Затем космонавты с помощью ученых, инструкторов и специалистов изучают все операции, которые им предстоит выполнить, и тщательно отрабатывают их на тренажерах и стендах.
Чтобы представить, о чем идет рассказ, нужно разобраться хотя бы с основными формулировками и понятиями, связанными с пилотируемой космонавтикой. Вот некоторые из них.
Орбита – траектория движения космического летательного аппарата на основном участке полета.
Перигей – ближайшая к Земле точка орбиты космического аппарата.
Апогей – наиболее удаленная от Земли точка орбиты космического аппарата.
Линия апсид – линия, соединяющая точки апогея и перигея.
Восходящий узел орбиты – точка, в которой орбита пересекает плоскость экватора при переходе космического корабля из южной полусферы в северную.
Нисходящий узел орбиты – точка, в которой орбита пересекает плоскость земного экватора при переходе космического аппарата из северной полусферы в южную.
Линия узлов – линия, соединяющая восходящий и нисходящий узлы орбиты.
Наклонение орбиты – угол между плоскостью орбиты космического аппарата и плоскостью экватора.
Величина угла наклонения орбиты определяет границы географических широт, в пределах которых будет летать космический корабль. Чем больше наклонение орбиты, тем больше диапазон достижимых географических широт, но тем меньше вес выводимого на орбиту корабля. Последнее вызвано тем, что при увеличении наклона орбиты уменьшается энергия, передаваемая космическому кораблю за счет ее суточного вращения.
С полярной орбиты можно осматривать всю Землю, но для ее достижения требуются очень и очень многие энергетические затраты.
Одно и то же наклонение орбиты может быть получено при северо-восточном и юго-восточном направлении запуска ракеты-носителя. При старте с космодрома Байконур используется северо-восточное направление, так как в этом случае полет на участке выведения и непосредственно после отделения от ракеты-носителя проходит над территорией Казахстана и России. А это значит, что на наиболее ответственных участках полета наземные станции слежения и контроля могут осуществлять радио и телевизионную связь с кораблем, принимать телеметрическую информацию, более продолжительное время проводить измерения параметров орбиты.
На участке выведения от ракеты-носителя космического комплекса отделяются и падают на Землю отработавшие ступени. Выделить район для падающих частей естественно легче на собственной и дружественной территориях. Однако количество выделенных районов ограничено. Поэтому ограничены и возможные направления запусков ракет-носителей, а, следовательно, и величины угла наклонения.
Трасса выведения пролегает над малонаселенными районами и потому предполагаемый ущерб от падения обломков рассчитывается как минимальный.
Та же задача стоит перед учеными, конструкторами и при выборе возможных областей приземления возвращаемых аппаратов.
В уже выбранных районах выведения и спуска не допускают никакого строительства крупных промышленных объектов, не планируют расширение и развитие уже существующих населенных пунктов. И это понятно. Никто не хочет жить с осознанием того, что в любую минуту на голову может свалиться что-то тяжелое, от которого и убежать будет невозможно.
В СССР и теперь в России наклонение орбиты пилотируемых космических кораблей находится в пределах от 51 до 65 градусов. Большое наклонение было принято для первых космических кораблей. Затем практически была принята орбита выведения с наклонением 51, 6 градуса. Но для интернациональных экипажей при автономных полетах широкий выбор угла наклона сохранялся, так как это позволяло экипажам проводить исследования природных ресурсов над территорией своих стран.
Если бы Земля была неподвижной, то есть не вращалась бы вокруг своей оси, то орбита космического корабля все время проходила бы над одними и теми же районами Земли. Однако Земля вращается не только вокруг Солнца, но и вокруг собственной оси. Вследствие этого вращения при заданном наклонении орбиты географические координаты мест, над которыми будет пролегать полет космического корабля, зависят от периода его обращения – времени одного полного оборота корабля вокруг Земли.
Эти координаты, соединенные одной линией, образуют трассу полета. Трасса каждого нового витка в пространстве точно такая же, как и предыдущего, но из-за собственного вращения Земли сдвинута к западу по долготе на угол поворота Земли относительно плоскости орбиты за период обращения. Долготное межвитковое расстояние сдвига за один оборот составляет 22, 5 градуса.
Полный оборот плоскости орбиты космического корабля вокруг Земли завершается приблизительно через сутки. Можно подобрать период обращения орбиты таким, что к этому моменту корабль сделает целое число витков и его трасса совпадет с трассой предыдущих суток. То есть через сутки полета корабль может оказаться над той же точкой. Например, над точкой старта. Такие орбиты называют суточными.
Если период больше или меньше суточного, то трасса все время сдвигается по долготе соответственно к востоку или западу на величину, называемую суточным смещением трассы. Это особенно важно при полетах международных экипажей, так как каждому новому космонавту хочется получше разглядеть города и села своей страны, полностью выполнить запланированные эксперимент. Ради этого они готовы не спать несколько суток подряд. И практически всегда первую ночь никто из них не спит во время космического полета.
Некоторые объекты, правда, за время полета так и не попадают в поле зрения космонавтов. Например. На первом витке корабль проходит слева от объекта, а на следующем справа.
Через какое-то время положение нужного объекта может все-таки совпасть с трассой и даже будет в это время прекрасно освещен, но это еще не означает, что на объект не наползет сплошная облачность. И так далее и тому подобное. Космонавт может летать месяцами, но так и не увидит родной город со своей высокой орбиты.
Вследствие большой протяженности России в долготном направлении трасса полета в течение суток проходит через ее территорию 11 раз. Причем, корабль движется с юга на север, а орбита смещается с востока на запад.
Кроме того нужно помнить, что чем выше орбита полета, тем больше и период обращения.
