Если не считать дисциплин, подобных математике и астрономии, в которых первые прочные парадигмы относятся к периоду их предыстории, а также тех дисциплин, которые, подобно биохимии, возникают в результате разделения и перестройки уже сформировавшихся отраслей знания, ситуации, описанные выше, типичны в историческом плане. Поэтому и в дальнейшем я буду использовать это, может быть, не очень удачное упрощение, то есть символизировать значительное историческое событие из истории науки единственным и в известной мере произвольно выбранным именем (например, Ньютон или Франклин). При этом я полагаю, что фундаментальные разногласия, подобные рассмотренным, характеризовали, например, учение о движении до Аристотеля и статику до Архимеда, учение о теплоте до Блэка, химию до Бойля и Бургаве или историческую геологию до Геттона. В таких разделах биологии, как, например, учение о наследственности, первые парадигмы появились в самое последнее время; и остаётся полностью открытым вопрос, имеются ли такие парадигмы в каких-либо разделах социологии. История наводит на мысль, что путь к прочному согласию в исследовательской работе необычайно труден.
Тем не менее история указывает и на некоторые причины трудностей, встречающихся на этом пути. За неимением парадигмы или того, что предположительно может выполнить её роль, все факты, которые могли бы, по всей вероятности, иметь какое-то отношение к развитию данной науки, выглядят одинаково уместными. В результате первоначальное накопление фактов является деятельностью, гораздо в большей мере подверженной случайностям, чем деятельность, которая становится привычной в ходе последующего развития науки. Более того, если нет причины для поисков какой-то особой формы более специальной информации, то накопление фактов в этот ранний период обычно ограничивается данными, всегда находящимися на поверхности. В результате этого процесса образуется некоторый фонд фактов, часть из которых доступна простому наблюдению и эксперименту, а другие являются более эзотерическими и заимствуются из таких уже ранее существовавших областей практической деятельности, как медицина, составление календарей или металлургия. Поскольку эти практические области являются легко доступным источником фактов, которые не могут быть обнаружены поверхностным наблюдением, техника часто играла жизненно важную роль в возникновении новых наук.
Но хотя этот способ накопления фактов был существенным для возникновения многих важных наук, каждый, кто ознакомится, например, с энциклопедическими работами Плиния или с естественными «историями» Бэкона, написанными в XVII веке, обнаружит, что данный способ давал весьма путаную картину. Даже сомнительно называть подобного рода литературу научной. Бэконовские «истории» теплоты, цвета, ветра, горного дела и так далее наполнены информацией, часть которой малопонятна. Но главное, что здесь факты, которые позднее оказались объяснёнными (например, нагревание с помощью смешивания), поставлены в один ряд с другими (например, нагревание кучи навоза), которые в течение определённого времени оставались слишком сложными, чтобы их можно было включить в какую бы то ни было целостную теорию . Кроме того, поскольку любое описание неизбежно неполно, древняя естественная история обычно упускает в своих неимоверно обстоятельных описаниях как раз те детали, в которых позднее учёными будет найден ключ к объяснению. Например, едва ли хотя бы одна из ранних «историй» электричества упоминает о том, что мелкие частички, притянутые натёртой стеклянной палочкой, затем опадают. Этот эффект казался поначалу механическим, а не электрическим . Более того, поскольку само собирание случайных наблюдений не оставляло времени и не давало метода для критики, естественные истории часто совмещали описания вроде тех, которые приведены выше, с другими, скажем описаниями нагревания посредством антиперистасиса (или охлаждения), которые сейчас ни в какой мере не подтверждаются . Лишь очень редко, как, например, в случае античной статики, динамики и геометрической оптики, факты, собранные при столь незначительном руководстве со стороны ранее созданной теории, достаточно определённо дают основу для возникновения начальной парадигмы.
Такова обстановка, которая создаёт характерные для ранних стадий развития науки черты школ. Никакую естественную историю нельзя интерпретировать, если отсутствует хотя бы в неявном виде переплетение теоретических и методологических предпосылок, принципов, которые допускают отбор, оценку и критику фактов. Если такая основа присутствует уже в явной форме в собрании фактов (в этом случае мы располагаем уже чем-то большим, нежели просто факты), она должна быть подкреплена извне, может быть с помощью обыденной философии, или посредством другой науки, или посредством установок личного или общественно-исторического плана. Не удивительно поэтому, что на ранних стадиях развития любой науки различные исследователи, сталкиваясь с одними и теми же категориями явлений, далеко не всегда одни и те же специфические явления описывают и интерпретируют одинаково. Можно признать удивительным и даже в какой-то степени уникальным именно для науки как особой области, что такие первоначальные расхождения впоследствии исчезают.
