При безотвальной пахоте (это не ноль, а минимальная обработка, когда плугом только подрезается слой земли) затраты энергии в полтора-два раза меньше, чем при обычной традиционной пахоте. Безотвальная вспашка экономит много жидкого топлива. Конечно, применять ее нужно с оглядкой, с учетом местных условий.
   Например, в районах с влажным климатом все же предпочтительнее полная пахота с оборотом пласта. А в засушливом климате минимальная обработка почвы дает прибавку урожая до 20 процентов. Почему это так?
   Часть энергии, взятой растениями у солнца, уходит на прокачку воды и работу корневой системы. Минимальная обработка по-разному влияет на содержание влаги и структуру почвы. В некоторых условиях влага - это главное, и потому безотвальная система дает заметную прибавку.
   Следует также учитывать, что если не перепахивать землю, то для уничтожения сорняков нужно резко увеличить дозу гербицидов. Но на производство гербицидов тоже требуется энергия, и выигрыш вроде бы уменьшается. И все же общий расход энергии сократится на 20 процентов. Игра стоит свеч. Во-первых, 20 процентов - это огромная экономия. А во-вторых, при производстве гербицидов мы не должны расходовать дефицитное жидкое топливо: можно обойтись газом, электроэнергией АЭС и другими источниками.
   Если говорить не только о сиюминутной выгоде, а и о дальней перспективе, то безотвальная вспашка пока чуть ли не единственный способ предотвратить эрозию почвы. Надо уже сейчас думать о сохранении среды, дающей жизнь растениям, иначе в сельском хозяйстве может сложиться тяжелая ситуация.
   Нежелательно было бы вскоре столкнуться с проблемой создания искусственной почвы. Между тем опасность истощения земли, резкого падения ее плодородия вполне реальна.
   В среднем за 10 лет на каждый гектар пашни вносится около 4 тонн органического вещества (в том числе и за счет естественных процессов), а теряется за счет эрозии почти в десять раз больше - 30 тонн. С 1920 года потери гумуса (органического вещества почвы) в южных черноземных районах составили 24 процента. Подобные опасные явления происходят во всем мире. Земледелие продолжает1 жить взаймы у природы за счет усиленного расхода энергии солнца, накопленной в пахотном слое.
   При использовании минимальной обработки почвы удается не только снизить затраты энергии, а и существенно замедлить эрозию почвы, и в этом ее большой смысл.
   Обработка почвы - вещь очень деликатная, и небольшое технологическое усовершенствование иногда способно дать значительный энергетический выигрыш.
   Приведем один поучительный пример.
   Гектар влаголюбивого риса поглощает за сезон 20- 80 тысяч кубических метров пресной воды! На возделывание риса уходит около 15 процентов речного стока планеты. Однако только третью его часть забирают растения, остальная вода расходуется впустую - испаряется или уходит в почву.
   Многолетние исследования, проведенные в Краснодарском крае, показали: чтобы надежно сократить расход воды, надо выровнять поверхности делянок чеков, на которых высажен рис. Если перекос плоскости чеков увеличится, например, с 5 до 10 сантиметров, то расход воды возрастет вдвое. Но дело не только в излишнем поливе. Резко колеблется урожайность. При отклонении поверхности чеков от среднего уровня на 3 сантиметра урожай составляет около 60 центнеров. Но когда перекос достигает 10 сантиметров, урожай падает вдвое.
   Задача ясна - для сокращения затрат воды и, следовательно, расхода энергии нужно максимально выровнять поверхность чеков. На помощь планировщикам и водителям машин-скреперов пришли ученые Новочеркасского инженерно-мелиоративного института. Они установили посреди чека гелий-неоновый газовый лазер. Лазерный луч направляется на фотоприемник, прикрепленный к машинам мелиораторов. По показаниям прибора-индикатора водители управляют высотой рабочего органа скрепера, проводящего планировку поверхности. Предпосевные работы можно вести и ночью. В результате благодаря увеличению "горизонтальности" уменьшились затраты энергии на полив воды, а урожайность поднялась на 10 центнеров с гектара.
   От фитотрона к теплице
   Есть ли предел урожайности? В древности земледелец собирал с гектара всего по 3-4 центнера зерна. С появлением железного плуга урожай поднялся почти вдвое.
