Страница:
Поршневой палец плавающего типа имеет форму пустотелого цилиндра. Он обеспечивает шарнирное соединение поршня с шатуном и удерживается от осевого смещения в бобышках поршня стопорными кольцами. Поверхность поршневого пальца покрыта цементацией и закалена токами высокой частоты.
Шатун служит для соединения поршня с коленчатым валом двигателя и передачи при рабочем ходе давления расширяющихся газов от поршня к коленчатому валу. Изготавливают шатун из углеродистой или легированной стали. Во время вспомогательных тактов от коленчатого вала через шатун приводится в действие поршень. Состоит шатун из верхней неразъемной головки с запрессованной втулкой из оловянистой бронзы и разъемной нижней головки. В нижнюю головку вставлены тонкостенные стальные вкладыши, залитые слоем антифрикационного сплава. Головки шатуна соединяются стержнем двутаврового сечения. Нижняя разъемная головка шатуна с помощью крышки закрепляется на шатунной шейке коленчатого вала. Крышка и нижняя головка шатуна соединяются болтами и шпильками со специальными стопорными шайбами. Вкладыши нижней головки шатуна изготовлены из стальной или сталеалюминиевой ленты, покрытой антифрикационным слоем. От проворачивания в нижней головке шатуна вкладыши удерживаются выступами, которые фиксируются в канавках шатуна и его крышке.
Коленчатый вал воспринимает усилия, передаваемые шатунами от поршней, и преобразует их в крутящий момент, который через маховик передается агрегатам трансмиссии. Состоит коленчатый вал из шатунных и коренных шеек, соединенных щеками с противовесами, фланца для крепления маховика. На переднем кольце коленчатого вала имеются шпоночные пазы для закрепления распределительной шестерни и шкива привода вентилятора, а также отверстие для установки храповика пусковой рукоятки. Шатунная шейка со щеками образует кривошип (или колено) вала. Расположение кривошипов обеспечивает равномерное чередование рабочих ходов поршня в различных цилиндрах. Коленчатые валы штампуют из стали или выливают из высокопрочного магниевого чугуна. Для уменьшения центробежных сил шейки выполняют полыми. Они используются как грязеуловители для моторного масла. Шейки коленчатого вала шлифуют и полируют, поверхность закаливают токами высокой частоты. В щеках вала имеются сверления для подвода масла к трущимся поверхностям коренных и шатунных шеек коленчатого вала. Коленчатые валы, у которых каждая шатунная шейка имеет с двух сторон коренные шейки, называют полноопорными. Продольное перемещение коленчатого вала при его тепловом расширении ограничивается упорными шайбами. Они устанавливаются по обе стороны первого коренного подшипника или четырьмя полукольцами в вытачке задней опоры вала. Чтобы не допустить утечки масла на концах коленчатого вала крепятся маслоотражатели, сальники или маслосгонные спиральные канавки и маслоотражательный буртик. Вкладыши коренных подшипников имеют такую же конструкцию, как и вкладыши шатунных подшипников. У двигателей с блоками из алюминиевых сплавов крышки коренных подшипников сделаны из чугуна, чтобы не допустить заклинивания коленчатого вала при низких температурах. Крышки коренных подшипников растачивают совместно с блоком цилиндров. При сборке двигателя их ставят только на свои места.
Маховик служит для уменьшения неравномерности работы двигателя, вывода поршней из мертвых точек, облегчения двигателя. Кроме того, он способствует плавному троганию автомобиля с места. Маховик представляет собой массивный диск, отлитый из чугуна, на обод которого напрессован стальной зубчатый венец, предназначенный для вращения коленчатого вала стартером при пуске двигателя. Чтобы не нарушать установочной балансировки, маховик крепят болтами к фланцу коленчатого вала на несимметрично расположенных штифтах.
Поддон картера штампуют из листовой стали или отливают из алюминиевых сплавов. Он является резевуаром для моторного масла и предохраняет картер двигателя от попадания грязи и пыли.
Для герметизации плоскости разъема между картером и поддоном устанавливают пробковые или маслобензостойкие прокладки. Крепится поддон шпильками или болтами.
Крепят двигатели на раме в трех или четырех точках. Крепление к раме или несущему кузову должно быть надежным и амортизировать толчки, возникающие при работе двигателя и движении автомобиля. Для крепления могут использоваться скобы или тяги. В качестве опор применяют специальные кронштейны (лапы), под которые устанавливают одну или две резиновые подушки или пружины.
Газораспределительный механизм. Газораспределительный механизм служит для своевременного впуска в цилиндры карбюраторного двигателя и газосмесительного двигателя горючей смеси и выпуска из них отработанных газов. В дизельных двигателях газораспределительный механизм впускает в камеры сгорания воздух и выпускает из них отработанные газы. Газораспределительные механизмы могут быть с верхним (в головке цилиндров) и нижним (в блоке цилиндров) расположением клапанов. Наиболее распространенным является газораспределительный механизм с верхним расположением клапанов, так как такое расположение облегчает доступ к клапанам для их обслуживания, позволяет получить компактную камеру сгорания и обеспечить лучшее наполнение ее горючей смесью или воздухом. Состоит газораспределительный механизм из распределительного вала, механизма привода распределительного вала и клапанного механизма. В двигателе с V-образным расположением цилиндров газораспределительный механизм находится между его правым и левым рядами цилиндров.
