возвращаемые функциями.
Для использования таких объектов нужно выполнить явную операцию
преобразования типа. Такие функции обычно находятся на самых нижних
уровнях системы, которые управляют аппаратными
ресурсами. Приведем пример:

void* malloc(unsigned size);
void free(void*);

void f() // распределение памяти в стиле Си
{
int* pi = (int*)malloc(10*sizeof(int));
char* pc = (char*)malloc(10);
//...
free(pi);
free(pc);
}

Обозначение: (тип) выражение - используется для задания операции
преобразования выражения к типу, поэтому перед присваиванием
pi тип void*, возвращаемый в первом вызове malloc(), преобразуется
в тип int. Пример записан в архаичном стиле; лучший стиль
управления размещением в свободной памяти показан в $$3.2.6.

    2.3.5 Указатели



Для большинства типов T указатель на T имеет тип T*. Это значит, что
переменная типа T* может хранить адрес объекта типа T. Указатели на
массивы и функции, к сожалению, требуют более сложной записи:

int* pi;
char** cpp; // указатель на указатель на char
int (*vp)[10]; // указатель на массив из 10 целых
int (*fp)(char, char*); // указатель на функцию с параметрами
// char и char*, возвращающую int

Главная операция над указателями - это косвенное обращение
(разыменование), т.е. обращение к объекту, на который настроен
указатель. Эту операцию обычно называют просто косвенностью.
Операция косвенности * является префиксной унарной операцией.
Например:

char c1 = 'a';
char* p = &c1; // p содержит адрес c1
char c2 = *p; // c2 = 'a'

Переменная, на которую указывает p,- это c1, а значение, которое
хранится в c1, равно 'a'. Поэтому присваиваемое c2 значение *p
есть 'a'.
Над указателями можно выполнять и некоторые арифметические операции.
Ниже в качестве примера представлена функция, подсчитывающая число
символов в строке, заканчивающейся нулевым символом (который
не учитывается):

int strlen(char* p)
{
int i = 0;
while (*p++) i++;
return i;
}

Можно определить длину строки по-другому: сначала найти ее конец, а затем
вычесть адрес начала строки из адреса ее конца.

int strlen(char* p)
{
char* q = p;
while (*q++) ;
return q-p-1;
}

Широко используются указатели на функции; они особо обсуждаются
в $$4.6.9

    2.3.6 Массивы



Для типа T T[size] является типом "массива из size элементов типа T".
Элементы индексируются от 0 до size-1. Например:

float v[3]; // массив из трех чисел с плавающей точкой:
// v[0], v[1], v[2]
int a[2][5]; // два массива, из пяти целых каждый
char* vpc; // массив из 32 символьных указателей

Можно следующим образом записать цикл, в котором печатаются целые
значения прописных букв:

extern "C" int strlen(const char*); // из <string.h>

char alpha[] = "abcdefghijklmnopqrstuvwxyz";

main()
{
int sz = strlen(alpha);

for (int i=0; i<sz; i++) {
char ch = alpha[i];
cout << '\''<< ch << '\''
<< " = " <<int(ch)
<< " = 0" << oct(ch)
<< " = 0x" << hex(ch) << '\n';
}
}

Здесь функции oct() и hex() выдают свой параметр целого типа
в восьмеричном и шестнадцатеричном виде соответственно. Обе функции
описаны в <iostream.h>. Для подсчета числа символов в alpha
используется функция strlen() из <string.h>, но вместо нее можно
было использовать размер массива alpha ($$2.4.4). Для множества
символов ASCII результат будет таким:

'a' = 97 = 0141 = 0x61
'b' = 98 = 0142 = 0x62
'c' = 99 = 0143 = 0x63
...

Отметим, что не нужно указывать размер массива alpha: транслятор
установит его, подсчитав число символов в строке, заданной в качестве
инициализатора. Задание массива символов в виде строки инициализатора
- это удобный, но к сожалению, единственный способ подобного применения
строк. Присваивание строки массиву недопустимо, поскольку
в языке присваивание массивам не определено, например:

char v[9];
v = "a string"; // ошибка

Классы позволяют реализовать представление строк с большим набором
операций (см. $$7.10).
Очевидно, что строки пригодны только для инициализации символьных
массивов; для других типов приходится использовать более сложную
запись. Впрочем, она может использоваться и для символьных массивов.
Например:

int v1[] = { 1, 2, 3, 4 };
int v2[] = { 'a', 'b', 'c', 'd' };

char v3[] = { 1, 2, 3, 4 };
char v4[] = { 'a', 'b', 'c', 'd' };

