Химические элементы в составе светлой кожи накапливают на своей поверхности больше солнечных частиц (среди которых преобладают частицы с Полями Отталкивания), чем химические элементы в составе темной кожи. Собственно, само вещество «меланин» – это эволюционное приобретение, защита организма от перегрева. Меланин имеет темный цвет. Темные тела хуже накапливают на своей поверхности солнечные частицы. Движущиеся из ионосферы к центру планеты. Т. е. на темной коже оседает меньше нагревающих ее элементарных частиц с Полями Отталкивания. А вот на светлой коже оседает их больше. Поэтому светлая кожа, светлые волосы и светлые глаза обеспечивают дополнительное поступление в организм солнечных частиц, которые нагревают организм. Именно такие, лишенные меланина люди, могли лучше всего приспособиться к холодному климату северных территорий.
   Повторю еще раз вывод – первая раса людей на земле была «белой». Следовательно, белая раса людей – наиболее древняя на Земле. Это не повод для шовинистических настроений. У каждой расы свои преимущества и свои недостатки.
   В дальнейшем, в ходе эволюции жизни на Земле, климат становился все холоднее. И динозавры начали вымирать уже и в тропических областях. И по мере того, как освобождались территории все дальше от северного полюса, туда мигрировали и люди. Большее количество солнечного излучения привело к появлению в их коже меланина – т. е. их кожа стала смуглой, волосы темными, а глаза карими. Темный цвет кожи, волос и глаз помогал защищать организм от перегрева.
   Динозавры не сразу сдали все свои позиции. Многие их популяции продолжали существовать в жарких областях, особенно на экваторе. В связи с этим, люди, мигрировавшие с севера на юг, еще долго сражались с динозаврами. Отголоски этой борьбы находят свое отражение в мифах о драконах, пожиравших людей. Храбрые воины отправлялись с ними на битву. Или драконам (динозаврам) приносили жертвы.
   Азиатская раса зародилась как результат миграции на юг белой расы. Черная (негритянская) раса – это азиаты, мигрировавшие еще дальше от северного полюса на юг.
   Таким образом, большое содержание меланина в коже, волосах и радужной оболочке – это более молодой признак. Он доминирует над более древним признаком – отсутствием меланина.
   Те, кого данные рассуждение не убедили, могут возразить. Они могут сказать – почему вы решили, что доминирует более молодая информация? Может быть наоборот, доминирует более древняя информация? Т. е. сочтут наличие меланина более древним признаком, а его отсутствие – более поздним. Ну что же, для возражения этим людям мы обратимся к истории возникновения половых признаков, а также к особенностям их наследования.
   Мы уже вели речь о том, что «ген» – это участок хромосомы, кодирующий какой-либо признак организма. Так вот, половых признаков так много, что их кодирует не один ген, а целая хромосома, которую называют «половой». На половых хромосомах «записаны» не только сведения об органах и системах организма, участвующих в процессе размножения. Здесь же хранится информация о половом поведении. Подчас половое поведение бывает настолько сложным, что это компенсирует редуцированную половую систему. Например, такую ситуацию мы можем наблюдать у птиц. И в результате половая хромосома этого типа особей оказывается длинной, а не укороченной.
   Сейчас мы не станем останавливаться на том, как осуществляется хранение информации на хромосомах.
   Рассмотрим наследование половых признаков у млекопитающих.
   Репродуктивная система самцов (любых классов, не только млекопитающих) сведена к минимуму. У самцов отсутствует основной ее аспект – в их телах нет инкубаторов для созревания детенышей или яиц. У самок анатомо-физиологическая часть репродуктивной системы очень сложна – несравнимо сложнее, чем у самцов. Половое поведение млекопитающих сложное как у самок, так и у самцов. Но у самок все же в большей мере, нежели у самцов. В половом поведении самцов млекопитающих у подавляющего большинства видов практически отсутствует программы поведения, связанные с заботой о детенышах. У самок же. Конечно, эти программы – основа их полового поведения. У самцов в их половых хромосомах хранится очень сложная информация, посвященная конкурентным взаимоотношениям с другими самцами в борьбе за право оплодотворять самок, а также программы поиска и привлечения самок. Именно вся эта информация занимает большую часть Y-хромосомы самцов млекопитающих. Х-хромосома самок млекопитающих наполовину заполнена сведениями об анатомо-физиологических особенностях их репродуктивной системы, а наполовину – программами поведения, связанными с заботой о детенышах и с поиском подходящего самца (несомненно, самки гораздо в меньшей мере посвящают себя поиску самцов, хотя у людей все несколько иначе). Именно поэтому Х-хромосома у млекопитающих, на которой записаны женские половые признаки организма, больше суммарно по длине, нежели Y-хромосома самцов – мужская.