Во вращение он приводится от коленчатого вала через блок распределительных шестерен. Вращение распределительного вала при цепном или ременном приводе осуществляется с помощью цепной или зубчатой ременной передачи. При вращении распределительного вала кулачок набегает на толкатель и поднимает его вместе со штангой. Верхний конец штанги надавливает на регулировочный винт, установленный на внутреннем плече коромысла. Коромысло проворачивается на своей оси, наружным плечом нажимает на стержень клапана и открывает отверстие впускного или выпускного клапана в головке цилиндров строго в соответствии с фазами газораспределения и порядком работы цилиндров. Фазы газораспределения, под которыми понимают моменты начала открытия и конца закрытия клапанов, подбирают опытным путем в зависимости от числа оборотов двигателя и конструкции впускных и выпускных патрубков. Обычно фазы газораспределения для своих двигателей указывают предприятия-изготовители в виде диаграмм или таблиц. По установочным меткам определяют, правильно ли установлен газораспределительный механизм. Установочные метки расположены на распределительных шестернях или приводном шкиве блока цилиндров двигателя. Отклонение при установке фаз приводит к выходу из строя клапанов или двигателя. При соблюдении регламентируемого теплового зазора в клапанном механизме постоянство фаз газораспределения сохраняется. Если величина зазора нарушена, то происходит быстрый износ клапанного механизма и двигатель теряет мощность.
Порядком работы цилиндров двигателя называют последовательность чередования одноименных тактов в различных цилиндрах. Зависит он от расположения цилиндров и конструкции распределительного и коленчатого валов. У четырехцилиндровых однорядных двигателей такты чередуются через 180 градусов и порядок работы цилиндров может быть 1–3–4–2 (автомобили ВАЗ и АЗЛК) или 1–2–4–3 (автомобили ГАЗ). Знание порядка работы цилиндров необходимо для регулировки тепловых зазоров клапанного механизма и правильного подсоединения проводов к свечам зажигания карбюраторных двигателей или трубопроводов высокого давления дизельных двигателей.
Распределительный вал газораспределительного механизма служит для открывания и закрывания клапанов газораспределительного механизма в определенной последовательности согласно порядку работы цилиндров двигателя. Изготовляют валы из стали или отливают из высокопрочного чугуна с дальнейшей обработкой поверхности кулачков и шеек вала путем отбеливания и шлифования. Для уменьшения трения между шейками и опорами в отверстия запрессовывают стальные, покрытые антифрикационным слоем или металлокерамические втулки. Между опорными шейками распределительного вала располагаются по два кулачка на каждый цилиндр: впускной и выпускной. Кроме того, на валу крепится шестерня для привода масляного насоса и прерывателя-распределителя и имеется эксцентрик для привода топливного насоса.
Зубья у шестерен косые, что вызывает осевое перемещение вала. Для предупреждения осевого смещения предусмотрен упорный фланец, который закрепляют на блоке цилиндров между торцом передней опорной шейки вала и ступицей распределительной шестерни.
В четырехтактных двигателях рабочий цикл происходит за четыре хода поршня или два оборота коленчатого вала. Это возможно, если распределительный вал за это время сделает в 2 раза меньшее число оборотов. Поэтому диаметр шестерни, установленной на распределительном валу, делают в 2 раза большим, чем диаметр шестерни коленчатого вала. Усилие от кулачков распределительного вала к штангам передают толкатели, которые бывают разной формы (цилиндрической, грибовидной) или могут быть роликовыми и иметь сферические углубления, в которые входят нижние концы штанг. Толкатели перемещаются в направляющих, выполненных в блоке цилиндров, либо в прикрепленных к нему специальных корпусах. Чтобы износ их рабочих поверхностей был равномерным, толкатели все время провертываются вокруг своих осей за счет выпуклой поверхности кулачка распределительного вала. Усилие от толкателей к коромыслам передают штанги, которые изготавливают в виде полых цилиндрических стержней из стали с закаленными наконечниками или в виде дюралюминиевых трубок с запрессованными с обеих сторон сферическими стальными наконечниками. Штанга упирается с одной стороны в углубление толкателя, а с другой – в сферическую поверхность регулировочного винта коромысла.
Усилие от штанги к клапану передает коромысло. Изготавливают коромысло в виде двуплечевого рычага, посаженного на ось. Со стороны клапана плечо коромысла длиннее, чем со стороны штанги-толкателя. Это дает возможность уменьшить высоту подъема штанги толкателя.
В короткое плечо коромысла ввернут регулировочный винт с контргайкой для установки теплового зазора в клапанном механизме. Для того чтобы уменьшить трение коромысла об ось, в отверстие запрессовывается бронзовая втулка. Устанавливают коромысла на полых стальных осях. Оси бывают общими для всех цилиндров или выполняются отдельно для каждого цилиндра; закрепляют их в стойках на головке цилиндров двигателя. Цилиндрические пружины удерживают их от продольного перемещения.
Клапаны служат для периодического открывания и закрывания отверстий впускных и выпускных каналов в зависимости от положения поршня в цилиндре и порядка работы двигателя. Состоит клапан из тарельчатой плоской головки и стержня. Головка имеет узкую рабочую кромку – фаску, скошенную под углом 30 или 45 градусов. Диаметр головки впускного клапана больше, чем выпускного. Это дает возможность быстро заполнять камеры сгорания цилиндра зарядом горючей смеси. Впускные клапаны изготовляют из хромистой стали, а выпускные клапаны или их головки – из жаростойкой стали.
Седла клапанов запрессованы в головку или блок цилиндров и изготовляются из жаропрочного чугуна. На фаску головки клапанов иногда наплавляют жаростойкий сплав. Для того чтобы фаска головки клапана плотно прилегала к фаске седла клапана, сопрягаемые поверхности притирают.