Ибо они действительно исчезают, сначала в весьма значительной степени, а затем и окончательно. Более того, их исчезновение обычно вызвано триумфом одной из допарадигмальных школ, которая в силу её собственных характерных убеждений и предубеждений делает упор только на некоторой особой стороне весьма обширной по объёму и бедной по содержанию информации. Те исследователи электрических явлений, которые считали электричество флюидом и, следовательно, делали особое ударение на проводимости, дают этому великолепный пример. Руководствуясь этой концепцией, которая едва ли могла охватить известное к этому времени многообразие эффектов притяжения и отталкивания, некоторые из них выдвигали идею заключения «электрической жидкости» в сосуд. Непосредственным результатом их усилий стало создание лейденской банки, прибора, которого никогда не сделал бы человек, исследующий природу вслепую или наугад, и который был создан по крайней мере двумя исследователями в начале 40-х годов XVIII века фактически независимо друг от друга . Почти с самого начала исследований в области электричества Франклин особенно заинтересовался объяснением этого странного и многообещающего вида специальной аппаратуры. Его успех в этом объяснении дал ему самые эффективные аргументы, которые сделали его теорию парадигмой, хотя и такой, которая всё ещё была неспособна полностью охватить все известные случаи электрического отталкивания . Принимаемая в качестве парадигмы теория должна казаться лучшей, чем конкурирующие с ней другие теории, но она вовсе не обязана (и фактически этого никогда не бывает) объяснять все факты, которые могут встретиться па её пути.
Ту же роль, которую сыграла флюидная теория электричества в судьбе подгруппы учёных, придерживающихся этой теории, сыграла позднее и парадигма Франклина в судьбе всей группы учёных, исследовавших электрические явления. Благодаря этой теории можно было заранее предположить, какие эксперименты стоит проводить и какие эксперименты не могли иметь существенного значения, поскольку были направлены на вторичные или слишком сложные проявления электричества. Только парадигма могла сделать такую работу по отбору экспериментов более эффективной. Частично это объясняется тем, что прекращение бесплодных споров между различными школами пресекало и бесконечные дискуссии по поводу основных принципов. Кроме того, уверенность в том, что они на правильном пути, побуждала учёных к более тонкой, эзотерической работе, к исследованию, которое требовало много сил и времени . Не отвлекаясь на изучение каждого электрического явления, сплотившаяся группа исследователей смогла затем сосредоточить внимание на более детальном изучении избранных явлений. Кроме того, она получила возможность для создания многих специальных приборов и более систематического, целенаправленного их использования, чем кто-либо из учёных, делавших это ранее. Соответственно возрастала эффективность и продуктивность исследований по электричеству, подтверждая тем самым возможность распространить на общество проницательное методологическое изречение Фрэнсиса Бэкона: «Истина всё же скорее возникает из заблуждения, чем из неясности…»
Природу этих в высшей степени направленных, основанных на парадигме исследований мы рассмотрим в следующем разделе. Однако, забегая вперёд, необходимо хотя бы кратко отметить, каким образом возникновение парадигмы воздействует на структуру группы, разрабатывающей ту или иную область науки. Когда в развитии естественной науки отдельный учёный или группа исследователей впервые создают синтетическую теорию, способную привлечь большинство представителей следующего поколения исследователей, прежние школы постепенно исчезают. Исчезновение этих школ частично обусловлено обращением их членов к новой парадигме. Но всегда остаются учёные, верные той или иной устаревшей точке зрения. Они просто выпадают из дальнейших совокупных действий представителей их профессии, которые с этого времени игнорируют все их усилия. Новая парадигма предполагает и новое, более чёткое определение области исследования. И те, кто не расположен или не может приспособить свою работу к новой парадигме, должны перейти в другую группу, в противном случае они обречены на изоляцию . Исторически они так и оставались зачастую в лабиринтах философии, которая в своё время дала жизнь стольким специальным наукам. Эти соображения наводят на мысль, что именно благодаря принятию парадигмы группа, интересовавшаяся ранее изучением природы из простого любопытства, становится профессиональной, а предмет её интереса превращается в научную дисциплину. В науке (правда, не в таких областях, как медицина, технические науки, юриспруденция, принципиальное raison d'кtre которых обеспечено социальной необходимостью) с первым принятием парадигмы связаны создание специальных журналов, организация научных обществ, требования о выделении специального курса в академическом образовании. По крайней мере так обстоит дело в течение последних полутора веков, с тех пор, как научная специализация впервые начала приобретать институциональную форму, и до настоящего времени, когда степень специализации стала вопросом престижа учёных.