Здесь v3 и v4 - массивы из четырех (а не пяти) символов; v4 не оканчивается
нулевым символом, как того требуют соглашение о строках и большинство
библиотечных функций. Используя такой массив char мы сами
готовим почву для будущих ошибок.
Многомерные массивы представлены как массивы массивов. Однако нельзя
при задании граничных значений индексов использовать, как это делается
в некоторых языках, запятую. Запятая - это особая операция для
перечисления выражений (см. $$3.2.2). Можно попробовать задать такое
описание:

int bad[5,2]; // ошибка

или такое

int v[5][2];
int bad = v[4,1]; // ошибка
int good = v[4][1]; // правильно

Ниже описывается
массив из двух элементов, каждый из которых является, в свою очередь,
массивом из 5 элементов типа char:

char v[2][5];

В следующем примере первый массив инициализируется пятью первыми буквами
алфавита, а второй - пятью младшими цифрами.

char v[2][5] = {
{ 'a', 'b', 'c', 'd', 'e' },
{ '0', '1', '2', '3', '4' }
};

main() {
for (int i = 0; i<2; i++) {
for (int j = 0; j<5; j++)
cout << "v[" << i << "][" << j
<< "]=" << v[i][j] << " ";
cout << '\n';

}
}

В результате получим:

v[0][0]=a v[0][1]=b v[0][2]=c v[0][3]=d v[0][4]=e
v[1][0]=0 v[1][1]=1 v[1][2]=2 v[1][3]=3 v[1][4]=4


    2.3.7 Указатели и массивы



Указатели и массивы в языке Си++ тесно связаны. Имя массива можно
использовать как указатель на его первый элемент, поэтому пример с
массивом alpha можно записать так:

int main()
{
char alpha[] = "abcdefghijklmnopqrstuvwxyz";
char* p = alpha;
char ch;

while (ch = *p++)
cout << ch << " = " << int (ch)
<< " = 0" << oct(ch) << '\n';
}

Можно также задать описание p следующим образом:

char* p = &alpha[0];

Эта эквивалентность широко используется при вызовах функций с
параметром-массивом, который всегда передается как указатель на его
первый элемент. Таким образом, в следующем примере в обоих вызовах
strlen передается одно и то же значение:

void f()
{
extern "C" int strlen(const char*); // из <string.h>
char v[] = "Annemarie";
char* p = v;
strlen(p);
strlen(v);
}

Но в том и загвоэдка, что обойти это нельзя: не существует способа так
описать функцию, чтобы при ее вызове массив v копировался ($$4.6.3).
Результат применения к указателям арифметических операций +,
-, ++ или -- зависит от типа указуемых объектов. Если такая операция
применяется к указателю p типа T*, то считается, что p указывает на
массив объектов типа T. Тогда p+1 обозначает следующий элемент
этого массива, а p-1 - предыдущий элемент. Отсюда следует, что
значение (адрес) p+1 будет на sizeof(T) байтов больше, чем значение
p. Поэтому в следующей программе

main()
{
char cv[10];
int iv[10];

char* pc = cv;
int* pi = iv;

cout << "char* " << long(pc+1)-long(pc) << '\n';
cout << "int* " << long(pi+1)-long(pi) << '\n';
}

с учетом того, что на машине автора (Maccintosh) символ занимает один байт,
а целое - четыре байта, получим:

char* 1
int* 4

Перед вычитанием указатели были явной операцией преобразованы
к типу long ($$3.2.5). Он использовался для преобразования вместо
"очевидного" типа int, поскольку в некоторых реализациях языка С++
указатель может не поместиться в тип int (т.е. sizeof(int)<sizeof(char*)).
Вычитание указателей определено только в том случае, когда
они оба указывают на один и тот же массив (хотя в языке нет
возможностей гарантировать этот факт). Результат вычитания одного
указателя из другого равен числу (целое) элементов массива, находящихся
между этими указателями. Можно складывать с указателем или вычитать из него
значение целого типа; в обоих случаях результатом будет указатель.
Если получится значение, не являющееся указателем на элемент того же
массива, на который был настроен исходный указатель (или указателем на
следующий за массивом элемент), то результат использования такого
значения неопределен. Приведем пример:

void f()
{
int v1[10];
int v2[10];

int i = &v1[5]-&v1[3]; // 2
i = &v1[5]-&v2[3]; // неопределенный результат

int* p = v2+2; // p == &v2[2]
p = v2-2; // *p неопределено
}

Как правило, сложных арифметических операций с указателями не требуется
и лучше всего их избегать.
Следует сказать, что в
большинстве реализаций языка С++ нет контроля над границами массивов.
Описание массива не является самодостаточным, поскольку необязательно
в нем будет храниться число элементов массива.
Понятие массива в С является, по сути, понятием языка низкого
уровня. Классы помогают развить его (см. $$1.4.3).