   А теперь перейдем непосредственно к рассмотрению особенностей наследования половых признаков у млекопитающих.
   Вы никогда не задумывались над тем, почему для того, чтобы организм млекопитающего развивался по женскому типу, требуются две Х-хромосомы? В то время как развитие организма млекопитающего по мужскому типу происходит при наличии в зиготе всего одной Y-хромосомы, при том, что соседняя половая хромосома – не Y, а Х (т. е. женская)? Вам это ни о чем не говорит?
   Мне это указывает на то, что Х-хромосома представляет из себя набор рецессивных генов, кодирующих половые признаки, а Y-хромосома – набор доминантных генов. Т. е. Х-хромосома – рецессивная, а Y-хромосома – доминантная. Только в том случае, если обе половые хромосомы – Х, проявится кодируемый ими рецессивный план развития организма млекопитающего – по женскому типу. Если же из двух половых хромосом одна – Х, а другая – Y, то развитие пойдет по мужскому типу. И это указывает на то, что Y-хромосома доминирует над Х-хромосомой.
   Наследование половых признаков у млекопитающих напоминает ситуацию с рецессивными и доминантными генами, отвечающими за содержание меланина. Как вы помните, мы для того и обратились к вопросу наследования половых признаков, чтобы доказать, что рецессивные признаки (а также кодирующие их гены) более древние, в то время как доминантные – более молодые.
   Полагаю, вы не станете спорить с тем, что женские признаки организма старше, чем мужские. Самки отличаются от самцов способностью к воспроизведению себе подобных. Например, даже у млекопитающих наблюдаются случаи партеногенеза, когда детеныш развивается из неоплодотворенной яйцеклетки. У более древних в эволюционном отношении классов животных такие ситуации возникают гораздо чаще.
   Надеюсь, вы признаете факт, что способность воспроизводить себе подобных зародилась раньше, нежели появилась способность избавляться от процесса деторождения, перепоручая его тому ответвлению вида, которое на это способно, т. е. самкам. Все это указывает на то, что женская половая хромосома появилась в истории жизни на Земле раньше, чем мужская половая хромосома.
   Однако не у всех классов животных женская половая хромосома должна иметь форму Х. Форма Х вообще присуща тем хромосомам, которые имеют наибольшую длину. Возьмем, к примеру, птиц. Женская половая хромосома у птиц Y, а не Х, в отличие от млекопитающих. А мужская половая хромосома – Х, а не Y. Но Y-хромосома птиц – это именно женская хромосома, она вовсе не аналогична мужской Y-хромосоме млекопитающих. Пусть вас не смущает схожая форма. То же самое можно сказать относительно Х-хромосомы птиц и Х-хромосомы млекопитающих. Х-хромосома птиц – мужская, а Х-хромосома млекопитающих – женская.
   Мужскую Х-хромосому птиц называют еще иначе Z-хромосомой, а женскую Y-хромосому – W-хромосомой. «…W– половая хромосома самки в 10 раз меньше Z– половой хромосомы самца».
   «…W хромосома схожа на Y хромосому млекопитающих; маленького размера, содержит мало активных генов и много повторяющейся ДНК».
   («Каковы перспективы управления половым соотношением у птиц?» Тагиров М. Т. Институт птицеводства УААН).
