Места скопления нефти

   На заре развития нефтяной промышленности поиск месторождений нефти и газа велся по существу вслепую. В США, например, в те годы возник даже специальный термин – «метод дикой кошки»: искали по чутью, иногда шарахаясь в сторону, как это делает испуганная кошка.
   Вот как английский геолог К. Крэг описывал закладку скважины:
   «Для выбора места съехались заведующие бурением и управляющие промыслами и сообща определили ту площадь, в пределах которой должна быть заложена скважина. Однако с обычной в таких случаях осторожностью ни кто не решался указать ту точку, где следовало начинать бурение. Тогда один из присутствующих, отличавшийся большей смелостью, сказал, указывая на кружившую над ними ворону:
   - Господа, если нам все равно, давайте начнем бурить там, где сядет эта ворона... Предложение было принято. Скважина оказалась необыкновенно удачной. Но если бы ворона пролетела на сотню ярдов дальше к востоку, то встретить нефть не было бы ни какой надежды...»
   В России в середине 19 века продавался прибор – угадыватель нефти системы Менсфилда. Он состоял из стрелки и шкалы, которые устанавливались на деревянном колу, втыкаемом в землю. По мысли изобретателя, близкое залегание нефти должно было вызвать отклонение стрелки, которая как будто бы реагировала на протекание электрического тока между землей и атмосферой. Идея сама по себе была здравой, но вот надежность прибора... О ней достаточно красноречиво говорит тот факт, что проверка прибора до его покупки не разрешалась.
   Впрочем, справедливости ради надо сказать, что большинство исследователей все-таки уповало не на слепую удачу или чудо-приборы, а на элементарный здравый смысл. В 70-е годы 19 века скважины чаще всего закладывались там, где нефть выступала на поверхность земли. «Раз уж она показывается на поверхности, - рассуждали поисковики, - то она наверняка есть и в глубине...»
   Правда, и здравый смысл мог иногда подвести. В особенности если лужа нефти оказывалась следствием ее небрежной транспортировки или если ее «создали» нарочно.
   В конце 19-го века был разработан еще один перспективный способ поиска. Скважины стали закладывать на «нефтяной линии», то есть на прямой, соединяющий две скважины, дающие нефть. Ход рассуждений при этом был прост. Если скважины А и В дают нефть, то вполне возможно, что будет продуктивной и скважина С, расположенная между ними.
   Наблюдательные люди стали присматриваться и к геологическим условиям района, в котором расположены наиболее удачные скважины. Скажем, для районов Северного Кавказа – Майкопа, Грозного, Баку – направление нефтяных линий принималось параллельным направлению Главного Кавказского хребта. А когда в США однажды пробурили очень удачную скважину в низине, возникло правило, распространившееся затем по всему миру: скважины надо закладывать в низинах. Дескать, нефть, как жидкость, стекает именно сюда.
   Однако вслед за этим кто-то случайно обнаружил нефть, пробурив скважину на склоне холма, и правило тут же поменялось на противоположное – искать нефть надо на возвышенности…
   Таким методом (теперь его называют методом проб и ошибок, а в просторечии – методом «тыка»), конечно, невозможно было руководствоваться долго: слишком дорого обходилась каждая ошибка. Нефтепромышленники все чаще стали обращаться за помощью к геологам, умеющим по косвенным признакам, видимым на поверхности, угадывать, какое именно строение имеют недра в данном районе.
О ловушках
   Прежде всего, нужно было выяснить, при каких именно геологических условиях может образовываться залежь – скопление нефти и газа в горных породах.
   Геологи стали размышлять: сочетание каких природных условий способно привести к скоплению нефти? Прежде всего, в районе должны иметься так называемые коллекторы – горные породы, способные впитывать, а потом и отдавать жидкости и газы.
   Среди каких пород искать коллекторы?
   Надо сказать, что к тому времени все горные породы были уже поделены на три большие группы: осадочные, магматические и метаморфические.