    2.3.8 Структуры



Массив представляет собой совокупность элементов одного типа, а
структура является совокупностью элементов произвольных
(практически) типов. Например:

struct address {
char* name; // имя "Jim Dandy"
long number; // номер дома 61
char* street; // улица "South Street"
char* town; // город "New Providence"
char* state[2]; // штат 'N' 'J'
int zip; // индекс 7974
};

Здесь определяется новый тип, называемый address, который задает
почтовый адрес. Определение не является достаточно общим, чтобы
учесть все случаи адресов, но оно вполне пригодно для примера. Обратите
внимание на точку с запятой в конце определения: это один из
немногих в С++ случаев, когда после фигурной скобки требуется
точка с запятой, поэтому про нее часто забывают.
Переменные типа address можно описывать точно так же, как и любые
другие переменные, а с помощью операции . (точка) можно обращаться
к отдельным членам структуры. Например:

address jd;
jd.name = "Jim Dandy";
jd.number = 61;

Инициализировать переменные типа struct можно так же, как массивы.
Например:

address jd = {
"Jim Dandy",
61, "South Street",
"New Providence", {'N','J'}, 7974
};

Но лучше для этих целей использовать конструктор ($$5.2.4). Отметим,
что jd.state нельзя инициализировать строкой "NJ". Ведь строки
оканчиваются нулевым символом '\0', значит в строке "NJ" три символа,
а это на один больше, чем помещается в jd.state.
К структурным объектам часто обращаются c помощью указателей,
используя операцию ->. Например:

void print_addr(address* p)
{
cout << p->name << '\n'
<< p->number << ' ' << p->street << '\n'
<< p->town << '\n'
<< p->state[0] << p->state[1]
<< ' ' << p->zip << '\n';
}

Объекты структурного типа могут быть присвоены, переданы как фактические
параметры функций и возвращены функциями в качестве результата. Например:

address current;

address set_current(address next)
{
address prev = current;
current = next;
return prev;
}

Другие допустимые операции, например, такие, как сравнение (== и !=),
неопределены. Однако пользователь может сам определить эти операции
(см. главу 7).
Размер объекта структурного типа не обязательно равен сумме
размеров всех его членов. Это происходит по той причине, что
на многих машинах требуется размещать объекты определенных типов,
только выравнивая их по некоторой зависящей от системы адресации
границе (или просто потому, что работа при таком выравнивании будет
более эффективной ). Типичный пример - это выравнивание целого по
словной границе. В результате выравнивания могут появиться "дырки" в
структуре. Так, на уже упоминавшейся машине автора sizeof(address)
равно 24, а не 22, как можно было ожидать.
Следует также упомянуть, что тип можно использовать сразу после его
появления в описании, еще до того, как будет завершено все описание.
Например:

struct link{
link* previous;
link* successor;
};

Однако новые объекты типа структуры нельзя описать до тех пор, пока не
появится ее полное описание. Поэтому описание

struct no_good {
no_good member;
};

является ошибочным (транслятор не в состоянии установить размер no_good).
Чтобы позволить двум (или более) структурным типам ссылаться друг на
друга, можно просто описать имя одного из них как имя некоторого
структурного типа. Например:

struct list; // будет определено позднее

struct link {
link* pre;
link* suc;
list* member_of;
};

struct list {
link* head;
};

Если бы не было первого описания list, описание члена link привело бы к
синтаксической ошибке.
Можно также использовать имя структурного типа еще до того, как тип будет
определен, если только это использование не предполагает знания размера
структуры. Например:

class S; // 'S' - имя некоторого типа

extern S a;

S f();

void g(S);

Но приведенные описания можно использовать лишь после того, как тип S
будет определен:

void h()
{
S a; // ошибка: S - неописано
f(); // ошибка: S - неописано
g(a); // ошибка: S - неописано
}

    2.3.9 Эквивалентность типов



Два структурных типа считаются различными даже тогда, когда они имеют
одни и те же члены. Например, ниже определены различные типы:

struct s1 { int a; };
struct s2 { int a; };

В результате имеем:

s1 x;
s2 y = x; // ошибка: несоответствие типов

Кроме того, структурные типы отличаются от основных типов, поэтому
получим:

s1 x;
int i = x; // ошибка: несоответствие типов

Есть, однако, возможность, не определяя новый тип, задать новое имя
для типа. В описании, начинающемся служебным словом typedef, описывается
не переменная указанного типа, а вводится новое имя для типа.
Приведем пример:

typedef char* Pchar;
Pchar p1, p2;
char* p3 = p1;

Это просто удобное средство сокращения записи.