   –
   Почему же получилось так, что у птиц мужская хромосома оказалась длиннее женской хромосомы? Как уже говорилось, чем длиннее хромосома, тем больше информации она содержит. Но ведь репродуктивная система у самок птиц несравнимо сложнее, чем у самцов. Какая информация насыщает мужскую хромосому птиц, из-за чего она стала такой длинной? Чтобы понять это, следует вспомнить особенности полового поведения птиц. Самцы птиц участвуют в процессе насиживания яиц и выкармливания птенцов наравне с самками. И помимо этого, самцы птиц обычно берут на себя заботы по завоеванию и охране места для гнездования. Самцы многих видов птиц самостоятельно готовят гнезда. А также у них сложные программы поведения соперничества за самку, или привлечения их внимания – взять, к примеру, пение птиц. Что касается самок птиц, то они, во-первых, как все самки не столь обеспокоены поиском самца, по сравнению с тем, как самцы нуждаются в самках. А во-вторых, в вопросе завоевания территории для гнезда и ее охране полагаются на самцов. Т. е. самки птиц в процессе эволюции утратили способность, во-первых подыскивать и охранять территорию, где будут выведены птенцы, а, во-вторых, они перестали заботиться о том, чтобы привлекать к себе самцов. Именно поэтому у птиц женская Y(W) – хромосома короче Х(Z) – хромосомы. И, кроме того, способность перекладывать заботу о завоевании территории и создании пары «на плечи» самцов появилась в эволюционном отношении позже программ поведения, направленных на захват территории и поиск партнера, которые остались у самцов птиц. Таким образом, доминантная хромосома, в которой «урезан» ряд программ полового поведения оказалась женской, а рецессивная, в которой эти программы сохранились – мужской.
   Подведем итог и сделаем вывод. Какой-либо признак организма, появившийся в ходе эволюции раньше, будет рецессивным. Любое изменение этого признака, появившееся позже него, будет по отношению к нему доминантным.

04. Светлая и темная кожа

   Всем известно, что люди, проживающие в разных климатических областях, обладают разным цветом кожи. Различные цвета человеческой кожи, также как и разный цвет волос и роговицы, обусловлены разным процентным содержанием в клетках-меланоцитах особого вещества – меланина. Меланин имеет темно-коричневый, почти черный цвет. Как мы уже разбирали, химические элементы темноокрашенных веществ имеют меньшие по величине Поля Притяжения по сравнению со светлоокрашенными элементами того же цвета, что не способствует накоплению элементами такого вещества свободных частиц. Элементы светлоокрашенных веществ, напротив, хорошо накапливают свободные частицы. Накопление частиц с Полями Отталкивания ведет к нагреванию элементов.
   Накапливающиеся элементами сводные частицы организм использует:
   1) для нагрева элементов тела; 2) в химических реакциях – для разрушения химических связей, где это необходимо; 3) для проведения нервных импульсов (нервный импульс – это и есть свободные частицы, «свет»). Итак, свободные частицы разного качества – это основной участник и исполнитель всех реакций и процессов, протекающих в организме.
   Меланоциты расположены не только среди клеток кожи и в роговице, но также и в оболочках внутренних органов. Вот и выходит, что меланин в коже и в оболочках внутренних органов создает своего рода «экран», который не позволяет светлоокрашенным элементам внутри организма накапливать свободные частицы. В то время как светлая кожа, волосы, роговица и оболочки внутренних органов – т. е. содержащие мало меланина – в большей степени способствуют накоплению свободных частиц (и в том числе, оптических фотонов) в химических элементах организма.
   Вот и выходит, что низкое содержание меланина в покровных тканях представляет собой приспособление организма к климатическим условиям, характеризующимся недостаточным поступлением солнечного излучения – т. е. к холодному климату. В то время, как повышенное содержание меланина представляет собой вариант приспособленности организмов к прямо противоположным климатическим условиям – к условиям избыточного поступления солнечного излучения – т. е. к жаркому климату.

05. Цвет пигментов водорослей и фотосинтез. Почему лучи синей части спектра достигают больших глубин, нежели красной?

   Из альгологии, раздела ботаники, посвященному всему, что касается водорослей, мы можем узнать, что водоросли разных отделов способны обитать на разных глубинах водоемов. Так, зеленые водоросли встречаются обычно на глубине в несколько метров. Бурые водоросли могут жить на глубинах до 200 метров. Красные водоросли – до 268 метров.
   Там же, в книгах и учебниках по альгологии, вы найдете объяснение этим фактам, устанавливающее взаимосвязь между цветом пигментов в составе клеток водорослей и предельной глубиной обитания. Объяснение примерно следующее.
