Реактор БН-350 при работе в режиме размножения может взамен каждого сожженного в нем килограмма плутония производить из урана-238 полтора килограмма нового плутония. Это достаточно хороший показатель воспроизводства топлива, но пока, к сожалению, только расчетный. На самом деле ь активную зону реактора вместе с ураном-238 пока загружается не плутоний (работа с ним связана с некоторыми сложностями, о которых расскажем несколько позже), а дорогостоящий уран-235. Но поскольку главная задача теперешнего этапа развития реакторов на быстрых нейтронах - это создание атомной станции, конструктивно надежной и работоспособной, эти вопросы могут быть отработаны и с активной зоной, в которую загружен не плутоний, а уран-235. В этом случае воспроизводство топлива, конечно, ухудшается, так как при делении из него вылетает нейтронов меньше, чем при делении плутония. Однако условия работы всего оборудования практически остаются такими, словно в активной зоне вместе с ураном-238 загружен плутоний.
   Есть еще одна характеристика реакторов-размножителей на быстрых нейтронах, сильно влияющая на его конструкцию. Создать атомный реактор, в котором каждый сгоревший килограмм загруженного горючего оборачивался бы, скажем, полутора килограммами нового искусственного элемента, дело, кажется, совсем нехитрое. Можно добиться и большего: не полутора, а почти двух килограммов. Это будет очень простой реактор.
   Весь вопрос в том, когда мы потребуем от него отдачи, через какое время будут необходимы эти новые полтора килограмма топлива взамен ранее заложенного килограмма. От этого зависит и конструкция реактора, и сложности, которые предстоит преодолевать при его создании и эксплуатации. Понятно, что темпы наработки нового горючего будут определяться и тем, как должна развиваться вся энергетика вообще и атомная энергетика в частности.
   Это один из немногих случаев, когда конструкция установки, требования к ней самым прямым образом определяются темпами развития и стоуктурой энергетики.
   Темпы. Темпы, Темпы
   Если обратиться к прогнозируемым темпам развития мировой энергетики на ближайшие 40-50 лет, то мы увидим, что и тут существуют самые различные мнения.
   Одни считают, что в этом периоде и в будущие десятилетия прирост энергетических мощностей станет очень небольшим, а, возможно, к концу этого периода вообще затормозится. Другие вообще предполагают слабое изменение темпов развития. Ориентируясь на средний прирост экономики и национального дохода в 3-4 процента, большинство считает, что примерно такими темпами и начнет развиваться энергетика. При ежегодном ее росте в 3 процента каждые 25 лет энерговыработка будет удваиваться.
   Но нас сейчас интересует атомная энергетика, так как именно темпы ее развития будут определять требования, предъявляемые к ядерным реакторам-размножителям на быстрых нейтронах. При заданном росте всей энергетики развитие атомной будет зависеть от того, какая ей отведена в будущем роль, от того, какую долю займет она через несколько десятков лет. Однако эта доля зависит от столь многих факторов, что трудно ее определить. Действительно, нужно, например, знать, как будет развиваться солнечная энергетика или какие успехи будут достигнуты в переработке нефти, сланцев, угля и других полезных ископаемых в новые высококачественные виды топлива. Не менее важно, наконец, предвидеть, насколько успешно будет решена топливная проблема самой атомной энергетики. С учетом этих и ряда других факторов считают, что через 40-50 лет ее доля в общем энергетическом балансе страны может составить от 30 до 50 процентов. Чтобы развиться до такого масштаба, ежегодный прирост мощностей атомной энергетики должен составлять в среднем около 10 процентов. Это очень большая величина (вспомните: темп развития всей энергетики - 3 процента). А время, на протяжении которого мощности атомно-энергетических станций должны удваиваться, составит около 7 лет.
   Представляется, что в первый период развития темпы должны быть еще более высокими - доходить до 15 процентов. Это означает, что через 20-25 лет развитие атомной энергетики может несколько замедляться и время удвоения мощностей увеличится примерно на 3 года, то есть составит около
   10 лет.