   Осадочные – как говорит само их название – образовались из осадка, опускавшегося когда-то на дно моря. Иногда, правда, подобные процессы могут наблюдаться и на суше: скажем, ветер может переносить мелкий песок и пыль на значительные расстояния и осаждать его за сотни, а то и тысячи километров от мест первоначального образования. К таким породам относятся пески, песчаники, глины, известняки, доломиты и некоторые другие.
   Вторая группа – магматические породы. И тут название подсказывает, что к этой группе относятся породы, образовавшиеся из магмы. Остывая, выброшенная вулканами магма превращалась в граниты, базальты, порфириты.
   Наконец, третья группа – породы, которые при своем рождении претерпели метаморфозы преобразования. Они могли образоваться как из осадочных, так и из магматических пород под воздействием высоких подземных температур и давлений. К метаморфическим породам относятся сланцы, мрамор, яшмы и др.
   Как Вы сами теперь понимаете, нефть имеет смысл искать, прежде всего среди осадочных пород. Именно они обладают наилучшими коллекторскими свойствами.
   Правда, коллектор коллектору рознь. Со временем их стали различать по пористости, то есть суммарному объему всех пор в данной породе, и по проницаемости – способности пропускать сквозь себя жидкость и газ. В принципе, пористость и проницаемость – взаимозависящие величины.
   Но в природе бывают и трещиноватые коллекторы: порода сама по себе имеет мало пор – она достаточно плотна, зато покрыта сетью трещин, которые связаны в единую сеть и могут создавать каналы протяженностью в десятки километров. Скажем, какая-то порода обычно обладает плохими коллекторскими свойствами, но если она пронизана сетью макро- и микротрещин, то вполне может стать хранилищем нефти.
   Впрочем, если бы вся толща осадочных пород состояла только из коллекторов, вряд ли в них могла образоваться сколько-нибудь крупная залежь. Ведь коллекторы не только накапливают, но с той же легкостью и отдают накопленное. Нефть и газ уходили бы наверх, к земной поверхности и испарялись, не успев сконцентрироваться в месторождение.
   Следовательно, необходимо еще одно условие образования залежи – сверху она должна быть прикрыта каким-нибудь плотным экраном, то есть слоем пород, непроницаемых для нефти и газа. Такими породами-покрышками обычно бывают глины, каменная соль или известняки, если они не пронизаны трещинами.
   И, наконец, для полноты счастья необходимо, чтобы в данном районе присутствовала антиклиналь. Так геологи называют изгиб пласта, направленного выпуклостью вверх. Под ним, словно в ловушке, скапливаются запасы нефти и газа.
   Антиклинали очень часто образуются при пластическом течении каменной соли. В каком-то месте чересчур сдавили вышележащие горные породы. Снизу соляной пласт тоже подпирают твердые породы. И вот в поисках выхода из создавшихся тисков соляной пласт начинает смещаться в сторону. В том месте, где сверху давление ослабевает, соль тут же устремляется вверх, образуя антиклинальную складку.
   К антиклинальным ловушкам относится подавляющее большинство обнаруженных месторождений нефти и газа в мире – почти 90% в России и около 70% за рубежом. Размеры залежей могут быть различны: от небольших - порядка 5 километров в длину и 2-3 в ширину, с высотой 50-70 метров, до гигантских – на сотни километров в длину, десятки в ширину и высотой в сотни метров. Скажем, одно из крупнейших в мире месторождений Гхавар в Саудовской Аравии имеет размеры 225 х 25 х 0,4 километра!
   Встречаются и ловушки других типов. Например, тектонические экраны возникают при разрыве пластов во время тектонических подвижек. Вместе с антиклиналями их относят к ловушкам структурного типа (образовавшимися при изменении структуры земных недр).
   Кроме них изредка встречаются ловушки и неструктурного типа. Характерный пример такой ловушки – погребенные рифы. Когда-то, в иные геологические эпохи, это в самом деле были рифы на дне первобытного моря. Но со временем они были перекрыты более поздними непроницаемыми породами, оказались в глубинах Земли и стали ловушками для нефти и газа, поскольку коралловый риф представляет собой цепь холмов или даже гор из пористого известняка, в которых могут быть даже пещеры-каверны.