   Спектральные компоненты солнечного света пронизывают воду на разную глубину. Красные лучи проникают лишь в верхние слои, а синие – значительно глубже. Для функционирования хлорофилла необходим красный свет. Именно поэтому зеленые водоросли не могут жить на больших глубинах. В составе клеток бурых водорослей присутствует пигмент, позволяющий осуществлять фотосинтез при желто-зеленом свете. И потому порог обитания этого отдела достигает 200 м. Что касается красных водорослей, то пигмент в их составе использует зеленый и синий цвета, что и позволяет им жить глубже всех.
   Но соответствует ли данное объяснение действительности? Давайте попробуем разобраться.
   В клетках водорослей отдела Зеленых преобладает пигмент хлорофилл. Именно поэтому данный тип водорослей окрашен в различные оттенки зеленого.
   В красных водорослях очень много пигмента фикоэритрина, характеризующегося красным цветом. Этот пигмент и придает данному отделу этих растений соответствующий цвет.
   В бурых водорослях присутствует пигмент фукоксантин – бурого цвета.
   То же самое можно сказать о водорослях других цветов – желто-зеленых, сине-зеленых. В каждом случае цвет определяется каким-то пигментом или их сочетанием.
   Теперь о том, что такое пигменты и для чего они нужны клетке.
   Пигменты требуются для фотосинтеза. Фотосинтез – это процесс разложения воды и углекислого газа с последующим построением из водорода, углерода и кислорода всевозможных видов органических соединений. Пигменты накапливают солнечную энергию (фотоны солнечного происхождения). Эти фотоны как раз используются для разложения воды и углекислого газа. Сообщение этой энергии – это своего рода точечный нагрев мест соединения элементов в молекулах.
   Пигменты накапливают все виды солнечных фотонов, которые достигают Земли и проходят сквозь атмосферу. Ошибкой было бы считать, что пигменты «работают» только с фотонами видимого спектра. Они накапливают также инфракрасные и радио фотоны. Когда световые лучи не заслоняются на своем пути различными плотными и жидкими телами, большее число фотонов в составе этих лучей достигает обогреваемое тело, в данном случае водоросль. Фотоны (энергия) нужны для точечного разогрева. Чем больше глубина водоема, тем меньше энергии достигает, тем больше фотонов поглощается на пути.
   Пигменты разного цвета способны задерживать – аккумулировать на себе – разное количество фотонов, приходящих со световыми лучами. И не только приходящих с лучами, но и движущихся диффузно – от атома к атому, от молекулы к молекуле – вниз, под действием притяжения планеты. Фотоны видимого диапазона выступают только в качестве своего рода «маркеров». Эти видимые фотоны указывают нам цвет пигмента. И одновременно сообщают этим особенности Силового Поля этого пигмента. Цвет пигмента нам об этом и «говорит». Т. е. Поле Притяжения преобладает или Поле Отталкивания, и какова величина того или другого. Вот и выходит, в соответствии с этой теорией, что пигменты красного цвета должны иметь наибольшее по величине Поле Притяжения – иначе говоря, наибольшую относительную массу. А все потому, что фотоны красного цвета, как обладающие Полями Отталкивания, сложнее всего удержать в составе элемента – притяжением. Красный цвет вещества как раз нам и указывает на то, что фотоны такого цвета в достаточном количестве накапливаются на поверхности его элементов – не говоря о фотонах всех остальных цветов. Такой способностью – удерживать больше энергии на поверхности – как раз и обладает названный ранее пигмент фикоэритрин.
   Что касается пигментов других цветов, то качественно-количественный состав аккумулируемого ими на поверхности солнечного излучения будет несколько иным, нежели у пигментов красного цвета. К примеру, хлорофилл, обладающий зеленой окраской, будет накапливать в своем составе меньше солнечной энергии, чем фикоэритрин. На этот факт нам как раз и указывает его зеленый цвет. Зеленый – комплексный. Он складывается из самых «тяжелых» желтых видимых фотонов и самых «легких» синих. В ходе своего инерционного движения те и другие оказываются в равны условиях. Величина их Силы Инерции равная. И потому они совершенно одинаково подчиняются в ходе своего движения одним и тем же объектам с Полями Притяжения, воздействующим на них своим притяжением. Это означает, что в фотонах синего и желтого цвета, формирующим вкупе зеленый, возникает по отношению к одному и тому же химическому элементу одна и та же по величине Сила Притяжения.