Для предотвращения заедания и обгорания выпускные клапаны могут иметь механизм их принудительного проворачивания при работе. К седлу клапан прижимается одной или двумя клапанными пружинами. Стержень клапана имеет цилиндрическую форму и в верхней части имеет выточку для фиксации деталей крепления клапанной пружины. Стержни клапанов перемещаются по металлокерамическим или чугунным направляющим втулкам, которые запрессовывают в головку цилиндров. Чтобы масло не попадало в камеру сгорания цилиндра, по зазору между стержнем клапана и его направляющей втулкой ставят уплотнение из маслобезностойкой резины в виде сальника или колпачка.
Система смазывания
Система охлаждения
Шатун служит для соединения поршня с коленчатым валом двигателя и передачи при рабочем ходе давления расширяющихся газов от поршня к коленчатому валу. Изготавливают шатун из углеродистой или легированной стали. Во время вспомогательных тактов от коленчатого вала через шатун приводится в действие поршень. Состоит шатун из верхней неразъемной головки с запрессованной втулкой из оловянистой бронзы и разъемной нижней головки. В нижнюю головку вставлены тонкостенные стальные вкладыши, залитые слоем антифрикационного сплава. Головки шатуна соединяются стержнем двутаврового сечения. Нижняя разъемная головка шатуна с помощью крышки закрепляется на шатунной шейке коленчатого вала. Крышка и нижняя головка шатуна соединяются болтами и шпильками со специальными стопорными шайбами. Вкладыши нижней головки шатуна изготовлены из стальной или сталеалюминиевой ленты, покрытой антифрикационным слоем. От проворачивания в нижней головке шатуна вкладыши удерживаются выступами, которые фиксируются в канавках шатуна и его крышке.
Коленчатый вал воспринимает усилия, передаваемые шатунами от поршней, и преобразует их в крутящий момент, который через маховик передается агрегатам трансмиссии. Состоит коленчатый вал из шатунных и коренных шеек, соединенных щеками с противовесами, фланца для крепления маховика. На переднем кольце коленчатого вала имеются шпоночные пазы для закрепления распределительной шестерни и шкива привода вентилятора, а также отверстие для установки храповика пусковой рукоятки. Шатунная шейка со щеками образует кривошип (или колено) вала. Расположение кривошипов обеспечивает равномерное чередование рабочих ходов поршня в различных цилиндрах. Коленчатые валы штампуют из стали или выливают из высокопрочного магниевого чугуна. Для уменьшения центробежных сил шейки выполняют полыми. Они используются как грязеуловители для моторного масла. Шейки коленчатого вала шлифуют и полируют, поверхность закаливают токами высокой частоты. В щеках вала имеются сверления для подвода масла к трущимся поверхностям коренных и шатунных шеек коленчатого вала. Коленчатые валы, у которых каждая шатунная шейка имеет с двух сторон коренные шейки, называют полноопорными. Продольное перемещение коленчатого вала при его тепловом расширении ограничивается упорными шайбами. Они устанавливаются по обе стороны первого коренного подшипника или четырьмя полукольцами в вытачке задней опоры вала. Чтобы не допустить утечки масла на концах коленчатого вала крепятся маслоотражатели, сальники или маслосгонные спиральные канавки и маслоотражательный буртик. Вкладыши коренных подшипников имеют такую же конструкцию, как и вкладыши шатунных подшипников. У двигателей с блоками из алюминиевых сплавов крышки коренных подшипников сделаны из чугуна, чтобы не допустить заклинивания коленчатого вала при низких температурах. Крышки коренных подшипников растачивают совместно с блоком цилиндров. При сборке двигателя их ставят только на свои места.
Маховик служит для уменьшения неравномерности работы двигателя, вывода поршней из мертвых точек, облегчения двигателя. Кроме того, он способствует плавному троганию автомобиля с места. Маховик представляет собой массивный диск, отлитый из чугуна, на обод которого напрессован стальной зубчатый венец, предназначенный для вращения коленчатого вала стартером при пуске двигателя. Чтобы не нарушать установочной балансировки, маховик крепят болтами к фланцу коленчатого вала на несимметрично расположенных штифтах.
Поддон картера штампуют из листовой стали или отливают из алюминиевых сплавов. Он является резевуаром для моторного масла и предохраняет картер двигателя от попадания грязи и пыли.
Для герметизации плоскости разъема между картером и поддоном устанавливают пробковые или маслобензостойкие прокладки. Крепится поддон шпильками или болтами.
Крепят двигатели на раме в трех или четырех точках. Крепление к раме или несущему кузову должно быть надежным и амортизировать толчки, возникающие при работе двигателя и движении автомобиля. Для крепления могут использоваться скобы или тяги. В качестве опор применяют специальные кронштейны (лапы), под которые устанавливают одну или две резиновые подушки или пружины.
Газораспределительный механизм. Газораспределительный механизм служит для своевременного впуска в цилиндры карбюраторного двигателя и газосмесительного двигателя горючей смеси и выпуска из них отработанных газов. В дизельных двигателях газораспределительный механизм впускает в камеры сгорания воздух и выпускает из них отработанные газы. Газораспределительные механизмы могут быть с верхним (в головке цилиндров) и нижним (в блоке цилиндров) расположением клапанов. Наиболее распространенным является газораспределительный механизм с верхним расположением клапанов, так как такое расположение облегчает доступ к клапанам для их обслуживания, позволяет получить компактную камеру сгорания и обеспечить лучшее наполнение ее горючей смесью или воздухом. Состоит газораспределительный механизм из распределительного вала, механизма привода распределительного вала и клапанного механизма. В двигателе с V-образным расположением цилиндров газораспределительный механизм находится между его правым и левым рядами цилиндров.
