоящий юкавский квант - пи-мезон - обнаружился в составе космических лучей, а еще через год был зарегистрирован на циклотроне Берклиевской радиационной лаборатории, могло сложиться впечатление, что все главные действующие лица микромира уже найдены. Но вот тут-то на горизонте и замаячили крупные неурядицы.
   Житейская мудрость предлагает по поводу таких ситуаций внешне парадоксальную поговорку: когда слишком хорошо - значит, плохо! В данном случае все оказалось не то чтобы "плоше", но сложней и интересней.
   Уже в 1944 году французские физики Л. Ле-Принс Ренгуэ и М Лэритье зарегистрировали любопытный след космической частицы, обладающей массой порядка 500 МэВ. Через три года сотрудники Манчестерского университета Дж. Рочестер и Ч. Батлер обнаружили два события: какие-то частицы распадались на лету, и возникала своеобразная вилка следов, напоминающая по форме латинскую букву V. Начались интенсивные поиски новых событий такого же типа, а вскоре стало ясно, что открыт целый новый класс, точнее, даже два класса элементарных частиц, и первоначально их так и назвали: V-частицы. Некоторые из них оказались массивней протона, а другие - легче его; и эти, более легкие, явно принадлежали к мезонам.
   V-частицы вели себя довольно странно - они рождались с большой интенсивностью в результате сильных взаимодействий, а распадались на пи-мезоны и протоны или только на пи-мезоны (опять-таки на сильновзаимодействующие частицы - адроны!) с гораздо меньшей интенсивностью. Получалось так, что рождением и распадом V-частиц "управляют" различные силы, и распад происходит в результате слабых взаимодействий. В этом-то и состояло противоречие с известными законами физики, раз частицы способны участвовать в сильных взаимодействиях, то и распадаться на адроны они должны были бы за счет тех же сильных взаимодействий! Поскольку этого не наблюдалось, физики предположили, что рождение V-частиц происходит несколько необычным образом - они действительно образуются в процессах сильных взаимодействий, но лишь в строго определенных комбинациях, скажем, попарно, а распадаются поодиночке и уже за счет слабых взаимодействий. Впоследствии именно это свойство V-частиц - рождаться в строго определенных комбинациях было подтверждено экспериментами и расценено как странная черта в их поведении. Например, у пи-мезонов аналогичной странности не наблюдалось они рождались тоже с гораздо большей интенсивностью, чем распадались, но ведь распадались-то пи-мезоны не на адроны, а на частицы, не участвующие в сильных взаимодействиях!
   Летом 1953 года во французском городке Банье-де-Бигор была созвана конференция по физике космических лучей Она имела вполне определенную цель навести порядок в семействе недавно открытых частиц, дать конкретные рекомендации для составления подробной таблицы элементарных "кирпичиков мироздания".
   Конечно, новое всегда интересно и притягательно, но физики могли с легким налетом грусти отметить - частиц стало много, слишком много, чтобы все они в равной мере оставались настоящими "кирпичиками". Вероятно, создавшееся в связи с этим элегическое настроение способствовало одобрению прилагательного "странные" в качестве определения (официального обозначения!) тех частиц, которые вели себя своенравно, и заставляли ученых искать какие-то необычные правила реакций. "Странные" мезоны были названы ка-мезонами, а "странные" частицы тяжелее протона и нейтрона - гиперонами. Протон, нейтрон и гипероны получили также и общее название - барионы (от "барос" - тяжелый).
   В 1960 году на Международной конференции по физике высоких энергий демонстрировалась подробная таблица элементарных частиц и их основных свойств. Она занимала целую страницу стандартного книжного формата и включала целых 30 частиц и античастиц!
   Первым, в гордом одиночестве стоял герой квантовых сражений фотон. Далее выделился особый класс лептонов (от "лептос" - легкий), куда вошли электрон, мюон, нейтрино и их античастицы. Из ядерно-активных частиц были известны 3 пи-мезона и 4 ка-мезона, а также протон, нейтрон, их античастицы и 6 гиперонов (один лямбда-гиперон, 3 сигма-гиперона и 2 кси) со своими антигиперонами.
   Вот какая сложная "зоология" была наведена в микромире около 20 лет назад.
   Запомнить такую "огромную" таблицу было намного сложней, чем две-три частицы "старых добрых времен".
   Казалось, что конец 40-х и 50-е годы принесли настоящее половодье открытий - 20 новых частиц: мезонов и гиперонов, да еще и нейтрино. 23 из 30 частиц в приведенной таблице были ядерно-активны, причем 16 мезонов и гиперонов считались "странными". Следовательно, сильные взаимодействия обладают гораздо более сложными и разнообразными свойствами, чем могли себе вообразить физики в "ядерные" 30-е годы.
   Между тем размышления о половодье возникли буквально накануне настоящего потопа, причем первые сигналы о надвигающейся "каре за иллюзии" физики в некотором смысле прозевали...
   АДРОННЫЙ ПОТОП
   "...В шестисотый год жизни Ноевой, во второй месяц, в семнадцатый день месяца, в сей день разверзлись все источники великой бездны, и окна небесные отворились. И лился на землю дождь сорок дней и сорок ночей..." Таковы строки библейской сказки о "наказании господнем", ниспосланном за грехи рода человеческого. Как известно, спасется лишь Ной - человек праведный и за то вовремя осененный предупреждением свыше. Он построит громадный ковчег, соберет на нем "всякой твари по паре" и причалит на нем к единственному кусочку незатопленной тверди земной - вершине горы Арарат.
   Сказка сказкой, но нечто подобное произошло и в микромире: был и потоп открытий, и спасительный ковчег...
   Масштабы событий, нахлынувших вскоре на физику элементарных частиц, действительно огромны, и их источники хорошо известны.
   Ускорители дождались наконец своего часа. Уже к концу 40-х годов их возможности намного превзошли мечты создателей. Правда, хотя эпоха естественных радиоактивных снарядов ушла в прошлое, принципиальные результаты работ на ускорителях все еще плелись в хвосте у достижений физики космических лучей. Благодаря огромному энергетическому диапазону "дара небес" они позволяли широким фронтом вести поиск всевозможных необычных событий. Поэтому к моменту заполнения 30-частичной таблицы космические лучи оказались в положении фаворита.
   Посудите сами, электрон и фотон были открыты с помощью катодных трубок; нейтрон и протон - с помощью радиоактивных элементов; нейтрино открыли, используя ядерный реактор. А вот мю-мезон, пи-мезоны, ка-мезоны, большинство гиперонов обязаны своим появлением исследованиям "космиков" (так называют среди физиков тех, кто занимается космическими лучами). Что могли показать на этой выставке достижений ускорители? Подтверждения результатов, добытых космиками? Но подтверждение, несмотря на всю полезность поговорки "повторение - мать учения", остается всего лишь движением по проторенному пути.