Более чёткое определение научной группы имеет и другие последствия. Когда отдельный учёный может принять парадигму без доказательства, ему не приходится в своей работе перестраивать всю область заново, начиная с исходных принципов, и оправдывать введение каждого нового понятия. Это можно предоставить авторам учебников. Однако при наличии учебника творчески мыслящий учёный может начать своё исследование там, где оно остановилось, и, таким образом, сосредоточиться исключительно на самых тонких и эзотерических явлениях природы, которые интересуют его группу. Поступая так, учёный участвует прежде всего в изменении методов, эволюция которых слишком мало изучена, но современные результаты их использования очевидны для всех и сковывают инициативу многих. Результаты его исследования не будут больше излагаться в книгах, адресованных, подобно «Экспериментам… по электричеству» Франклина или «Происхождению видов» Дарвина, всякому, кто заинтересуется предметом их исследования. Вместо этого они, как правило, выходят в свет в виде коротких статей, предназначенных только для коллег-профессионалов, только для тех, кто предположительно знает парадигму и оказывается в состоянии читать адресованные ему статьи.
В современных естественных науках книги представляют собой либо учебники, либо ретроспективные размышления о том или ином аспекте научной жизни. Профессиональная репутация учёного, который пишет книгу, может не повыситься, а упасть вопреки его ожиданиям. Лишь на ранних, допарадигмальных стадиях развития наук книга обычно выражала то же самое отношение к профессиональным достижениям, которое она всё ещё сохраняет в некоторых областях творчества. И только в тех областях, где книга наряду со статьями или без них остаётся по-прежнему средством коммуникации между исследователями, пути профессионализации обрисовываются столь расплывчато, что любитель может льстить себя надеждой, будто он следит за прогрессом, читая подлинные сообщения учёных-исследователей. В математике и астрономии исследовательские сообщения перестали быть понятными для широкой аудитории уже в античности. В динамике исследование приблизилось к эзотерическому типу в конце средних веков и вновь обрело более или менее понятную для всех форму, правда на короткий период, в начале XVII века, когда новая парадигма заменила ту парадигму, которой динамика руководствовалась в эпоху средневековья. Исследования электрических явлений потребовали их истолкования для непрофессионалов к концу XVIII века, а большинство других областей физической науки перестали быть понятными для широкого читателя в XIX веке. В течение тех же двух столетий подобные преобразования можно было наблюдать и в различных разделах биологических наук. В социальных науках с ними можно встретиться и сегодня. Хотя становятся привычными и вполне уместными сожаления по поводу углубления пропасти, всё больше разделяющей профессионального учёного и его коллег в других областях, слишком мало внимания уделяется взаимосвязи между этим процессом углубления пропасти и внутренними механизмами развития науки.
С доисторических времён одна наука вслед за другой переходили границу между тем, что историк может назвать предысторией данной науки как науки, и собственно её историей. Эти переходы в стадии зрелости редко бывают такими внезапными и такими явными, как я представил их в своём вынужденно схематическом изложении. Но с исторической точки зрения они не были и постепенными и не могут рассматриваться как соизмеримые по длительности с общим развитием тех областей науки, в пределах которых они совершаются. Те учёные, которые писали об электричестве в течение первых четырёх десятилетий XVIII века, располагали значительно большей информацией об электрических явлениях, чем их предшественники в XVI -XVII веках. В течение полувека после 1740 года к спискам этих явлений было добавлено лишь немного данных. Тем не менее в ряде важных моментов работы Кавендиша, Кулона, Вольты по электричеству в последней трети XVIII века выглядят более ушедшими вперёд по сравнению с работами Грея, Дюфе и даже Франклина, чем работы этих первооткрывателей в области электричества начала XVIII века по сравнению с подобными исследованиями в XVI веке . Где-то между 1740 и 1780 годами исследователи электрических явлений впервые оказались в состоянии принять основания своей области без доказательств. С этого момента они охотнее обращались к более конкретным и специальным проблемам и всё чаще стали публиковать результаты своих исследований в статьях, предназначенных для других исследователей в области электричества, предпочитая такой способ коммуникации книгам, адресованным широкому кругу читателей. Образовав особую научную группу, они достигли того, чего добились астрономы античного мира, специалисты в области кинематики в средние века, физической оптики в конце XVII века и исторической геологии в начале XIX столетия. Иными словами, они пришли к парадигме, которая оказалась способной направлять исследование всей группы в целом. Трудно найти другой критерий (если не считать преимуществ ретроспективного взгляда), который бы так ясно и непосредственно подтверждал, что данная отрасль знаний стала наукой.