Во вращение он приводится от коленчатого вала через блок распределительных шестерен. Вращение распределительного вала при цепном или ременном приводе осуществляется с помощью цепной или зубчатой ременной передачи. При вращении распределительного вала кулачок набегает на толкатель и поднимает его вместе со штангой. Верхний конец штанги надавливает на регулировочный винт, установленный на внутреннем плече коромысла. Коромысло проворачивается на своей оси, наружным плечом нажимает на стержень клапана и открывает отверстие впускного или выпускного клапана в головке цилиндров строго в соответствии с фазами газораспределения и порядком работы цилиндров. Фазы газораспределения, под которыми понимают моменты начала открытия и конца закрытия клапанов, подбирают опытным путем в зависимости от числа оборотов двигателя и конструкции впускных и выпускных патрубков. Обычно фазы газораспределения для своих двигателей указывают предприятия-изготовители в виде диаграмм или таблиц. По установочным меткам определяют, правильно ли установлен газораспределительный механизм. Установочные метки расположены на распределительных шестернях или приводном шкиве блока цилиндров двигателя. Отклонение при установке фаз приводит к выходу из строя клапанов или двигателя. При соблюдении регламентируемого теплового зазора в клапанном механизме постоянство фаз газораспределения сохраняется. Если величина зазора нарушена, то происходит быстрый износ клапанного механизма и двигатель теряет мощность.
Порядком работы цилиндров двигателя называют последовательность чередования одноименных тактов в различных цилиндрах. Зависит он от расположения цилиндров и конструкции распределительного и коленчатого валов. У четырехцилиндровых однорядных двигателей такты чередуются через 180 градусов и порядок работы цилиндров может быть 1–3–4–2 (автомобили ВАЗ и АЗЛК) или 1–2–4–3 (автомобили ГАЗ). Знание порядка работы цилиндров необходимо для регулировки тепловых зазоров клапанного механизма и правильного подсоединения проводов к свечам зажигания карбюраторных двигателей или трубопроводов высокого давления дизельных двигателей.
Распределительный вал газораспределительного механизма служит для открывания и закрывания клапанов газораспределительного механизма в определенной последовательности согласно порядку работы цилиндров двигателя. Изготовляют валы из стали или отливают из высокопрочного чугуна с дальнейшей обработкой поверхности кулачков и шеек вала путем отбеливания и шлифования. Для уменьшения трения между шейками и опорами в отверстия запрессовывают стальные, покрытые антифрикационным слоем или металлокерамические втулки. Между опорными шейками распределительного вала располагаются по два кулачка на каждый цилиндр: впускной и выпускной. Кроме того, на валу крепится шестерня для привода масляного насоса и прерывателя-распределителя и имеется эксцентрик для привода топливного насоса.
Зубья у шестерен косые, что вызывает осевое перемещение вала. Для предупреждения осевого смещения предусмотрен упорный фланец, который закрепляют на блоке цилиндров между торцом передней опорной шейки вала и ступицей распределительной шестерни.
В четырехтактных двигателях рабочий цикл происходит за четыре хода поршня или два оборота коленчатого вала. Это возможно, если распределительный вал за это время сделает в 2 раза меньшее число оборотов. Поэтому диаметр шестерни, установленной на распределительном валу, делают в 2 раза большим, чем диаметр шестерни коленчатого вала. Усилие от кулачков распределительного вала к штангам передают толкатели, которые бывают разной формы (цилиндрической, грибовидной) или могут быть роликовыми и иметь сферические углубления, в которые входят нижние концы штанг. Толкатели перемещаются в направляющих, выполненных в блоке цилиндров, либо в прикрепленных к нему специальных корпусах. Чтобы износ их рабочих поверхностей был равномерным, толкатели все время провертываются вокруг своих осей за счет выпуклой поверхности кулачка распределительного вала. Усилие от толкателей к коромыслам передают штанги, которые изготавливают в виде полых цилиндрических стержней из стали с закаленными наконечниками или в виде дюралюминиевых трубок с запрессованными с обеих сторон сферическими стальными наконечниками. Штанга упирается с одной стороны в углубление толкателя, а с другой – в сферическую поверхность регулировочного винта коромысла.
Усилие от штанги к клапану передает коромысло. Изготавливают коромысло в виде двуплечевого рычага, посаженного на ось. Со стороны клапана плечо коромысла длиннее, чем со стороны штанги-толкателя. Это дает возможность уменьшить высоту подъема штанги толкателя.
В короткое плечо коромысла ввернут регулировочный винт с контргайкой для установки теплового зазора в клапанном механизме. Для того чтобы уменьшить трение коромысла об ось, в отверстие запрессовывается бронзовая втулка. Устанавливают коромысла на полых стальных осях. Оси бывают общими для всех цилиндров или выполняются отдельно для каждого цилиндра; закрепляют их в стойках на головке цилиндров двигателя. Цилиндрические пружины удерживают их от продольного перемещения.
Клапаны служат для периодического открывания и закрывания отверстий впускных и выпускных каналов в зависимости от положения поршня в цилиндре и порядка работы двигателя. Состоит клапан из тарельчатой плоской головки и стержня. Головка имеет узкую рабочую кромку – фаску, скошенную под углом 30 или 45 градусов. Диаметр головки впускного клапана больше, чем выпускного. Это дает возможность быстро заполнять камеры сгорания цилиндра зарядом горючей смеси. Впускные клапаны изготовляют из хромистой стали, а выпускные клапаны или их головки – из жаростойкой стали.
Седла клапанов запрессованы в головку или блок цилиндров и изготовляются из жаропрочного чугуна. На фаску головки клапанов иногда наплавляют жаростойкий сплав. Для того чтобы фаска головки клапана плотно прилегала к фаске седла клапана, сопрягаемые поверхности притирают.