   Здесь следует отвлечься и пояснить один важный момент.
   Цвет веществ в том виде, в каком он нам знаком по окружающему миру – т. е. как испускание видимых фотонов в ответ на падение (не только видимых фотонов, и не только фотонов, но и других типов элементарных частиц) – явление достаточно уникальное. Оно возможно лишь благодаря тому, что в составе небесного тела, обогреваемого более крупным небесным телом (породившим его), происходит постоянное течение всех этих свободных частиц от периферии к центру. К примеру, наше Солнце испускает частицы. Они достигают атмосферы Земли и движутся вниз – прямыми лучами или диффузно (от элемента к элементу). Диффузно распространяющиеся частицы ученые именуют «электричеством». Все это было сказано для того, чтобы пояснить, почему фотоны разных цветов – синие и желтые обладают одинаковой Силой Инерции. Но Силой Инерции могут обладать лишь движущиеся фотоны. А это означает, что в каждый момент времени по поверхности любого химического элемента в составе освещаемого небесного тела движутся свободные частицы. Они проходят транзитом – от периферии небесного тела к его центру. Т. е. состав поверхностных слоев любого химического элемента постоянно обновляется.
   Сказанное совершенно справедливо для фотонов двух других комплексных цветов – фиолетового и оранжевого.
   И это еще не все объяснение.
   Любой химический элемент устроен точно по образу любого небесного тела. В этом и заключается истинный смысл «планетарной модели атома», а вовсе не в том, что электроны летают по орбитам как планеты вокруг Солнца. Никакие электроны в элементах не летают! Любой химический элемент – это совокупность слоев элементарных частиц – простейших (неделимых) и комплексных. Также как любое небесное тело – это последовательность слоев химических элементов. Т. е. комплексные (нестабильные) элементарные частицы в химических элементах выполняют ту же функцию, что и химические элементы в составе небесных тел. И точно также как в составе небесного тела более тяжелые элементы располагаются ближе к центру, а более легкие – ближе к периферии, Так же и в любом химическом элементе. Ближе к периферии располагаются более тяжелые элементарные частицы. А ближе центру – более тяжелые. Это же правило распространяется на частицы, транзитно проходящие по поверхности элементов. Более тяжелые, чья Сила Инерции меньше, ныряют глубже к центру. А те, что легче и чья Сила Инерции больше, образуют более поверхностные текучие слои. Это означает, что если химический элемент красного цвета, то его верхний слой из фотонов видимого диапазона образован красными фотонами. А под этим слоем располагаются фотоны всех остальных пяти цветов – по нисходящей – оранжевый, желтый, зеленый, синий и фиолетовый.
   Если же цвет химического элемента зеленый, то это означает, что верхний слой его видимых фотонов представлен фотонами, дающими зеленый цвет. А вот слоев желтого, оранжевого и красного цветов у него нет или практически нет.
   Повторим – более тяжелые химические элементы обладают способностью удерживать более легкие элементарные частицы – красного цвета, например.
   Таким образом, не совсем корректно говорить, что для фотосинтеза одних водорослей нужна одна цветовая гамма, а для фотосинтеза других – другая. Точнее сказать, взаимосвязь между цветом пигментов и предельной глубиной обитания прослежена верно. Однако объяснение верно не до конца. Энергия, требующаяся водорослям для фотосинтеза, состоит не только из видимых фотонов. Не следует забывать про ИК и радио фотоны, а также УФ. Все эти виды частиц (фотонов) требуются и используются растениями при фотосинтезе. А вовсе не так – хлорофиллу нужные преимущественно красные видимые фотоны, фукоксантину – желтые и образующие зеленый цвет, а фикоэритрину – синие и зеленые. Вовсе нет.
   Ученые совершенно верно установили факт, что световые лучи синего и зеленого цветов способны достигать в большем количественном составе больших глубин, нежели желтые лучи, и тем более – красные. Причина все та же – разная по величине Сила Инерции фотонов.
   
Конец бесплатного ознакомительного фрагмента