   В начале 70-х годов средний сбор по стране составлял 18 центнеров с гектара. В то же время на Кубани удавалось получать 32-35 центнеров с гектара. А рекордного сбора добились в Киргизии. В пересчете на гектар он составил 126 центнеров!
   В фитотроне при 16-часовом освещении и 70-суточном вегетационном периоде получают урожаи до 500 центнеров с гектара. Конечно, можно перейти на выращивание культур и в фитотронах, но это будет дорогостоящее дело.
   Ведь сегодняшний исследовательский фитотрон - очень дорогое сооружение: герметичный бокс, искусственные освещение и почва, регулирование состава воздуха по влажности и содержанию С02, исключение различных болезнетворных бактерий, специальная подготовка семенного материала.
   Пока в искусственных условиях - в специальных теплицах - выгодно выращивать только отдельные виды овощей. (Упрощенные фитотроны и называются теплицами.)
   В 1929 году во Франции была запатентована ветроэлектростанция, одновременно являющаяся оранжереей.
   А несколько лет назад в Испании, под Мадридом, этот проект воплотился в жизнь. Над участком земли площадью 20 гектаров была на некоторой высоте натянута прозрачная пленка. В центре гигантской теплицы поставили трубу высотой 200 метров. В ней смонтировали турбину мощностью 100 киловатт. Разогретая за день теплица должна создавать воздушную тягу и ночью, а инфракрасное излучение, проходящее через облака, не даст остановиться турбине и в пасмурный день. Получаемую электроэнергию можно использовать для освещения теплицы.
   Хотя энергии производится маловато, подобными устройствами заинтересовались страны с жарким климатом и большими свободными площадями - Саудовская Аравия, Марокко. Однако остается неясным, насколько рентабельна сама теплица. Сомнения вызывают ее постоянный поток ветра, нерегулируемость температуры, неконтролируемость состава воздуха.
   Между тем для эффективного выращивания растений в теплице нужно регулировать температуру, газовый состав воздуха и его влажность, а также структуру и состав почвы. В перспективе все больше сельскохозяйственной продукции будет производиться в условиях, приближающихся к фитотронным. Теплицы по мере совершенствования также постепенно приблизятся к фитотронам.
   Однако не надо забывать, что в фитотроне главная задача одна - получить максимум урожая. Этой цели подчинены все средства. Соответственно суммарные затраты энергии могут быть очень высокими. А теплицы промышленные предприятия. В них необходимо соизмерять затраченную энергию с полученной нищей. Так что перенимать фитотронные достижения следует с оглядкой: "А сколько это потребует энергии?"
   По-видимому, первые теплицы у пас в стране появились на Соловецких островах, заселенных россиянами много веков назад. Цветущее хозяйство возникло в этих краях! Внушительный Соловецкий кремль. Белоснежные громады соборов. Крепостные башни. Каналы. Холод. Низкие синие тучи. Суровая природа Севера. И дымящие заводы - кирпичный, угольный, алебастровый.
   Предприимчивые соловецкие монахи завели также в XVI веке оранжереи для выращивания овощей. И не обычные, а с энергосберегающей технологией их обогрева.
   В теплицы поступало отходящее тепло воскобелильного заведения, производящего свечи для монастыря.
   Поныне одна из главных задач при сооружении теплиц - поддерживать в них нужный температурный режим.
   Любители зимнего отдыха в горах знают: на пути в красивейшее место Кавказа - Домбай - вдоль асфальтовой дороги на Карачаевских взгорьях длинными бесконечными рядами тянутся теплицы. Еще когда они строились, у многих возникал вопрос: зачем в этом теплом солнечном краю такое необозримое поле стекла? Лишь первая очередь тепличного комбината "Южный" включает миллион квадратных метров теплиц.
   Вопросы множились, и когда проезжавшие замечали табличку с надписью: "Моспромстрой". При чем тут московские строители? Напрашивалась догадка: наверное, овощи выращиваются для столицы.
   Действительно, значительная часть урожая, особенно в межсезонье, с ноября по март, предназначается для столицы. Овощи нужны круглый год, и зимой выращивать их можно только в парниках, иногда даже в пленочных.