   Именно эта величина и нужна для того, чтобы определить требования к темпам расширенного воспроизводства в реакторах-размножителях ядерного топлива. Если сегодня в него заложена, например, тысяча килограммов, то через 10 лет он должен будет наработать дополнительно еще тысячу килограммов. Этого нового горючего как раз хватит для того, чтобы запустить через 10 лет еще один реактор, чем и удвоится мощность. Если исходить из сказанного, время удвоения загрузки быстрого реактора должно составлять 10 лет. В действительности требования, предъявляемые к реакторам, по скорости размножения горючего более жесткие и время удвоения загрузки делящегося ядерного горючего должно быть существенно менее 10 лет. Чем это вызвано?
   Сейчас около 20 процентов всего добываемого топлива идет на выработку электроэнергии. Треть его уходит на производство коммунального тепла и пара, используемого в различных отраслях промышленности. Несколько менее четвертой части топлива расходуется в металлургии, химии, нефтепереработке и других отраслях промышленности. Транспорт - авиация, автомобили, тепловозы, речные и морские суда - потребляет почти столько же. Через несколько десятков лет эти пропорции, конечно, изменятся. Насколько?
   Наиболее очевиден рост электроэнергетики, которая в прошедшие годы развивалась вдвое быстрее, чем вся энергетика. В настоящее время этот процесс несколько замедлился, но тем не менее доля электроэнергии в общем энергетическом балансе неуклонно растет. Можно ожидать, что через несколько десятков лет ее доля достигнет, скажем, 40 процентов.
   Подавляющее большинство работающих и строящихся атомных энергетических установок предназначено для выработки именно электроэнергии. Не являются исключением и реакторы-размножители на быстрых нейтронах: их также создают с той же целью. Если АЭС с реакторами-размножителями заняли бы всю электроэнергетику, то есть вытеснили бы из нее электростанции, пользующиеся другими видами топлива, это было бы уже довольно удовлетворительным решением энергетической проблемы. Около 40 процентов энергетики обеспечивалось бы атомной. Впрочем, это невозможно. Вопервых, и через 30, и через 40 лет еще будут существо вать гидростанции, а в районах залегания углей продол жат свою работу теплоэлектростанции на этом топливе. Во-втооы\, ЛЭС с реакторами-размножителями могут быть испоц ованы только в базисном режиме работы. Вот что это означает.
   Потребление электроэнергии в промышленности и быту очень неолрномерно. Зимой она расходуется в большем объеме, нежели в тепчое время года. Эта неравномерность характерна и для недельного периода: в субботу и воскресенье потребность в электроэнергии резко падает. Даже в течение суток происходит сильное колебание потребления, отражающееся и на производстве электроэнергии. Существуют так называемые утренние и вечерние пики потребления, как и ночные провалы, когда электроэнергии нужно очень мало. Значит, электростанции в соответствии с приведенными фактами вынуждены вырабатывать электроэнергию неравномерно, а часть из них в периоды малого потребления и вообще останавливаться. Если провести анализ баланса рабочего времени всех электростанций, то окажется, что в среднем они простаивают за год около полугода.
   Исходя из этого, разумно строить станции различных типов так, чтобы одни из них работали весь год на постоянной, максимально допустимой для них мощности, - про такие электростанции говорят, что они работают в базисном режиме; другим рекомендовать регулярный режим, при котором мощность то поднимается, то снижается; а третьи в основном простаивают, лишь изредка (утром и вечером) поднимается до максимальной их мощность.
   Конечно, бессмысленно заставлять работать в таком режиме АЭС с реактором-размножителем, созданным для быстрейшего создания нового ядерного горючего.
   Разве можно ему простаивать! Несколько лучше работа в регулируемом режиме. Но самое идеальное - базисный режим. Постоянная работа реактора на предельной мощности позволит создать максимальное количество горючего за минимально возможное время.
   Очевидны и минусы такого подхода. Не более половины вырабатываемой электроэнергии могут производить АЭС с реакторами-размножителями. Это означает, что с их помощью возможно обеспечить примерно одну пятую всей потребности в энергии. Но этого мало.