Для предотвращения заедания и обгорания выпускные клапаны могут иметь механизм их принудительного проворачивания при работе. К седлу клапан прижимается одной или двумя клапанными пружинами. Стержень клапана имеет цилиндрическую форму и в верхней части имеет выточку для фиксации деталей крепления клапанной пружины. Стержни клапанов перемещаются по металлокерамическим или чугунным направляющим втулкам, которые запрессовывают в головку цилиндров. Чтобы масло не попадало в камеру сгорания цилиндра, по зазору между стержнем клапана и его направляющей втулкой ставят уплотнение из маслобезностойкой резины в виде сальника или колпачка.
Система смазывания
Система смазывания двигателя должна обеспечивать бесперебойную подачу масла к трущимся поверхностям с целью снижения потерь мощности на трение, уменьшения износа деталей, защиты их от коррозии, отвода тепла и продукта износа от трущихся деталей. От исправного состояния системы смазывания в значительной степени зависит надежность работы двигателя. В зависимости от условий и режима работы того или иного механизма применяют различные сорта и виды смазок. Применяемые для смазки двигателей масла должны обладать определенной вязкостью, не должны содержать механических примесей, воды, кислот и щелочей. Для автомобильных двигателей применяют комбинированную систему смазывания. В зависимости от размещения и условий работы деталей масло подается или под давлением, или разбрызгиванием, или самотеком. К деталям, испытывающим большую нагрузку, масло подается под давлением, к остальным деталям – разбрызгиванием или самотеком.
В систему смазывания входят следующие приборы и агрегаты для хранения, подвода, очистки и охлаждения масла: поддон картера двигателя, маслозаборник, масляный фильтр грубой очистки, масляный фильтр тонкой очистки, масляный насос, маслопровод, масляный радиатор, контрольно-измерительные приборы и датчики.
Так, например, система смазывания дизельного двигателя КамАЗ-740 происходит следующим образом. Масло из поддона через маслоприемник с сетчатым фильтром поступает в секции масляного насоса.
Из нагнетающей секции масло через канал подается в полнопроточный фильтр, а оттуда в главную масляную магистраль. Далее по каналам в блоке и головках цилиндров масло под давлением подается к деталям КШМ и ГРМ, топливному насосу высокого давления (ТНВД) и компрессору. К шатунным подшипникам масло подается по каналу коленчатого вала от ближайшей к ним коренной шейки. Опоры штанг и толкателей газораспределительного механизма омываются пульсирующей струей, а остальные детали смазываются разбрызгиванием масла или самотеком.
Снимаемое со стенок цилиндра маслосъемными кольцами масло отводится через сверления в поршневых канавках в глубь поршня и смазывает опоры поршневого пальца в верхней головке шатуна и бобышках поршня. Из главной смазочной магистрали масло под давлением подается к термосиловому датчику, а при открытом кране включения гидромуфты подается в саму гидромуфту. Из радиаторной секции масляного насоса масло подается к фильтру тонкой очистки и через открытый кран включения масляного радиатора – в сам радиатор. Из радиатора масло подается в поддон картера двигателя. Если кран включения масляного радиатора закрыт, то из центрифуги (фильтр центробежной очистки) масло поступает в поддон через сливной клапан.
Система смазки двигателя легкового автомобиля работает так. Масляный насос всасывает моторное масло через масляное сито из картера и прогоняет его через главный масляный фильтр. Редукционный клапан регулирует давление следующим образом: при слишком высоком давлении клапан открывается, и часть масла стекает обратно в поддон картера. На выходе из фильтра масло попадает в главный масляный канал, где находится переключатель давления, или датчик давления, который через контрольную лампочку давления масла или через показания на приборной доске информирует о том, нормальное ли давление масла (в других двигателях датчик может располагаться на отдельном канале). При забитом масляном фильтре вентиль короткого замыкания отводит неотфильтрованное масло в главный масляный канал.
От главного канала ответвляются каналы для смазки подшипников коленчатого вала. От коренных подшипников через внутренние каналы коленчатого вала масло смазывает шатунные подшипники. Одновременно масло поступает к головке цилиндров и смазывает там опоры и кулачки распределительного вала.
Масляные фильтры служат для очистки масла от металлических частиц, которые образуются в результате износа деталей двигателя, продуктов нагара и коксования масла. Фильтры устанавливают в различных сочетаниях в зависимости от модели двигателя в конструкции системы смазывания. Сетчатый фильтр маслоприемника предварительно фильтрует масло от механических примесей перед его поступлением в насос. После выхода из насоса масло частично или полностью очищается в фильтрах грубой, тонкой или центробежной очистки.
Фильтр тонкой очистки имеет сменный фильтрующий элемент, заполненный фильтрующей массой. Фильтр центробежной очистки масла представляет собой центрифугу. Этот фильтр задерживает в первую очередь тяжелые примеси. Его работу можно проверить прослушиванием вращения ротора в течение короткого времени после остановки двигателя. Полнопоточный масляный фильтр имеет два сменных фильтрующих элемента, заполненных древесной мукой на пульвербакелитовой связке.
Для охлаждения масла и предотвращения его разжижения в результате нагрева от соприкосновения с горячими деталями двигателя служит масляный радиатор. Состоит он из двух бачков, между которыми горизонтально размещены трубки, которые для увеличения площади охлаждения и жесткости скреплены металлическими пластинами.
Как правило, масляными радиаторами снабжаются грузовые автомобили ввиду тяжелых условий работы их двигателей. Для легковых автомобилей достаточное охлаждение масла обеспечивает вентиляция картера и обдув поддона картера встречным потоком воздуха. Вентиляция картера служит для охлаждения масла и освобождения картера от паров топлива, воды и отработанных газов, которые разжижают и загрязняют масло. В некоторых моделях двигателей применяют открытую вентиляцию картера, при которой нижний конец отсасывающей трубки имеет косой срез, направленный назад по ходу автомобиля. При движении у среза создается разряжение, в результате которого газы отсасываются из картера. Разряжение из картера через трубку передается под крышку газораспределительного механизма, и туда же из вакуумного фильтра подается воздух.