   Щедрое южное солнце, а на полях Карачаево-Черкесии оно горячо греет и зимой, позволяет сэкономить топливо. Между тем в среднем почти 70 процентов стоимости тепличных овощей - это стоимость сожженного топлива. Прикинем, сколько энергии сберегается в комбинате "Южный".
   Сравним балансы по топливу. На обогрев одного гектара зимних теплиц требуется от 2 до 3 тысяч: тонн условного топлива в год и 300-600 тысяч киловатт-часов электроэнергии на освещение. За счет южного солнца экономится 500 тонн топлива. При средней урожайности овощей 30-40 килограммов с квадратного метра получаем, что на выращивании каждого килограмма овощей сберегается около 1,5 килограмма топлива!
   Конечно, это много, очень много. Но, может быть, весь этот энергетический выигрыш растеряется при перевозке овощей в центральные районы? Оказывается, далеко нет.
   При транспортировке по железной дороге энергетические затраты составляют 0,01-0,015 килограмма условного топлива на 1 тонно-километр. При перевозке на 2000 километров затратится 0,02-0,03 килограмма условного топлива на 1 килограмм овощей.
   Автотранспорт дороже: затраты возрастут десятикратно и составят примерно 0,3-0,4 килограмма топлива.
   Но они все равно существенно меньше, чем энергосбережение благодаря использованию в теплицах солнечной энергии. Правда, если учесть все затраты и провести сравнение в рублях, то экономия в денежном выражении, особенно в случае автоперевозок, не выглядит столь впечатляющей.
   Сейчас в нашей стране около 3 тысяч гектаров зимних теплиц. Расходуется на них в год около 7 миллионов тонн условного топлива. А тепличное дело набирает силу.
   Качественная продукция овоще-бахчевого хозяйства должна равномерно поступать на стол потребителя в течение года. С учетом возможностей хранения и климатических условий для этого в теплицах нужно производить около 25 процентов овощей. При норме потребления 150 килограммов (с учетом бахчевых культур) количе ство теплиц нужно увеличить в восемь-десять раз. Тогда они станут потреблять 60 миллионов тонн условного топлива.
   Это много, потому что в недавно построенном комбинате "Тепличный" в Ивановской области тратится 3000 тонн условного топлива на гектар, что в 6-7(!) раз превышает количество энергии, приносимой солнцем в летний период.
   В то же время это и не так много, потому что 60 миллионов тонн - всего пятая часть тепла, выбрасываемого конденсаторами электростанций СССР. Только АЭС страны в 1990 году сбросят примерно 100 миллионов тонн условного топлива. Отработанное тепло АЭС можно использовать в тепличном хозяйстве, применив водонаполненную кровлю. При этом методе на хорошо герметизированные стеклянные панели подается горячая вода, стекающая тонкой пленкой. Если система водной циркуляции хорошо отлажена, то теплицы становятся как бы конденсаторами турбин.
   Конечно, метод приемлем не всегда и не во всех районах страны. Вода забирает часть солнечного света, требуется дополнительно очищать ее, тщательно ухаживать за кровлей. Чем ниже температура сброса, тем выше металлоемкость системы обогрева. Для кипятка нужно в 3-5 раз меньше труб и радиаторов, чем для просто горячей воды.
   Если от турбин АЭС отбирать для теплиц пар необходимых параметров, то на выработке электричества это практически не скажется. При АЭС можно с большой экономией энергии развернуть мощное тепличное хозяйство. В одном из постановлений вообще запрещается строительство теплиц на органическом топливе в европейской части СССР вблизи строящихся или действующих атомных электростанций. К сожалению, эта правильная мера не всегда соблюдается.
   Чтобы тепло не рассеивалось впустую, в теплицах применяют теплозащитные экраны, специальное остекление и алюминиевые профили, обеспечивающие герметичность. Они оснащаются автоматизированными системами управления микроклиматом, калориферными системами обогрева.
   Если теплица или парник оборудуются для обогрева системой циркуляции воздуха, то можно использовать избыточную солнечную энергию. Нагретый днем воздух продувается по специальным каналам сквозь почву или термоаккумулятор, отдающие запасенное тепло по ночам.