   Размеры таких горных цепей могут быть весьма внушительными. Правда, самые крупные месторождения, связанные с подземными рифами, которые к сегодняшнему дню обнаружены в Мексике, имеют протяженность всего около 200 километров при ширине 2-3 километра, но кто знает, какие новости преподнесут нам геологи завтра. Ведь далеко не все тайны подземных кладовых раскрыты.
   Ну и полноты ради надо, видимо, сказать несколько слов о ловушках неструктурного типа, которые образуются в результате литологического выклинивания. В толще Земли слои горных пород могут размещаться под разными углами. И вот когда два горных пласта встречаются, при стыковке может образоваться клин-ловушка, заполненный коллекторными породами.
   Иногда, такие залежи образуются по руслам погребенных рек. Подобные месторождения за их вид острые на язык американцы окрестили «шнурками для ботинок».
   Надо добавить, что все сказанное о коллекторах, ловушках, погребенных рифах, антиклиналях относится не только к материковым месторождениям, но и к морскому дну, в первую очередь шельфу Мирового океана. Именно здесь в последнее десятилетие сделаны сенсационные геологические открытия. Они-то и стали основой новой отрасли промышленности – морской добычи нефти и газа. Но об этом поговорим позже.

Разведчики

   Конечно, мы с вами перебрали далеко не все известные науке типы ловушек, не все способы их образования. Но и этих сведений достаточно, чтобы понять простую мысль: на поиск подземных кладовых должен отправляться человек, вооруженный знаниями о строении Земли.
   Уже в первом десятилетии 20-го века никто не рисковал бурить разведочную скважину без предварительного геологического обоснования. Так наряду с нефтедобытчиками появилась новая профессия – нефтеразведчик.
   Большинство крупных нефтедобывающих фирм и концернов обзавелись собственными геологическими службами или всякий раз обращались за помощью к геологам-консультантам. Широкое распространение получила геологическая съемка. Человек с молотком и рюкзаком проходил по местности, собирал образцы горных пород, описывал характерные выходы горных пластов на поверхность… А потом на основании полученных данных составлялась геологическая карта района, позволяющая судить не только о поверхностном рельефе местности, но и о характере залегания горных пластов под ней.
   И результаты не замедлили сказаться. Если раньше нефть давала в лучшем случае одна скважина из 10 или даже из 20, то из скважин, пробуренных с учетом геологических предсказаний, в США, к примеру, оказались продуктивными 85%.
   Авторитет геологов возрос настолько, что всякий уважающий себя американец обязательно консультировался со специалистом при покупке земельного участка. И это было далеко не лишним: землевладельцы частенько пускались на разного рода махинации чтобы повысить цену земли. Например, на глазах у покупателя из скважины начинали качать нефть, маслянистые пятна встречались по всей территории… И лишь опытный взгляд специалиста мог определить, что эти пятна сделаны специально, а нефть в скважину налита накануне.
   И в наши дни, несмотря на развитие новых методов геологической разведки, полевая работа геологов не потеряла своего практического значения. Из года в год каждую весну в разные страны планеты отправляются геологические экспедиции. В поисках полезных ископаемых они «прочесывают» пядь за пядью самые отдаленные уголки.
   Впрочем, и здесь бывают исключения. Новые месторождения могут быть открыты и там, где, казалось, и искать нечего. Так было установлено, что большое нефтяное месторождение находится под (в буквальном смысле) Парижем – столицей Франции.