III
ПРИРОДА НОРМАЛЬНОЙ НАУКИ
Какова же тогда природа более профессионального и эзотерического исследования, которое становится возможным после принятия группой учёных единой парадигмы? Если парадигма представляет собой работу, которая сделана однажды и для всех, то спрашивается, какие проблемы она оставляет для последующего решения данной группе? Эти вопросы будут представляться тем более безотлагательными, если мы укажем, в каком отношении использованные нами до сих пор термины могут привести к недоразумению. В своём установившемся употреблении понятие парадигмы означает принятую модель или образец; именно этот аспект значения слова «парадигма» за неимением лучшего позволяет мне использовать его здесь. Но, как вскоре будет выяснено, смысл слов «модель» и «образец», подразумевающих соответствие объекту, не полностью покрывает определение парадигмы. В грамматике, например, «amo, amas, amat» есть парадигма, поскольку эту модель можно использовать как образец, по которому спрягается большое число латинских глаголов: например, таким же образом можно образовать формы «laudo, laudas, laudat» и т. д. В этом стандартном применении парадигма функционирует в качестве разрешения на копирование примеров, каждый из которых может в принципе её заменить. В науке, с другой стороны, парадигма редко является объектом копирования. Вместо этого, подобно принятому судом решению в рамках общего закона, она представляет собой объект для дальнейшей разработки и конкретизации в новых или более трудных условиях.
Чтобы увидеть, как это оказывается возможным, нам следует представить, насколько ограниченной и по охвату и по точности может быть иногда парадигма в момент своего появления. Парадигмы приобретают свой статус потому, что их использование приводит к успеху скорее, чем применение конкурирующих с ними способов решения некоторых проблем, которые исследовательская группа признаёт в качестве наиболее остро стоящих. Однако успех измеряется не полной удачей в решении одной проблемы и не значительной продуктивностью в решении большого числа проблем. Успех парадигмы, будь то аристотелевский анализ движения, расчёты положения планет у Птолемея, применение весов Лавуазье или математическое описание электромагнитного поля Максвеллом, вначале представляет собой в основном открывающуюся перспективу успеха в решении ряда проблем особого рода. Заранее неизвестно исчерпывающе, каковы будут эти проблемы. Нормальная наука состоит в реализации этой перспективы по мере расширения частично намеченного в рамках парадигмы знания о фактах. Реализация указанной перспективы достигается также благодаря всё более широкому сопоставлению этих фактов с предсказаниями на основе парадигмы и благодаря дальнейшей разработке самой парадигмы.
Немногие из тех, кто фактически не принадлежит к числу исследователей в русле зрелой науки, осознают, как много будничной работы такого рода осуществляется в рамках парадигмы или какой привлекательной может оказаться такая работа. А это следовало бы понимать. Именно наведением порядка занято большинство учёных в ходе их научной деятельности. Вот это и составляет то, что я называю здесь нормальной наукой. При ближайшем рассмотрении этой деятельности (в историческом контексте или в современной лаборатории) создаётся впечатление, будто бы природу пытаются «втиснуть» в парадигму, как в заранее сколоченную и довольно тесную коробку. Цель нормальной науки ни в коей мере не требует предсказания новых видов явлений: явления, которые не вмещаются в эту коробку, часто, в сущности, вообще упускаются из виду. Учёные в русле нормальной науки не ставят себе цели создания новых теорий, обычно к тому же они нетерпимы и к созданию таких теорий другими . Напротив, исследование в нормальной науке направлено на разработку тех явлений и теорий, существование которых парадигма заведомо предполагает.