   Подавляющее большинство предложений по энергосбережению рождается из детального и даже придирчивого анализа технологического процесса.
   Проанализировав циркуляцию воды и воздуха в теплице, специалисты Квебекского университета в Канаде предложили обогревать не все пространство парника, а лишь часть его, непосредственно примыкающую к растениям. Для этого вдоль грядок можно прорыть траншеи метровой глубины. Днем они покрыты полиэтиленовой пленкой, под ней воздух накапливает и сохраняет тепло.
   На ночь, когда становится холодно, полиэтиленовую пленку заменяют алюминиевым полиэфирным "пледом", теплоотдача через который значительно выше, и растения по соседству с траншеей обогреваются излучаемым теплом. Площадь для теплицы при этом методе увеличивается, но затраты энергии на обогрев, утверждают канадские специалисты, уменьшаются в несколько раз.
   Основной "хлеб" растений - свет. Посмотрим, какие энергосберегающие ресурсы имеются здесь.
   Наука об искусственном освещении - светокульту-"
   ра - находится на стыке биологии и электротехники.
   Она может очень многое дать как растениеводству, подсказав оптимальные условия для выращивания урожая, так и энергетике, предложив способы минимизировать расход энергии.
   Приведем один пример. Московский тепличный комбинат, построенный в 1972 году, расходует 250-280 тысяч киловатт-часов электроэнергии в год, а на комбинате "Тепличный", созданном в последнее время в Ивановской области, электроэнергии расходуется в три раза больше - 600-700 киловатт-часов на гектар. Не будем сразу обвинять проектировщиков или тех, кто работав!
   в тепличных хозяйствах. Ведь условия выращивания растений могут очень различаться по многим причинам.
   Например, средняя естественная освещенность зависит как от географического расположения, так и от "утепленности" теплицы. Нужно учитывать также температурные условия района. Неодинакового количества света требуют и разные виды овощей. Рассаду необходимо освещать в два раза больше, чем взрослые растения. Причин разного расхода электроэнергии может быть много, И все же разница в три раза слишком велика.
   Для жизнедеятельности растения необходимо чередовать периоды освещенности с периодами пребывания в Темноте. Длина светового дня должна быть от 8 до 14 часов в зависимости от вида растения и периода созревания. Эти факты общеизвестны. А вот менее известный факт: экспериментально установлено, что фотосинтез лучше совершается при освещении с меняющейся интенсивностью. В совхозе "Тепличный" Челябинской области установили осветительные лампы на каруселях, вращающихся с небольшой скоростью в горизонтальной плоскости. Урожай собирается такой же, как и при непрерывном освещении 8-12- часовой длительности, а расход электроэнергии в несколько (!) раз меньше.
   Преобразование неорганических веществ, воды, углекислоты в углеводы и кислород под действием солнечного света - механизм очень сложный. Он не понят еще до конца и на молекулярном, и на клеточном уровне.
   Фотосинтез очень чувствителен ко многим параметрам внешней среды, и для выявления оптимума требуются точные эксперименты. К сожалению, проводятся они не всегда тщательно, и это часто служит источником ложной информации.
   Например, однажды в прессе промелькнуло сообщение, будто достаточно было установить в теплицах одного из совхозов красные светофильтры на осветительные лампы, и урожай повысился в полтора-два (!) раза. Конечно, растение любит красный свет. Ведь именно поэтому его преобладающий цвет зеленый. Но зачем устанавливать красный фильтр?
   Если из видимого солнечного "белого" света извлечь одну компоненту, в данном случае красную часть спектра с длиной волны от 600 до 700 микрометров, то "белое" сменится на "дополнительную" окраску. Дополнительный цвет к красному - зеленый. Растение зеленое именно потому, что из солнечного излучения оно интенсивно поглощает красную компоненту и отражает "дополнительную".
   Отсюда вовсе не вытекает, что для роста растения полезно отсекать часть солнечного спектра. А кроме того, дешевых идеальных фильтров нет, а в применяемых частично поглощаются все длины волн.
   Растение действительно любит красный свет. Что это значит? Число квантов света на единицу энергии красной части спектра больше, чем в сине-фиолетовом диапазоне, поскольку энергия кванта с увеличением длины волны падает. Но ведь и более "энергичные" кванты также могут осуществлять акты фотосинтеза, хотя и с меньшей эффективностью. Так зачем же их отсекать?