    2.3.10 Ссылки



Ссылку можно рассматривать как еще одно имя объекта.
В основном ссылки используются для задания параметров и возвращаемых
функциями значений , а также для перегрузки операций (см.$$7).
Запись X& обозначает ссылку на X. Например:

int i = 1;
int& r = i; // r и i ссылаются на одно и то же целое
int x = r; // x = 1
r = 2; // i = 2;

Ссылка должна быть инициализирована, т.е.
должно быть нечто, что она может обозначать. Следует помнить, что
инициализация ссылки совершенно отличается от операции присваивания.
Хотя можно указывать операции над ссылкой, ни одна из них на саму ссылку
не действует, например,

int ii = 0;
int& rr = ii;
rr++; // ii увеличивается на 1

Здесь операция ++ допустима, но rr++ не увеличивает саму
ссылку rr; вместо этого ++ применяется к целому, т.е. к переменной ii.
Следовательно, после инициализации значение ссылки не может быть
изменено: она всегда указывает на тот объект, к которому была привязана
при ее инициализации. Чтобы получить указатель на объект,
обозначаемый ссылкой rr, можно написать &rr.
Очевидной реализацией ссылки может служить постоянный указатель,
который используется только для косвенного обращения. Тогда инициализация
ссылки будет тривиальной, если в качестве инициализатора указан адрес
(т.е. объект, адрес которого можно получить; см. $$R.3.7).
Инициализатор для типа T должен быть адресом. Однако, инициализатор
для &T может быть и не адресом, и даже не типом T. В таких случаях
делается следующее:
[1] во-первых, если необходимо, применяется преобразование типа
(см.$$R.8.4.3);
[2] затем получившееся значение помещается во временную переменную;
[3] наконец, адрес этой переменной используется в качестве инициализатора
ссылки.
Пусть имеются описания:

double& dr = 1; // ошибка: нужен адрес
const double& cdr = 1; // нормально

Это интерпретируется так:

double* cdrp; // ссылка, представленная как указатель
double temp;
temp = double(1);
cdrp = &temp;

Ссылки на переменные и ссылки на константы различаются по следующей
причине: в первом случае создание временной переменной чревато
ошибками, поскольку присваивание этой переменной означает присваивание
временной переменной, которая могла к этому моменту исчезнуть.
Естественно, что во втором случае подобных проблем не существует.
и ссылки на константы часто используются как параметры функций
(см.$$R.6.3).
Ссылка может использоваться для функции, которая изменяет значение своего
параметра. Например:

void incr(int& aa) { aa++; }

void f()
{
int x = 1;
incr(x); // x = 2
}

По определению передача параметров имеет ту же семантику, что и
инициализация, поэтому при вызове функции incr ее параметр aa
становится другим именем для x. Лучше, однако, избегать изменяющих
свои параметры функций, чтобы не запутывать программу. В большинстве
случаев предпочтительнее, чтобы функция возвращала результат явным
образом, или чтобы использовался параметр типа указателя:

int next(int p) { return p+1; }
void inc(int* p) { (*p)++; }

void g()
{
int x = 1;
x = next(x); // x = 2
inc(&x); // x = 3
}

Кроме перечисленного, с помощью ссылок можно определить функции,
используемые как в правой, так и в левой частях присваивания.
Наиболее интересное применение это обычно находит при определении
нетривиальных пользовательских типов. В качестве примера определим
простой ассоциативный массив. Начнем с определения структуры
pair:

struct pair {
char* name; // строка
int val; // целое
};