Возможно, что это следует отнести к числу недостатков. Конечно, области, исследуемые нормальной наукой, невелики, и всё предприятие нормального исследования, которое мы сейчас обсуждаем, весьма ограниченно. Но эти ограничения, рождающиеся из уверенности в парадигме, оказываются существенными для развития науки. Концентрируя внимание на небольшой области относительно эзотерических проблем, парадигма заставляет учёных исследовать некоторый фрагмент природы так детально и глубоко, как это было бы немыслимо при других обстоятельствах. И нормальная наука располагает собственным механизмом, позволяющим ослабить эти ограничения, которые дают о себе знать в процессе исследования всякий раз, когда парадигма, из которой они вытекают, перестаёт служить эффективно. С этого момента учёные начинают менять свою тактику. Изменяется и природа исследуемых ими проблем. Однако до этого момента, пока парадигма успешно функционирует, профессиональное сообщество будет решать проблемы, которые его члены едва ли могли вообразить и, во всяком случае, никогда не могли бы решить, если бы не имели парадигмы. И по крайней мере часть этих достижений всегда остаётся в силе.
Чтобы показать более ясно, чту представляет собой нормальное, или основанное на парадигме, исследование, я попытаюсь классифицировать и иллюстрировать проблемы, которые в принципе подразумевает нормальная наука. Для удобства я оставлю в стороне теоретическую деятельность и начну со стадии накопления фактов, то есть с экспериментов и наблюдений, описываемых в специальных журналах, посредством которых учёные информируют коллег о результатах своих постоянных исследований. О каких аспектах природы учёные обычно сообщают? Что определяет их выбор? И, поскольку бульшая часть научных наблюдений поглощает много времени, денег и требует специального оснащения, естественно поставить вопрос, какие цели преследует учёный, доводя этот выбор до практического завершения?
Я думаю, что обычно бывает только три центральных момента в научном исследовании некоторой области фактов; их невозможно резко отделить друг от друга, а иногда они вообще неразрывны. Прежде всего имеется класс фактов, которые, как об этом свидетельствует парадигма, особенно показательны для вскрытия сути вещей. Используя эти факты для решения проблем, парадигма порождает тенденцию к их уточнению и к их распознаванию во всё более широком круге ситуаций. В различные периоды такого рода значительные фактические уточнения заключались в следующем: в астрономии - в определении положения звёзд и звёздных величин, периодов затмения двойных звёзд и планет; в физике - в вычислении удельных весов и сжимаемостей материалов, длин волн и спектральных интенсивностей, электропроводностей и контактных потенциалов; в химии - в определении состава веществ и атомных весов, в установлении точек кипения и кислотностей растворов, в построении структурных формул и измерении оптической активности. Попытки увеличить точность и расширить круг известных фактов, подобных тем, которые были названы, занимают значительную часть литературы, посвящённой экспериментам и наблюдениям в науке. Неоднократно для этих целей создавалась сложная специальная аппаратура, а изобретение, конструирование и сооружение этой аппаратуры требовали выдающихся талантов, много времени и значительных финансовых затрат. Синхротроны и радиотелескопы представляют собой лишь самые новые примеры размаха, с которым продвигается вперёд работа исследователей, если парадигма гарантирует им значительность фактов, поисками которых они заняты. От Тихо Браге до Э. О. Лоренца некоторые учёные завоевали себе репутацию великих не за новизну своих открытий, а за точность, надёжность и широту методов, разработанных ими для уточнения ранее известных категорий фактов.
Второй, обычный, но более ограниченный класс фактических определений относится к тем фактам, которые часто, хотя и не представляют большого интереса сами по себе, могут непосредственно сопоставляться с предсказаниями парадигмальной теории. Как мы вскоре увидим, когда перейдём от экспериментальных к теоретическим проблемам нормальной науки, существует немного областей, в которых научная теория, особенно если она имеет преимущественно математическую форму, может быть непосредственно соотнесена с природой. Так общая теория относительности Эйнштейна имеет не более чем три таких области . Более того, даже в тех областях, где применение теории возможно, часто требуется теоретическая аппроксимация, которая сильно ограничивает ожидаемое соответствие. Улучшение этого соответствия или поиски новых областей, в которых можно продемонстрировать полное соответствие, требует постоянного совершенствования мастерства и возбуждает фантазию экспериментатора и наблюдателя. Специальные телескопы для демонстрации предсказания Коперником годичного параллакса, машина Атвуда, изобретённая почти столетие спустя после выхода в свет «Начал» Ньютона и дающая впервые ясную демонстрацию второго закона Ньютона; прибор Фуко для доказательства того, что скорость света в воздухе больше, чем в воде; гигантский сцинтилляционный счётчик, созданный для доказательства существования нейтрино, - все эти примеры специальной аппаратуры и множество других подобных им иллюстрируют огромные усилия и изобретательность, направленные на то, чтобы ставить теорию и природу во всё более тесное соответствие друг с другом