   Интересные соображения я нашел в статье доктора биологических наук Б. Гуляева. Он пишет, что, если всего 20 процентов красных лучей заменить на синие, существенно увеличится скорость поглощения листьями углекислого газа. Зеленые лучи лучше проникают сквозь листву и обеспечивают энергией листья нижних ярусов.
   Очень чувствительны к световому спектру процессы, от которых зависит развитие растения. При полном отсутствии "синих" и "зеленых" фотонов можно выращивать только листовые формы типа салата.
   Можно сделать вывод, что для всех высших наземных растений идеальным источником света является солнце. В видимой части спектра его излучение у земной поверхности содержит около 30 процентов синих лучей и примерно по 35 процентов зеленых и красных. Создать лампы, которые имели бы такую спектральную характеристику, пока не удается. Наилучшими "солнцеподобными" параметрами обладают пока люминесцентньи лампы разного вида. И все же предпринимаются попытки улучшить естественный солнечный свет.
   Для покрытия теплиц предлагается использовать но стекло и не обычную полиэтиленовую пленку, а фоторедуцирующую. Механизм редуцирования света примерно такой же, как и в люминесцентных лампах. В пленку введены люминофоры, которые переводят коротковолнвую ультрафиолетовую часть спектра в видимую часть, тем самым как бы несколько увеличивая силу солнца в этой части. Сообщается, что фоторедуцирующая пленка позволяет увеличить урожайность различных культур на 10-60 процентов.
   Вряд ли имеет смысл отвергать предлагаемый способ сразу. Ведь "испытания проведены в различных климатических зонах страны". Но для понимания физики п биологии процесса следует помнить, что ультрафиолетовая часть спектра энергетически составляет не болое 20 процентов от видимой. И даже если половину ее преобразовать в видимую часть, то общая энергия видимого света увеличится не более чем на 10 процентов. А ведь для растений полезен и ультрафиолет, который отсекается фоторедуцирующей пленкой.
   Согласно детальным исследованиям в растениях имеются вещества, активно поглощающие ультрафиолетовые лучи. Обнаружено, что добавка таких лучей к световому потоку вызывает более интенсивный рост и развитие растений. Связь света, температуры и фотосинтеза очень сложная и разная для разных культур.
   Вот передо мной графики, показывающие зависимость между интенсивностью фотосинтеза и температурой. Это - кривые с горбом. Значит, существует оптимальная температура. Ниже ее и выше ее фотосинтез идет хуже.
   Для каждой освещенности - своя кривая. Скажем, для 15 градусов фотосинтез максимален при освещенности 20 тысяч люкс. Если в этих условиях освещенность увеличить в полтора раза, ничего не изменится. Вероятно, фотосинтез даже ухудшится, а количество затраченной энергии увеличится. Этот пример я привожу как раз для того, чтобы показать, насколько сложны механизмы фотосинтеза и как осторожно нужно относиться к различным экспериментам и рекомендациям.
   Основное сырье для создания биомассы - вода и углекислый газ. Интенсивность фотосинтеза возрастает при увеличении концентрации углекислого газа в атмосфере. Полезность такой подкормки зависит и от температуры, освещенности, наличия влаги. Как видим, связь очень многопараметрическая, особенно если учесть, что существует еще зависимость от вида растений, состояния почвы.
   Некоторые главные связи изучены, разработаны оптимальные технологические приемы. Когда же не учитываются те или иные факторы, неизбежен отрицательный результат.
   Например, углекислый газ подается в теплицы из специального устройства, в- котором сжигается природный газ, и если температура в теплице начинает расти выше оптимальной, то, несмотря на увеличение концентрация углекислого газа, фотосинтез уменьшается. Значит, природный газ сжигают зря.
   Иногда же углекислый газ подают прямо от котельных агрегатов, обогревающих теплицы, не проводя никакой его обработки, что приводит к еще худшим последствиям. Ведь в продуктах сгорания, кроме углекислого газа, содержатся окислы серы и азота, этилен, пропилен, формальдегид, которые задерживают рост растений.