Из-за токсичности картерных газов в современных карбюраторных двигателях применяют принудительную систему вентиляции. Маслоналивные патрубки имеют воздушные фильтры и расположены сверху или сбоку двигателя и соединены с поддоном картера непосредственно через маслоналивную трубу. Контроль уровня масла в системе осуществляется при помощи масломерного щупа.
В систему смазывания входят следующие приборы и агрегаты для хранения, подвода, очистки и охлаждения масла: поддон картера двигателя, маслозаборник, масляный фильтр грубой очистки, масляный фильтр тонкой очистки, масляный насос, маслопровод, масляный радиатор, контрольно-измерительные приборы и датчики.
Так, например, система смазывания дизельного двигателя КамАЗ-740 происходит следующим образом. Масло из поддона через маслоприемник с сетчатым фильтром поступает в секции масляного насоса.
Из нагнетающей секции масло через канал подается в полнопроточный фильтр, а оттуда в главную масляную магистраль. Далее по каналам в блоке и головках цилиндров масло под давлением подается к деталям КШМ и ГРМ, топливному насосу высокого давления (ТНВД) и компрессору. К шатунным подшипникам масло подается по каналу коленчатого вала от ближайшей к ним коренной шейки. Опоры штанг и толкателей газораспределительного механизма омываются пульсирующей струей, а остальные детали смазываются разбрызгиванием масла или самотеком.
Снимаемое со стенок цилиндра маслосъемными кольцами масло отводится через сверления в поршневых канавках в глубь поршня и смазывает опоры поршневого пальца в верхней головке шатуна и бобышках поршня. Из главной смазочной магистрали масло под давлением подается к термосиловому датчику, а при открытом кране включения гидромуфты подается в саму гидромуфту. Из радиаторной секции масляного насоса масло подается к фильтру тонкой очистки и через открытый кран включения масляного радиатора – в сам радиатор. Из радиатора масло подается в поддон картера двигателя. Если кран включения масляного радиатора закрыт, то из центрифуги (фильтр центробежной очистки) масло поступает в поддон через сливной клапан.
Система смазки двигателя легкового автомобиля работает так. Масляный насос всасывает моторное масло через масляное сито из картера и прогоняет его через главный масляный фильтр. Редукционный клапан регулирует давление следующим образом: при слишком высоком давлении клапан открывается, и часть масла стекает обратно в поддон картера. На выходе из фильтра масло попадает в главный масляный канал, где находится переключатель давления, или датчик давления, который через контрольную лампочку давления масла или через показания на приборной доске информирует о том, нормальное ли давление масла (в других двигателях датчик может располагаться на отдельном канале). При забитом масляном фильтре вентиль короткого замыкания отводит неотфильтрованное масло в главный масляный канал.
От главного канала ответвляются каналы для смазки подшипников коленчатого вала. От коренных подшипников через внутренние каналы коленчатого вала масло смазывает шатунные подшипники. Одновременно масло поступает к головке цилиндров и смазывает там опоры и кулачки распределительного вала.
Масляные фильтры служат для очистки масла от металлических частиц, которые образуются в результате износа деталей двигателя, продуктов нагара и коксования масла. Фильтры устанавливают в различных сочетаниях в зависимости от модели двигателя в конструкции системы смазывания. Сетчатый фильтр маслоприемника предварительно фильтрует масло от механических примесей перед его поступлением в насос. После выхода из насоса масло частично или полностью очищается в фильтрах грубой, тонкой или центробежной очистки.
Фильтр тонкой очистки имеет сменный фильтрующий элемент, заполненный фильтрующей массой. Фильтр центробежной очистки масла представляет собой центрифугу. Этот фильтр задерживает в первую очередь тяжелые примеси. Его работу можно проверить прослушиванием вращения ротора в течение короткого времени после остановки двигателя. Полнопоточный масляный фильтр имеет два сменных фильтрующих элемента, заполненных древесной мукой на пульвербакелитовой связке.
Для охлаждения масла и предотвращения его разжижения в результате нагрева от соприкосновения с горячими деталями двигателя служит масляный радиатор. Состоит он из двух бачков, между которыми горизонтально размещены трубки, которые для увеличения площади охлаждения и жесткости скреплены металлическими пластинами.
Как правило, масляными радиаторами снабжаются грузовые автомобили ввиду тяжелых условий работы их двигателей. Для легковых автомобилей достаточное охлаждение масла обеспечивает вентиляция картера и обдув поддона картера встречным потоком воздуха. Вентиляция картера служит для охлаждения масла и освобождения картера от паров топлива, воды и отработанных газов, которые разжижают и загрязняют масло. В некоторых моделях двигателей применяют открытую вентиляцию картера, при которой нижний конец отсасывающей трубки имеет косой срез, направленный назад по ходу автомобиля. При движении у среза создается разряжение, в результате которого газы отсасываются из картера. Разряжение из картера через трубку передается под крышку газораспределительного механизма, и туда же из вакуумного фильтра подается воздух.
Из-за токсичности картерных газов в современных карбюраторных двигателях применяют принудительную систему вентиляции. Маслоналивные патрубки имеют воздушные фильтры и расположены сверху или сбоку двигателя и соединены с поддоном картера непосредственно через маслоналивную трубу. Контроль уровня масла в системе осуществляется при помощи масломерного щупа.