   Надо найти и другие пути, которые привели бы к увеличению доли атомной энергетики. Такие пути есть. Скажем, в очень многих отраслях промышленности и в коммунальном хозяйстве в качестве источника энергии могут служить реакторы не на быстрых, а на тепловых нейтронах. Такие реакторы более дешевы, гибки и неприхотливы в работе. Они, правда, не вырабатывают избыточного горючего, а потребляют поступающее извне. Но горючее это можно взять от реакторов-размножителей.
   Конечно, при этом возрастет нагрузка на эти реакторы:
   им придется нарабатывать ядерного горючего не только
   Для себе подобных, но и для реакторов, работающих на Тепловых нейтронах. Но если каждый реактор-размножитель на быстрых нейтронах обеспечит своей продукцией реактор такой же мощности на тепловых нейтронах, то вклад атомной энергетики в энергетику нашей страны сможет в перспективе подняться до 50 процентов или около того. Однако тогда время удвоения загрузки в реакторах-размножителях придется сократить с 10 лет до 7, а то и до 5 лет. А для этого надо интенсифицировать процесс размножения горючего.
   Кто же прав?
   Подведем итог. Итак, чтобы решить топливную проблему страны, самой атомной энергетике необходимы реакторы-размножители с малым- временем удвоения загрузки ядерного горючего. Казалось бы, ясная и актуальная задача. По крайней мере такой она видится, исходя из сказанного выше.
   Однако не все зарубежные и даже советские атомники разделяют такую точку зрения. В 1968 году в Минске состоялась международная конференция специалистов по реакторам-размножителям на быстрых нейтронах. Ученые рассказывали о результатах экспериментальных и расчетных работ по теплофизике, нейтронной физике реакторов, об идеях и новых проектах. Все они отлично понимали друг друга, пока не встал вопрос о том, какое время удвоения загрузки должно быть в реакторах-размножителях?
   - Вполне очевидно, что оно должно быть примерно 15-20 лет, - говорили немецкие и американские физики.
   - Если не удастся уменьшить время удвоения до 5-7 лет, то атомная энергетика не сможет оправдать возложенных на нее надежд, - заявляли советские специалисты.
   - Но ведь создание реактора с таким малым временем удвоения сложнейшая техническая задача.
   Кроме того, если такой реактор и удастся создать, то он будет очень дорого стоить, - парировали зарубежные ученые.
   Конечно, это так, - отвечали ученые Советского Союза, - но ведь реактор с большим временем удвое
   ния загрузки не может решить топливной проблемы самой ядерной энергетики.
   - Возможно, но зато он будет более дешевым и экономичным, чем реакторы на тепловых нейтронах, - стояли на своем зарубежные ученые.
   Примерно в таком духе шла дискуссия о путях развития быстрых реакторов. Ее корни в проблемах, которые нужно решить, чтобы существенным образом интенсифицировать процесс наработки нового горючего.
   Одно только перечисление этих проблем заняло бы много времени. Поэтому лучше остановиться на некоторых из них.
   Для быстрейшего получения из каждого килограмма загруженного в реактор топлива, скажем, полутора килограммов нового, очевидно, нужно, чтобы этот килограмм как можно скорее сгорел. А это означает, что должна быть увеличена мощность каждого тепловыделяющего элемента, в котором и заключено горючее.
   С увеличением же мощности повышается и его температура. А это уже проблема. Ведь нужны материалы, способные длительное время работать при высокой температуре в 700-800 градусов в условиях нейтронного облучения и больших механических нагрузок (давление газов внутри твэла будет достигать нескольких десятков атмосфер).
   Для отвода такого большого количества энергии нужно увеличить количество натрия, охлаждающего твэлы.
   Самое простое решение - раздвинуть их и увеличить проходное сечение для натрия. Однако делать этого нельзя, так как нейтроны так замедлятся, что понизится воспроизводство горючего.
   Можно идти и другим путем: поднять скорость течения натрия, не увеличивая проходного сечения. Но тогда возникает новая проблема усиливается эрозия поверхностей тепловыделяющих элементов и их вибрация.
   Вдобавок при быстром выгорании ядерного горючего нужно очень часто менять топливные кассеты, заменяя их другими со свежим топливом. А каждая замена - это остановка реактора и потеря драгоценного времени.