   Но такие случаи, конечно, редки. Чаще геологи отправляются все-таки в «поле». Так по традиции называется выезд в необжитую местность, хотя «полем» может оказаться и тайга, и тундра, и пустыня…
   День за днем выходят геологи на маршруты, тщательно изучают горные породы, выходящие на поверхность, окаменевшие остатки доисторических животных и растений, копают шурфы и расчищают поисковые канавы, чтобы виднее было строение пластов. Работа эта не только романтичная, но и очень сложная. Хлеб романтики часто оказывается черным: только со стороны кажется, что ночевать в палатках, обедать у костра - очень веселое занятие. Одно дело – выход на природу, на пикник, на день-два, от силы на неделю, и совсем другое – жить такой жизнью долгие месяцы. И не просто жить, а напряженно работать, переносить большие физические нагрузки.
   Но такая работа очень нужна. Ведь на основании собранных данных, по результатам последующей камеральной обработки, геологи составляют геологическую карту, на которой отмечаются все возможные залегания полезных ископаемых. Затем, как это часто бывает, по следам геолога-первопроходца идут люди многих других специальностей – буровики и дорожники, монтажники и промысловики… В безлюдном месте вырастает лес вышек, поселок, а то и город.
Сверху видно все
   «Лицом к лицу лица не увидать – большое видится на расстоянии», – сказал поэт и попал, что называется, в самую точку. Уже первые космические полеты показали: поднявшись ввысь на несколько сотен километров удается увидеть то, чего мы никогда не можем разглядеть у себя под ногами – строение земных недр, обычно скрытых под покровом почвы, под верхними рыхлыми слоями.
   Какую пользу это может принести говорит хотя бы такой факт. Летчик-космонавт СССР Олег Макаров, выезжая на встречу с жителями Салехарда, прихватил с собой в качестве сувенира фотографию окрестностей этого города, снятую с борта корабля «Союз-22». Встреча прошла успешно, но когда Макаров преподнес хозяевам свой подарок, прозвучал неожиданный вопрос:
   - Сколько стоит этот снимок?
   Макаров удивился:
   - Нисколько. Это подарок.
   Однако спрашивающий (это был один из геологов) не унимался:
   - А фотографию можно дешифровать?
   - Да, - ответил Макаров. – Если хотите, можно точно установить, когда и при каких обстоятельствах она была сделана…
   Тут геолог облегченно вздохнул и улыбнулся:
   - Спасибо. Вы только что подарили нашему городу двадцать миллионов рублей!
   Именно в эту сумму обошлись бы аэрофотосъемка и последующая дешифровка фотографий данного района, которую геологи только собирались сделать.
Геологам помогает физика
   Конечно, и полевая, и космическая съемка помогают специалистам узнать много нового о подземном строении горных пород. Но этих знаний зачастую все же оказывается недостаточно, чтобы с уверенностью судить, есть здесь нефть или нет? Чтобы «прощупать» недра получше, используют геофизические методы поиска полезных ископаемых.
   Геофизики словно бы видят сквозь землю на глубину 5-6 километров. Как им это удается? В какой-то мере геофизические методы исследования недр можно сравнить с ренгеновским просвечиванием человеческого тела, а точнее – с ультразвуковой диагностикой. В тело Земли запускают пучок колебаний и по отражению волн от слоев горной породы судят о геологическом строении данного района.
   В настоящее время используется четыре основных геофизических метода: сейсмический, гравиметрический, магнитный и электрический. Рассмотрим их по порядку.
   Сейсморазведка основана на изучении особенностей распространения упругих колебаний в земной коре. Упругие колебания (или, как их еще называют, сейсмические волны) чаще всего вызываются искусственным путем.
   Сейсмические волны распространяются в горных породах со скоростью от 2 до 8 км/с - поистине космические скорости! – в зависимости от плотности породы: чем она выше, тем больше скорость распространения волны.
   На границе раздела двух сред с различной плотностью часть упругих колебаний отражается и возвращается к поверхности Земли. Другая же часть преломляется, одолевает границу раздела и уходит в недра глубже – до новой поверхности раздела. И так до тех пор, пока окончательно не затухнут.
   Отраженные сейсмические волны, достигнув земной поверхности, улавливаются специальными приемниками и записываются на самописцы. Расшифровав графики, сейсморазведчики устанавливают потом границы залегания тех или иных пород. По этим данным строят карты подземного рельефа.