   По оценкам английского института парниковых культур, ущерб из-за загрязнений тепличной атмосферы в Англии составляет 2 миллиона фунтов стерлингов в год. Что же делать?
   Особо действенных рекомендаций нет. Желательно использовать малосернистое топливо, тщательно регулировать горелки. По-видимому, целесообразно воспользоваться методами, которые разработаны энергетиками для очистки отходящих газов или для снижения концентрации окиси азота.
   Есть еще один путь - вывести специальные сорта растений, устойчивые к токсичным веществам.
   Но это уже вгзляд в далекое будущее, когда человек, возможно, уже и не будет производить токсичных веществ. Если говорить о будущем, то давайте лучше помечтаем вместе с биологами.
   По их мнению, не вся сельскохозяйственная продукция будет производиться в крупных агропромышленных комплексах. Специалисты из научного центра биологических исследований АН СССР в Пущине, занимающиеся программой "Экополис" (экология города и его пригородов), считают, что частично город может самообеспечиваться продуктами питания, используя свои ресурсы энергии.
   В препринте "Экополис. Введение и проблемы" говорится, что даже превращение в заповедник одной десятой части суши позволит сохранить лишь половину фондов мировой фауны. Распахиваются новые земли, а города территориально все больше "расплываются". Какой же выход?
   Авторы исходят из того, что каждый горожанин, сознается он в этом или нет, мечтает общаться с природой. Город же изолирует людей от нее. И вот немного фантазии. "Представьте небольшой город, который частично обеспечивает жителей продуктами питания. Солнечная и тепловая энергия, выделяющаяся на его территории, направлена на выращивание пищевых или технических растений. Урожаи в городской черте могут быть даже выше, чем в естественном растительном сообществе. Поможет и дополнительное тепло, и подкормка растений углекислым газом. Наружная часть стен многих домов представляет собой фотосинтетическую пластину.
   Труба ТЭЦ служит вертикальным каркасом и источником тепла для оранжереи. Снаружи она напоминает застекленную башню".
   А где же природа? Совсем близко. Через город текут ручьи, около них буйствует жизнь. На месте привычных газонов раскинулись луга с медоносными и прочими травами. В городе идет сенокос.
   Мандариновый бензин
   Общая масса "живого" вещества на земле (растительного, животного, бактериального) - 2500 миллиардов тонн. Ежегодно воспроизводится 400 миллиардов тонн, из которых несколько менее половины - растительность.
   Лишь одни леса дают прирост около 25 миллиардов тонн. Уже в 70-80-е годы человечество расходовало около одной десятой древесного прироста, а к 2000 году эта величина может вырасти вдвое. Особенно быстрыми темпами идет уничтожение влажных тропических зарослей, составляющих половину всех лесов мира. Подсчитано, что при нынешнем темпе их вырубки (30 гектаров в минуту) тропические джунгли могут исчезнуть через 100 лет.
   Леса нашей страны, составляющие четверть древесного фонда планеты, расходуются более экономно.
   Тревога о лесе связана не только с тем, что в тропиках на их месте возникают пустыни. Самое опасное - на наших глазах исчезают зеленые легкие планеты. Ведь леса в результате фотосинтеза усваивают наряду с фитопланктоном определенную часть выделяющегося в атмосферу углекислого газа и возвращают ей кислород.
   При ежегодном сжигании 12 миллиардов тонн условного топлива в атмосферу выбрасывается около 50 миллиардов тонн углекислого газа и потребляется 30 миллиардов тонн кислорода. Это одна пятая часть кислорода, поставляемого планете фотосинтезом, и уже сейчас Северное полушарие Земли подпитывается потоком кислорода из тропиков. Тем не менее пока доля кислорода в атмосфере не уменьшается. Почему?
   Во-первых, велико его общее количество в атмосфере, вес которой равен пяти триллионам тонн. А во-вторых, по-видимому, существует еще один источник кислорода, помимо фотосинтеза. Американские ученые, основываясь на спектрографических наблюдениях с космического корабля "Аполлон-16", пришли к заключению, что водяные пары в верхних слоях атмосферы под действием ультрафиолетового излучения разлагаются на кислород и водород. Так что пока кислородное голодание нам не грозит.