   Так возникает новая задача - необходимость создать устройства, позволяющие без задержек производить замену топлива.
   Нужно сказать, что трудности не кончаются его извлечением из реактора. Топливный цикл может быть завершен, как уже говорилось раньше, очисткой извлеченного топлива от осколков деления, выделения из него плутония, изготовления новых тепловыделяющих элементов. Только после всех этих процессов вторичное топливо разрешается загрузить в тот же самый или во вновь построенный реактор. Только после этого можно сказать, что создано дополнительное топливо. Задача, следовательно, состоит еще и в том, чтобы сократить время, затрачиваемое на переработку извлеченных твэлов и изготовление новых. А сделать это тоже непросто уже потому, что топливо, извлеченное из реактора, нельзя сразу направить на завод по переработке, так как в тепловыделяющих элементах из осколков продолжает выделяться много энергии. Вот и приходится выжидать несколько месяцев - срок, необходимый для того, чтобы ослабло их излучение и их можно было транспортировать. Да и на заводе по переработке сильное излучение твэлов также очень затрудняет проведение процесса отделения плутония.
   По-видимому, этого перечисления уже достаточно, чтобы дать себе отчет в том, что проблема создания реактора с малым временем удвоения загрузки горючего требует много времени, сил и средств. Кроме того, созданный реактор будет стоить дороже того, к которому не предъявлялись специальные требования по времени удвоения загрузки.
   Вокруг этих сложностей и дискутировали советские и зарубежные ученые, решая вопрос, на чем следует остановиться? Либо делать реактор для сегодняшнего дня с малоинтенсивной наработкой горючего, но зато более дешевый, чем реактор на быстрых нейтронах, и, конечно, неспособный коренным образом решить топливную проблему самой ядерной энергетики, хотя в ближайшее десятилетие он сможет успешно конкурировать по дешевизне энергии с тепловыми реакторами. Либо стать на другой путь, более тяжелый и более долгий.
   В его конце реактор значительно совершеннее и дороже других, но с интенсивной наработкой горючего (малым временем удвоения загрузки), пригодный для более успешного решения топливной проблемы самой ядерной энергетики будущего.
   Мы намеренно несколько поляризовали точки зрения специалистов на проблему определения времени удвоения загрузки и на вопрос, о чем нужно больше заботиться - о сегодняшнем дне или о завтрашнем.
   Нужно сказать, что спустя всего пять лет часть американских специалистов несколько поменяла свою точку зрения. Если ранее они считали необходимой величиной времени удвоения 15-20 лет, то в 1973 году специальная комиссия ученых США под руководством физика Г. Бете заявила: чтобы реакторы-размножители могли действительно сыграть свою роль в атомной энергетике будущего, время удвоения должно бить меньше 10 лет.
   Это уже значительный шаг вперед навстречу позиции советских специалистов, считавших необходимым временем удвоения 5-6 лет.
   Конечно, на пути создания таких реакторов-размножителей придется пройти несколько этапов. Реактор БН-350, с которого был начат рассказ, только первый этап. Время удвоения в нем, если был бы загружен плутоний, составило бы 15-20 лет. Но уже следующий реактор этого типа БН-600 имеет меньшее время удвоения - 12 лет, а у проектируемого еще большего реактора БН-1600 эта величина будет равна 8-9 годам.
   И у нас и за рубежом разработаны проекты реакторов-размножителей с еще большей интенсификацией процесса воспроизводства горючего. Это реакторы-размножители на быстрых нейтронах с гелиевым охлаждением. Своим преимуществом они обязаны гелию.
   В отличие от натрия гелий практически не поглощает нейтроны. А ведь в реакторе-размножителе каждый нейтрон на счету. Отвоеванный у вредных поглотителей, он в конце концов поглощается в делящихся ядрах с выделением энергии или, попав в ядро урана-238, производит ядро нового горючего плутония.