Идея заключается в том, что со строкой связывается некоторое целое значение.
Нетрудно написать функцию поиска find(), которая работает со структурой
данных, представляющей ассоциативный массив. В нем для каждой отличной от
других строки содержится структура pair (пара: строка и значение ). В
данном примере - это просто массив. Чтобы сократить пример, используется
предельно простой, хотя и неэффективный алгоритм:

const int large = 1024;
static pair vec[large+1];

pair* find(const char* p)
/*
// работает со множеством пар "pair":
// ищет p, если находит, возвращает его "pair",
// в противном случае возвращает неиспользованную "pair"
*/
{
for (int i=0; vec[i].name; i++)
if (strcmp(p,vec[i].name)==0) return &vec[i];

if (i == large) return &vec[large-1];

return &vec[i];
}

Эту функцию использует функция value(), которая реализует массив целых,
индексируемый строками (хотя привычнее строки индексировать целыми):

int& value(const char* p)
{
pair* res = find(p);
if (res->name == 0) { // до сих пор строка не встречалась,
// значит надо инициализировать
res->name = new char[strlen(p)+1];
strcpy(res->name,p);
res->val = 0; // начальное значение равно 0
}
return res->val;
}

Для заданного параметра (строки) value() находит объект,
представляющий целое (а не просто значение соответствующего целого) и
возвращает ссылку на него. Эти функции можно использовать, например, так:

const int MAX = 256; // больше длины самого длинного слова

main()
// подсчитывает частоту слов во входном потоке
{
char buf[MAX];

while (cin>>buf) value(buf)++;

for (int i=0; vec[i].name; i++)
cout << vec[i].name << ": " << vec [i].val<< '\n';
}

В цикле while из стандартного входного потока cin читается по одному
слову и записывается в буфер buf (см. глава 10), при этом каждый
раз значение счетчика, связанного со считываемой строкой, увеличивается.
Счетчик отыскивается в ассоциативном массиве vec с помощью функции
find(). В цикле for печатается получившаяся таблица различных слов из cin
вместе с их частотой. Имея входной поток

aa bb bb aa aa bb aa aa

программа выдает:

aa: 5
bb: 3

С помощью шаблонного класса и перегруженной операции [] ($$8.8)
достаточно просто довести массив из этого примера до настоящего
ассоциативного массива.

    2.4 ЛИТЕРАЛЫ



В С++ можно задавать значения всех основных типов:
символьные константы, целые константы и константы с плавающей точкой.
Кроме того, нуль (0) можно использовать как значение указателя
произвольного типа, а символьные строки являются константами типа
char[]. Есть возможность определить символические константы.
Символическая константа - это имя, значение которого в его области
видимости изменять нельзя. В С++ символические константы можно задать
тремя способами: (1) добавив служебное слово const в определении,
можно связать с именем любое значение произвольного типа;
(2) множество целых констант можно определить как перечисление;
(3) константой является имя массива или функции.

    2.4.1 Целые константы



Целые константы могут появляться в четырех обличьях: десятичные,
восьмеричные, шестнадцатеричные и символьные константы. Десятичные
константы используются чаще всего и выглядят естественно:

0 1234 976 12345678901234567890

Десятичная константа имеет тип int, если она умещается в память,
отводимую для int, в противном случае ее тип long. Транслятор должен
предупреждать о константах, величина которых превышает выбранный формат
представления чисел.
Константа, начинающаяся с нуля, за которым следует x (0x), является
шестнадцатеричным числом (с основанием 16), а константа, которая
начинающаяся с нуля, за которым следует цифра, является восьмеричным
числом (с основанием 8). Приведем примеры восьмеричных констант:

0 02 077 0123

Их десятичные эквиваленты равны соответственно: 0, 2, 63, 83.
В шестнадцатеричной записи эти константы выглядят так:

0x0 0x2 0x3f 0x53

Буквы a, b, c, d, e и f или эквивалентные им заглавные буквы
используются для представления чисел 10, 11, 12, 13, 14 и 15,
соответственно. Восьмеричная и шестнадцатеричная формы записи наиболее
подходят для задания набора разрядов, а
использование их для обычных чисел может дать неожиданный эффект.
Например, на машине, в которой int представляется как 16-разрядное
число в дополнительном коде, 0xffff есть отрицательное десятичное
число -1. Если бы для представления целого использовалось большее число
разрядов, то это было бы числом 65535.
Окончание U может использоваться для явного задания констант типа
unsigned. Аналогично, окончание L явно задает константу типа long.
Например:

void f(int);
void f(unsigned int);
void f(long int);

void g()
{
f(3); // вызов f(int)
f(3U); // вызов f(unsigned int)
f(3L); // вызов f(long int)
}


    2.4.2 Константы с плавающей точкой



Константы с плавающей точкой имеют тип double. Транслятор должен
предупреждать о таких константах, значение которых не укладывается в
формат, выбранный для представления чисел с плавающей точкой. Приведем
примеры констант с плавающей точкой:

1.23 .23 0.23 1. 1.0 1.2e10 1.23e-15

Отметим, что внутри константы с плавающей точкой не должно быть пробелов.
Например, 65.43 e-21 не является константой с плавающей точкой, транслятор
распознает это как четыре отдельные лексемы:

65.43 e - 21

что вызовет синтаксическую ошибку.
Если нужна константа с плавающей точкой типа float, то ее можно получить,
используя окончание f:

3.14159265f 2.0f 2.997925f


    2.4.3 Символьные константы



Символьной константой является символ, заключенный в одиночные кавычки,
например, 'a' или '0'. Символьные константы можно считать константами,
которые дают имена целым значениям символов из набора, принятого на
машине, на которой выполняется программа.
Это необязательно тот же набор символов, который есть на машине,
где программа транслировалась. Таким образом, если вы запускаете
программу на машине, использующей набор символов
ASCII, то значение '0' равно 48, а если машина использует код EBCDIC,
то оно будет равно 240. Использование символьных констант вместо их
десятичного целого эквивалента повышает переносимость программ.
Некоторые специальные комбинации символов, начинающиеся с обратной
дробной черты, имеют стандартные названия:

Конец строки NL(LF) \n
Горизонтальная табуляция HT \t
Вертикальная табуляция VT \v
Возврат BS \b
Возврат каретки CR \r
Перевод формата FF \f
Сигнал BEL \a
Обратная дробная черта \ \\
Знак вопроса ? \?
Одиночная кавычка ' \'
Двойная кавычка " \"
Нулевой символ NUL \0
Восьмеричное число ooo \ooo
Шестнадцатеричное число hhh \xhhh

Несмотря на их вид, все эти комбинации задают один символ. Тип
символьной константы - char. Можно также задавать символ с помощью
восьмеричного числа, представленного одной, двумя или тремя
восьмеричными цифрами (перед цифрами идет \) или с помощью
шестнадцатеричного числа
(перед шестнадцатеричными цифрами идет \x). Число шестнадцатеричных
цифр в такой последовательности неограничено. Последовательность
восьмеричных или шестнадцатеричных цифр завершается первым символом,
не являющимся такой цифрой. Приведем примеры:

'\6' '\x6' 6 ASCII ack
'\60' '\x30' 48 ASCII '0'
'\137' '\x05f' 95 ASCII '_'

Этим способом можно представить любой символ из набора символов
машины. В частности, задаваемые таким образом символы можно
включать в символьные строки (см. следующий раздел). Заметим, что
если для символов
используется числовая форма задания, то нарушается переносимость
программы между машинами с различными наборами символов.

    2.4.4 Строки



Строка - это последовательность символов, заключенная в двойные кавычки:

"это строка"

Каждая строка содержит на один символ больше, чем явно задано:
все строки оканчиваются нулевым символом ('\0'), имеющим
значение 0. Поэтому

sizeof("asdf")==5;

Типом строки считается "массив из соответствующего числа символов",
поэтому тип "asdf" есть char[5]. Пустая строка записывается как
"" и имеет тип char[1]. Отметим, что для любой строки s выполняется
strlen(s)==sizeof(s)-1, поскольку функция strlen() не учитывает
завершающий символ '\0'.
Внутри строки можно использовать для представления невидимых
символов специальные комбинации с \. В частности, в строке можно
задать сам символ двойной кавычки " или символ \. Чаще всего из
таких символов оказывается нужным символ конца строки '\n', например:

cout << "звуковой сигнал в конце сообщения\007\n"

Здесь 7 - это значение в ASCII символа BEL (сигнал), который в
переносимом виде обозначается как \a.
Нет возможности задать в строке "настоящий" символ конца строки:

"это не строка,
а синтаксическая ошибка"

Для большей наглядности программы длинные строки можно разбивать
пробелами, например:

char alpha[] = "abcdefghijklmnopqrstuvwxyz"
"ABCDEFGHIJKLMNOPQRSTUVWXYZ";

Подобные, подряд идущие, строки будут объединяться в одну, поэтому
массив alpha можно эквивалентным образом инициализировать с помощью
одной строки:

"abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ";

В строке можно задавать символ '\0', но большинство программ
не ожидает после него встречи с какими-либо еще символами. Например,
строку "asdf\000hjkl" стандартные функции strcpy() и strlen()
будут рассматривать как строку "asdf".
Если вы задаете в строке последовательностью восьмеричных цифр
числовую константу, то разумно указать все три цифры. Запись
этой строки и так не слишком проста, чтобы еще и раздумывать,