   Такой метод отраженных волн был предложен советским геологом В.С.Воюцким в 1923 году и получил широкое распространение во всем мире. В настоящее время, наряду с этим методом, используют также и корреляционный метод преломленных волн. Он основан на регистрации преломленных волн, образующихся при падении упругой волны на границу раздела под некоторым, заранее рассчитанным критическим углом. Используются в практике сейсморазведочных работ и другие способы.
   Раньше в качестве источника упругих колебаний чаще всего использовали взрывы. Теперь их стали заменять вибраторами.
   Вибратор можно установить на грузовик и за рабочий день обследовать достаточно большой район. Кроме того, вибратор позволяет работать в густонаселенных районах. Взрывы наверняка потревожили бы жителей близлежащих домов, а вибрации можно подобрать такой частоты, что они не воспринимаются человеческим ухом.
   Единственный недостаток этого способа – малая глубина исследований, не более 2-3 километров. Поэтому для более глубинных исследований применяют преобразователь взрывной энергии. Источником волн здесь по существу остается тот же взрыв. Но происходит он уже не в почве, как раньше, а в специальной взрывной камере. Взрывной импульс передается на грунт через стальную плиту, а вместо взрывчатки часто используют смесь пропана с кислородом. Все это, конечно, позволяет намного ускорить процесс зондирования недр.
   Гравиметрический метод основан на изучении изменения силы тяжести в том или ином районе. Оказывается, если под поверхностью почвы находится горная порода малой плотности, например каменная соль, то и земное тяготение здесь несколько уменьшается. А вот плотные горные породы, такие, как, например, базальт или гранит, напротив, увеличивают силу тяжести.
   Эти изменения устанавливает специальный прибор – гравиметр. Один из его простейших вариантов – грузик, подвешенный на пружине. Тяготение увеличивается – пружина растягивается; это фиксируется указателем на шкале. Тяготение уменьшается, пружина соответственно сокращается.
   Ну, а каким образом на земное тяготение влияют залежи нефти и газа? Нефть легче воды, и породы, насыщенные нефтью или ее непременным спутником – газом, имеют меньшую плотность, чем если бы в них помещалась вода. И это, естественно, отмечает гравиметр.
   Правда, подобные гравитационные аномалии могут быть вызваны и другими причинами, например залеганием пластов каменной соли, как мы уже говорили. Поэтому гравиразведку обычно дополняют магниторазведкой.
   Наша планета, как известно, представляет собой огромный магнит, вокруг которого расположено магнитное поле. И на это поле могут эффективно влиять среди всего прочего и горные породы, залегающие в данном районе. Быть может, вы слышали или читали, как месторождения железной руды бывали открыты вследствие того, что пилоты пролетавших здесь самолетов удивлялись странному поведению магнитной стрелки? Ныне этот принцип используется и для поисков других видов полезных ископаемых, в том числе нефти и газа.
   Дело в том, что в нефти очень часто содержатся примеси металлов. И, конечно, присутствие металла ощущается, правда не «магнитной стрелкой», а современными высокочувствительными приборами – магнитомерами. Они позволяют прощупать земные недра на глубину до 7 километров.
   Еще один геофизический метод поиска полезных ископаемых – электроразведка – разработан в 1923 году во Франции и находит применение и по сей день. Собственно, это разновидность магнитной разведки с той лишь разницей, что фиксируется изменения не магнитного, а электрического поля.
   Поскольку естественное электрическое поле на Земле практически отсутствует, то его создают искусственно, при помощи специальных генераторов и зондируют с их помощью нужный район. Обычно горные породы представляют собой диэлектрики, то есть их электрическое сопротивление велико. А вот нефть, как мы уже говорили, может содержать металлы, которые являются хорошими проводниками. Снижение электрического сопротивления недр и служит косвенным признаком присутствия нефти.
   В последние годы все шире стал применяться еще один способ – электромагнитная разведка при помощи магнитогидродинамических (МГД) генераторов. Электромагнитным волнам стали доступны глубины от нескольких километров, когда ведутся поиски полезных ископаемых; до сотен километров, если речь заходит об общих исследованиях земной коры.