   Реактор с гелиевым теплоносителем обеспечивает лучшее расширенное воспроизводство еще и потому, что в объеме активной зоны такого реактора меньше атомов теплоносителя, замедляющих нейтроны. А это очень важно. Ведь реакторы-размножители потому и обеспечивают хорошее расширенное воспроизводство ядерного горючего, что работают они на быстрых нейтронах. Значит, чем меньше в активной зоне ядер теплоносителя, рассеивающих и замедляющих нейтроны, тем более быстрыми будут нейтроны, тем больше будет получаться в реакторе дополнительного ядерного горючего - плутония. С помощью таких реакторов специалисты надеются довести время удвоения загрузки до 5-6 лет.
   Создание эффективных реакторов-размножителей на быстрых нейтронах обеспечивает для атомной энергетики практически безграничные ресурсы ядерного топлива. Это происходит по двум причинам.
   Во-первых, гораздо эффективнее (в 20-30 раз) начинает использоваться ядерное горючее в самом реакторе.
   Во-вторых, и это особенно важно, в ядерный топливный цикл могут быть эффективно и экономично вовлечены громадные закасы урана, растворенного в морской воде. Эти запасы почти в миллион раз превышают залежи достаточно дешевого урана на суше, в рудных месторождениях.
   Почему же уран, растворенный в морской воде, нельзя использовать в уже существующих реакторах на тепловых нейтронах? Дело в том, что при известных сейчас методах извлечения урана из морской воды, он стоит в несколько раз дороже урана, добываемого на суше из рудных месторождений. Тепловые реакторы не могут позволить себе использовать такой дорогой уран - они будут тогда неэкономичны.
   Для хороших, быстрых реакторов-размножителей этой проблемы практически не возникает, поскольку они используют уран в 20-30 раз эффективнее и, значит, для них можно покупать его по повышенным ценам.
   Следовательно, при создании эффективно работающих реакторов-размножителей на быстрых нейтронах атомная энергетика сможет обеспечить себя достаточным количеством ядерного горючего и сыграть главную роль в решении энергетической проблемы.
   ЗЕМНОЕ СОЛНЦЕ
   Он восемь лет вынашивал идею получения солнечной энергии из огурцов, для чего помещал их в банку и в прохладные летние дни извлекал для обогрева воздуха.
   Джонатан Свифт
   Люди издавна поклонялись Солнцу, обожествляли его - источник жизни на Земле. Один из фараонов Древнего Египта, гораздо менее известный, чем его жена красавица Нефертити, через четыре года после вступления на престол принял имя Эхнатон, что означает "Поклоняющийся Атону" - солнечному диску. Если пользоваться терминами современной физики, то Эхнатон поклонялся естественному термоядерному реактору.
   Не все согласны с тем, что источник энергии на Солнце - термоядерные реакции; есть и сомневающиеся. И все же наиболее удовлетворительное объяснение солнечного излучения - это соединение четырех атомов водорода в один атом гелия. Термоядерная реакция протекает внутри Солнца при довольно высокой температуре - около 20 миллионов градусов, поддерживая тем самым солнечное излучение. Значит, именно термоядерная энергия является первоисточником практически всех энергетических ресурсов на Земле угля, нефти, газа, гидроэнергии, энергии ветра и океанов.
   Великий синтез
   В одной из статей, посвященной термоядерным исследованиям, я прочитал такую фразу: "Овладев термоядерным синтезом, человечество получит возможность использовать в земных условиях огромные запасы ядерной энергии легких элементов прямым путем, а не косвенно через радиацию Солнца".
   Не слышится ли вам, читатель, в этой фразе зависть физиков и "обида", что вот, мол, Солнце, а не мы - люди - осуществляем термоядерный синтез, что мы не можем обеспечивать себя неограниченным количеством энергии? Я прочитал эту фразу именно с такой интонацией. Но главное в ней, конечно, мечта людей об овладении энергией, подобной солнечной, - энергией термоядерного синтеза.
   В начале 50-х годов нашего века человечеству показалось, что эта мечта осуществилась. Тогда были взорваны первые термоядерные бомбы. Над Землей зажглись солнца, созданные человеком.