Система охлаждения
Система охлаждения двигателя служит для обеспечения оптимального теплового режима двигателя. Экономичность и надежность двигателя в значительной степени зависят от нормальной работы системы охлаждения. При перегреве двигателя уменьшается его мощность, увеличивается расход топлива, происходит выгорание смазки, что приводит к износу трущихся поверхностей деталей, происходит задир и выплавление вкладышей подшипников, разрушение поверхности шеек коленчатого вала, заклинивание поршня и другие неполадки.
Переохлаждение двигателя также ведет к неисправностям: увеличиваются потери мощности двигателя на преодоление возросшего трения из-за более густой смазки; рабочая смесь, конденсируясь, смывает пленку масла со стенок цилиндров и увеличивает износ деталей поршневой группы; увеличивается коррозионный износ зеркала цилиндров в результате образования серных и сернистых соединений и др.
Жидкостная система охлаждения двигателя состоит из радиатора, насоса охлаждающего средства, термостата и вентилятора. Кроме того, к ней относят рубашку охлаждения блока и головки цилиндров, водяной насос, датчики температуры охлаждающей жидкости, водораспределительную трубу, патрубки и шланги с деталями крепления, сливные краники, предпускной подогреватель, отопитель кабины водителя или салона, расширительный бачок.
В качестве охлаждающей жидкости применяют воду или низкозамерзающие жидкости – антифризы (тосол). Порядок циркуляции охлаждающей жидкости изменяется в зависимости от его температуры. Пока двигатель в холодном состоянии, охлаждающая жидкость циркулирует только в блоке двигателя и теплообменнике отопления по малому кругу, ускоряя нагревание двигателя. Циркулируя в полости блока и головки цилиндров, охлаждающая жидкость омывает гильзы цилиндров и стенки камеры сгорания.
В первую очередь поток циркулирующей жидкости направляется к наиболее нагретым деталям двигателя: стенкам камеры сгорания, свечам зажигания, выпускным клапанам, цилиндрам двигателя. Теплота от нагревающихся деталей передается через стенки агрегатов двигателя охлаждающей жидкости, а затем через наружные стенки агрегатов системы охлаждения в атмосферу. Через верхний патрубок охлаждающая жидкость попадает в бачок радиатора, где охлаждается потоком воздуха, перетекает по трубкам в нижний бачок радиатора и через патрубок и шланг поступает к водяному насосу.
Водяной насос обеспечивает принудительную циркуляцию охлаждающей жидкости. Он приводится в действие приводным ремнем от коленчатого вала. Охлаждающая жидкость протекает через радиатор и охлаждается в ребрах потоком воздуха. Дополнительно охлаждение обеспечивается вентилятором, который включается и выключается терморегулятором. В качестве запасного резервуара для охлаждающей жидкости служит расширительный бачок. Он собирает расширяющуюся от нагревания жидкость и возвращает ее назад в циркуляционную систему после охлаждения двигателя, наполняя систему и хорошо ее охлаждая. Заливку системы охлаждающей жидкостью производят через заливную горловину расширительного бачка. Сливают жидкость из системы через сливной кран и другие краны дополнительного оборудования.
Для охлаждения охлаждающей жидкости, отводящей теплоту от деталей двигателя предназначен радиатор. Охлаждение жидкости происходит в сердцевине радиатора, состоящей из медных, алюминиевых или латунных трубок. На трубках имеются охлаждающие ребра, изготовленные из стали или латуни. Сердцевина соединяет между собой верхний и нижний бачки радиатора. Поток воздуха, обдувающий сердцевину радиатора, регулируется положением створок жалюзи. Кроме того, он может регулироваться путем включения и выключения вентилятора через температурный датчик охлаждающей жидкости.
Заливная горловина верхнего бачка радиатора закрыта пробкой с паровоздушным клапаном. Он открывается автоматически, если давление паров значительно повышается.
Для обдува двигателя служит вентилятор. У него несколько лопастей, изготовленных из стали или пластмассы, имеющих специальную форму для снижения затрат на его привод. Вентилятор усиливает движение потока воздуха через сердцевину радиатора. Обычно его устанавливают на одном валу с водяным насосом.
В движение он приводится коленчатым валом через ременную передачу. В привод могут быть включены электромагнитная муфта или гидромуфта, которая обеспечивает плавную передачу вращения от коленчатого вала вентилятору. Частота вращения вентилятора зависит от количества масла, поступающего в гидромуфту из системы смазывания.
Водяной насос служит для циркуляции жидкости в системе охлаждения. Его устанавливают в передней части блока цилиндров. Состоит водяной насос из силуминового корпуса, вала с крыльчаткой и самоуплотняющегося сальника. Вращающаяся крыльчатка создает центробежные силы, под действием которых жидкость от центра корпуса насоса отбрасывается к его наружным стенкам. Вытеканию жидкости по разъему между корпусом насоса и блоком цилиндров препятствует резиновая прокладка, а по валу – самоуплотняющийся сальник.
Поддерживает тепловой режим двигателя, направляя движение жидкости по малому и большому кругу охлаждения, термостат. Он может быть с жидким или твердым наполнителем. Устанавливают термостат в полости впускного патрубка или на выходе жидкости из рубашки охлаждения цилиндров. В термостатах с жидким наполнителем внутрь гофрированного латунного цилиндра налита жидкость, температура кипения которой 75 °C. В термостатах твердого наполнения находится нефтяной воск – церезин. Температура плавления церезина примерно 71–82 °C.
П р и н ц и п р а б о т ы термостата заключается в следующем: если двигатель не прогрет, то клапан его закрыт и жидкость циркулирует, минуя радиатор, по малому кругу охлаждения: полость охлаждения – термостат – перепускной шланг – водяной насос – полость охлаждения. По мере наполнения охлаждающей жидкостью наполнитель термостата нагревается, расширяется и клапан открывается. Жидкость начинает циркулировать по большому кругу охлаждения: водяной насос – полость охлаждения – термостат – верхний бачок радиатора – сердцевина – нижний бачок радиатора – насос – полость охлаждения.