   Сердцем современного МГД-генератора является ракетный двигатель, работающий на порохе. Но порох этот не совсем обычный: электропроводимость создаваемой им плазмы по сравнению с обычным ракетным топливом в 16000 раз выше. Плазма проходит через МГД-канал, расположенный между обмотками магнита. По законам магнитодинамики в движущейся плазме возникает электрический ток, который, в свою очередь, возбуждает электромагнитное поле в специальном излучателе – диполе. С помощью диполя и происходит зондирование Земли.
   Всего за несколько секунд МГД-установка развивает мощность в десятки миллионов ватт. И при этом обходится без громоздких систем охлаждения, которые были бы неизбежны при использовании традиционных источников излучения. Да и сама установка в несколько раз легче других видов электрогенераторов.
   Впервые эффективность МГД-установки была проверена в конце 70-х годов в Таджикистане. Тогда в районе хребта Петра I ученые провели первые опыты по МГД-зондированию, стараясь уловить признаки приближающегося землетрясения. Сигналы мощной 20-мегаваттной установки «Памир-1» регистрировались на расстоянии до 30 километров от нее.
   Немного позднее МГД-установки были использованы для поиска нефтяных и газовых месторождений. Для начала был выбран достаточно известный нефтяной район – Прикаспийская низменность. Благодаря МГД-зондированию появилась еще одна возможность не только определить наличие нефтегазоносных слоев, но и четко оконтуривать месторождения. А ведь обычно для этого приходится бурить несколько дорогостоящих скважин.
   Получив первые достоверные сведения о надежности МГД-способа, ученые не стали ограничиваться только разведкой в Прикаспийской низменности. Новый способ геофизической разведки недр был использован на Кольском полуострове, на шельфе Баренцева моря – в районах, имеющих мощные пласты осадочных пород, в которых обычно и прячется нефть. Анализ полученных данных показал, что залегание нефти здесь вполне вероятно.

Геохимические и гидрогеологические исследования

   Вы обратили внимание, сколько геофизических методов имеют на вооружении нефтеразведчики? Действительно, много. Однако, ни один из методов не дает стопроцентного указания на присутствие нефти. Вот и приходится использовать их в комплексе.
   Для начала обычно проводят магнитную разведку. Потом дополняют ее данными гравиметрии. Затем в ход идут методы электро- и сейсморазведки. Но даже этого зачастую бывает недостаточно для точного ответа. Тогда геофизические методы дополняют геохимическими и гидрогеологическими исследованиями.
   Среди геохимических методов в первую очередь надо отметить газовую, люминисцентно-битуминологическую и радиоактивную съемки.
   Газовая съемка была разработана в 1930 году. Было замечено, что вокруг любой залежи образуется как бы легчайший туман – так называемый ореол рассеяния. Углеводородные газы по порам и трещинам пород проникают из глубины Земли к поверхности, при этом растет их концентрация в почвенных водах и верхних слоях породы. Взяв пробу грунта и почвенных вод, нефтеразведчик с помощью чувствительного газоанализатора устанавливает повышенное содержание углеводородных газов, что и является прямым указателем близкого местоположения залежи.
   Правда, чтобы такой способ работал достаточно надежно, необходимы приборы высочайшей чувствительности – они должны надежно обнаруживать один атом примеси среди десяти или даже ста миллионов других! Кроме того, как показывает практика, газовые аномалии могут быть смещены по отношению к залежи или же просто указывать на мелкие месторождения, не имеющей промышленной ценности.
   Поэтому данный метод стараются дополнять, например, люминисцентно-битуминологической съемкой. Ее принцип основан вот на каком природном явлении. Над залежами нефти увеличено содержание битумов в породе. И если пробу породы подставить под источник ультрафиолетового света, то битумы тотчас начинают светиться. По характеру свечения, его интенсивности определяют тип битума и его возможную связь с залежью.