   По масштабам земной энергетики ядерные взрывы - это действительно маленькие солнца. Трудно сопоставить их энергию с энергией обыденных источников, к каким мы привыкли. Выделяемая при взрывах термоядерных, или, как их часто называют, водородных, бомб она достигает десятков миллиардов киловатт-часов. Такая электростанция, как, скажем, Братская, мощностью в 3,6 миллиона киловатт, может выработать эквивалентную энергию только за несколько месяцев. В термоядерной же бомбе она выделяется за стотысячную миллионную долю секунды. Следовательно, ее мощность в сотни миллионов раз превышает мощность всех электростанций мира.
   Если взять одну из самых "маленьких" бомб, то все равно ее мощность равна сотням миллионов киловатт.
   Человек еще не научился управлять и целенаправленно и полезно использовать эту могучую силу. Впрочем, если быть более точным, он еще не может управлять такой энергией в том смысле, что еще не научился менять скорость процесса горения термоядерного топлива, то есть осуществлять его медленное течение.
   Пришло ли время?
   Несмотря на эффективность и привлекательность ядерных и термоядерных взрывов для преобразования планеты, обратим взор на тех исследователей, которые пытаются обуздать стихию термоядерного взрыва - создать управляемый термоядерный синтез.
   Сначала о небольшом парадоксе: физическая модель ядерного реактора деления, продемонстрировавшая возможность осуществления цепной реакции, была создана за несколько лет до первой атомной бомбы, а еще через восемь лет под Москвой заработал первый опытный реактор, вырабатывающий электроэнергию.
   В термоядерном синтезе все наоборот. Сначала термоядерная бомба, а потом... "Потом", к сожалению, не наступило, хотя со времени взрыва первого термоядерного устройства прошло почти три десятилетия.
   Пока нет даже лабораторной модели, которая продемонстрировала бы осуществимость управляемого термоядерного синтеза. В чем тут дело? Может быть, у человечества еще не появилась потребность в таком хотя и сложном, но совершенном источнике энергии? Может быть, термоядерный реактор "установка еще не для нашей эпохи, и поэтому работа над ним идет еле-еле, чуть теплится?
   Вопрос - нужно ли сейчас интенсивно работать над термоядерной энергетикой, вкладывая в ее развитие большие средства, - совсем не праздный. Это серьезная научно-техническая проблема, связанная с планированием развития производственного потенциала общества.
   Многие мои коллеги обсуждали и сейчас активно ее обсуждают. Не всегда удается прийти к единой точке зрения. Ведь в технике (а это относится и к термоядерной энергетике) действительно очень важно правильно оценить своевременность того или иного изобретения, установить необходимость развития работ и планирования затрат на его осуществление. Нужно ли вкладывать средства сейчас или подождать еще 20-30 лет, когда у общества появятся большие возможности и большие потребности?
   В истории развития техники сколько угодно примеров слишком раннего появления изобретений. Вспомним один из наиболее разительных. Паровая машина и паровая турбина вошли в жизнь в XVIII веке, а их прообраз был создан и продемонстрирован римским математиком Героном еще в начале нашей эры. Его турбина - металлический шар - вращалась в опорах за счет реактивных сил пара, выбрасываемого из трубок, впаянных в шар. Полторы тысячи лет слишком большой срок!
   Не ожидает ли то же самое термоядерную энергетику?
   Нет, причина ее относительно медленного развития вовсе не в том, что для нее еще не пришло время. Энергетика нуждается в системах и установках, надежно обеспеченных топливом. Она ждет их сейчас и тем более через 20-30 лет. Нужны и новые, более совершенные и мощные источники энергии. Так, может быть, мощность будущих реакторов термоядерного синтеза слишком велика? Называют, например, мощность одного реактора для выработки электроэнергии, равную 5 миллионам киловатт! Много ли это? Да, по сегодняшним масштабам это много и сравнимо с мощностью отдельных энергосистем даже в СССР. Но лет через 20-30 она уже будет впору.
   Еще одно важное и необходимое качество энергетических установок - их экономичность. По сегодняшним меркам тот термоядерный реактор, каким его сегодня представляют себе инженеры и проектанты, дороговат и убыточен. Но ведь это совсем не означает, что он не окажется выгодным через несколько десятилетий!