Переохлаждение двигателя также ведет к неисправностям: увеличиваются потери мощности двигателя на преодоление возросшего трения из-за более густой смазки; рабочая смесь, конденсируясь, смывает пленку масла со стенок цилиндров и увеличивает износ деталей поршневой группы; увеличивается коррозионный износ зеркала цилиндров в результате образования серных и сернистых соединений и др.
Жидкостная система охлаждения двигателя состоит из радиатора, насоса охлаждающего средства, термостата и вентилятора. Кроме того, к ней относят рубашку охлаждения блока и головки цилиндров, водяной насос, датчики температуры охлаждающей жидкости, водораспределительную трубу, патрубки и шланги с деталями крепления, сливные краники, предпускной подогреватель, отопитель кабины водителя или салона, расширительный бачок.
В качестве охлаждающей жидкости применяют воду или низкозамерзающие жидкости – антифризы (тосол). Порядок циркуляции охлаждающей жидкости изменяется в зависимости от его температуры. Пока двигатель в холодном состоянии, охлаждающая жидкость циркулирует только в блоке двигателя и теплообменнике отопления по малому кругу, ускоряя нагревание двигателя. Циркулируя в полости блока и головки цилиндров, охлаждающая жидкость омывает гильзы цилиндров и стенки камеры сгорания.
В первую очередь поток циркулирующей жидкости направляется к наиболее нагретым деталям двигателя: стенкам камеры сгорания, свечам зажигания, выпускным клапанам, цилиндрам двигателя. Теплота от нагревающихся деталей передается через стенки агрегатов двигателя охлаждающей жидкости, а затем через наружные стенки агрегатов системы охлаждения в атмосферу. Через верхний патрубок охлаждающая жидкость попадает в бачок радиатора, где охлаждается потоком воздуха, перетекает по трубкам в нижний бачок радиатора и через патрубок и шланг поступает к водяному насосу.
Водяной насос обеспечивает принудительную циркуляцию охлаждающей жидкости. Он приводится в действие приводным ремнем от коленчатого вала. Охлаждающая жидкость протекает через радиатор и охлаждается в ребрах потоком воздуха. Дополнительно охлаждение обеспечивается вентилятором, который включается и выключается терморегулятором. В качестве запасного резервуара для охлаждающей жидкости служит расширительный бачок. Он собирает расширяющуюся от нагревания жидкость и возвращает ее назад в циркуляционную систему после охлаждения двигателя, наполняя систему и хорошо ее охлаждая. Заливку системы охлаждающей жидкостью производят через заливную горловину расширительного бачка. Сливают жидкость из системы через сливной кран и другие краны дополнительного оборудования.
Для охлаждения охлаждающей жидкости, отводящей теплоту от деталей двигателя предназначен радиатор. Охлаждение жидкости происходит в сердцевине радиатора, состоящей из медных, алюминиевых или латунных трубок. На трубках имеются охлаждающие ребра, изготовленные из стали или латуни. Сердцевина соединяет между собой верхний и нижний бачки радиатора. Поток воздуха, обдувающий сердцевину радиатора, регулируется положением створок жалюзи. Кроме того, он может регулироваться путем включения и выключения вентилятора через температурный датчик охлаждающей жидкости.
Заливная горловина верхнего бачка радиатора закрыта пробкой с паровоздушным клапаном. Он открывается автоматически, если давление паров значительно повышается.
Для обдува двигателя служит вентилятор. У него несколько лопастей, изготовленных из стали или пластмассы, имеющих специальную форму для снижения затрат на его привод. Вентилятор усиливает движение потока воздуха через сердцевину радиатора. Обычно его устанавливают на одном валу с водяным насосом.
В движение он приводится коленчатым валом через ременную передачу. В привод могут быть включены электромагнитная муфта или гидромуфта, которая обеспечивает плавную передачу вращения от коленчатого вала вентилятору. Частота вращения вентилятора зависит от количества масла, поступающего в гидромуфту из системы смазывания.
Водяной насос служит для циркуляции жидкости в системе охлаждения. Его устанавливают в передней части блока цилиндров. Состоит водяной насос из силуминового корпуса, вала с крыльчаткой и самоуплотняющегося сальника. Вращающаяся крыльчатка создает центробежные силы, под действием которых жидкость от центра корпуса насоса отбрасывается к его наружным стенкам. Вытеканию жидкости по разъему между корпусом насоса и блоком цилиндров препятствует резиновая прокладка, а по валу – самоуплотняющийся сальник.
Поддерживает тепловой режим двигателя, направляя движение жидкости по малому и большому кругу охлаждения, термостат. Он может быть с жидким или твердым наполнителем. Устанавливают термостат в полости впускного патрубка или на выходе жидкости из рубашки охлаждения цилиндров. В термостатах с жидким наполнителем внутрь гофрированного латунного цилиндра налита жидкость, температура кипения которой 75 °C. В термостатах твердого наполнения находится нефтяной воск – церезин. Температура плавления церезина примерно 71–82 °C.
П р и н ц и п р а б о т ы термостата заключается в следующем: если двигатель не прогрет, то клапан его закрыт и жидкость циркулирует, минуя радиатор, по малому кругу охлаждения: полость охлаждения – термостат – перепускной шланг – водяной насос – полость охлаждения. По мере наполнения охлаждающей жидкостью наполнитель термостата нагревается, расширяется и клапан открывается. Жидкость начинает циркулировать по большому кругу охлаждения: водяной насос – полость охлаждения – термостат – верхний бачок радиатора – сердцевина – нижний бачок радиатора – насос – полость охлаждения.