Таким образом, изменяя период обращения \или высоту полета\, можно выбрать такую орбиту, что в каждые новые сутки можно будет фотографировать и изучать все новые и новые участки поверхности Земли.
Существенную роль при планировании полета играет выбор времени старта и допустимые пределы, в которых эти временные изменения возможны. В принципе старт космического корабля может состояться в любое время суток – и днем и ночью. Это как в авиации – взлететь можно в любую погоду. Вот только для посадки необходимы вполне определенные погодные условия и пригодный район.
У космонавтов время старта полностью зависит от программы предстоящего полета. Если полет автономный и предполагается в основном дистанционное зондирование звезд, то старт возможен в любое время и основные ограничения относятся к желаемым условиям посадки в конце полета.
Если стартующему кораблю предстоит стыковка, например с орбитальной станцией, то ему необходимо стартовать \по принятой нашими учеными схемой стыковки\ в момент прохождения станции над космодромом. Всякие отклонения в ту или иную сторону влекут за собой дополнительные энергозатраты для коррекции орбиты корабля после вывода его на орбиту.
Кроме того, всегда желательно, чтобы космический корабль после завершения полета приземлялся на территории Казахстана или России в светлое время суток. Это значительно облегчает процесс поиска и спасения экипажа.
Обстановка в районе Казахстана \общепринятый район посадки\ по условиям освещенности повторяется через 58 суток. Так что изменение времени старта влечет за собой и ухудшение условий работы экипажа и поисковиков в самый напряженный период завершения полета, когда организм членов экипажа значительно ослаблен, и им чрезвычайно необходима помощь в первые минуты и часы после возвращения на Землю.
При изменении времени старта космического корабля и неизменном наклонении орбиты и ее периода, плоскость орбиты по отношению к Солнцу располагается по разному. Следовательно, в значительных пределах меняются условия освещенности по трассе полета и условиях научных наблюдений Земли.
При расчете времени старта космического корабля обязательно учитывается необходимость контролируемого и точного построения ориентации космического корабля на орбите непосредственно перед будущим возвращением на Землю. Ориентация корабля необходима и перед фотографированием объектов, изучением звезд и перед выполнением других задач, которые требуют приведения космического корабля перед работой в строго определенное положение в пространстве.
Подобные эксперименты также планируются задолго до полета, и четко рассчитываются по времени, так как их выполнение связано с целым комплексом многочисленных условий по взаимному расположению объектов, с динамическими процессами и многим другим.
Важное значение при планировании старта имеет высота апогея и перигея орбиты, на которую выводится космический корабль. Эти величины в течение полета не являются постоянными для любого космического аппарата. На каждом витке, особенно в перигее космический корабль задевает атмосферу и получает определенное торможение. На следующем витке трасса полета проходит еще ниже, а следовательно плотность атмосферы и ее сопротивление увеличиваются, увеличивая при этом и эффект торможения. Как только скорость космического корабля станет ниже 8 километров в секунду, он неминуемо сойдет с орбиты по длинной, растянувшейся на несколько тысяч километров параболе и устремится к Земле. Вот только рассчитать точку посадки в этих условиях чрезвычайно трудно.
С другой стороны, тормозящий эффект атмосферы на высотах ниже 150 километров не позволяет летать за счет инерции. В этих случаях нужна постоянная работа двигателей для поддержания высоты за счет увеличения скорости полета, то есть работе двигателей на разгон. Иначе космический корабль по той же параболе снова устремится к Земле.
Отсюда возникло и такое понятие как время существования космического летательного аппарата на орбите, величина которого равна временному промежутку от выведения космического аппарата на орбиту до его входа в плотные слои атмосферы в пределах 100 – 150 километров.
Критическим значением периода обращения космического корабля на орбите , при котором еще обеспечивается орбитальный полет, считается время 87, 75 минут при высоте 170 километров. Орбита при этом круговая.
Если орбита космического корабля не круговая, а эллиптическая, то очень важным параметром, определяющим время существования, является перигей. Именно в районе этих точек корабль наиболее сильно ощущает плотность атмосферы.
При высоте перигея 100 километров корабль войдет в атмосферу через виток.
При высоте перигея 200 километров время существования корабля уже около ста дней.
При высоте перигея 500 километров время существования корабля достигает десятков лет.
Цифры параметров орбиты могут изменяться в зависимости от многих условий на конкретный момент времени. Играют роль и гравитационные силы, и магнитное поле, и влияние Солнца. Однако ученые на первых этапах пилотируемых космических полетов учитывали в основном факт аэродинамического торможения атмосферы, используя его как один из резервов безопасности полета.
Ниже приводится таблица по космическим кораблям типа «Восток» и «Восход», а также более подробные данные по полету космического корабля «Восток-3».
Из таблицы видно, что все космические корабли серии «Восток» выводились на очень низкую орбиту в перигее, обеспечивая тем самым минимально необходимое время существования на орбите.
Если бы Г. Титова или любого другого космонавта, стартовавшего на этих кораблях, забросили бы слишком низко, то они не смогли бы летать больше суток и не выполнили бы программу полета. Атмосфера заставила бы их корабли приземлиться раньше.
В случае же, если бы корабль при старте забросили бы слишком высоко, а тормозная двигательная установка отказала, то корабль мог бы крутиться на орбите слишком долго и имеющиеся системы жизнеобеспечения не помогли бы космонавту выжить в этом полете. Их ресурс не рассчитан на значительное увеличение продолжительности существования человека в космическом полете.
Проводя дальнейшие расчеты снижения космического корабля «Восток-3» можно узнать, когда бы он приземлился в случае отказа тормозной двигательной установки. Для этого каждый может построить график снижения и убедиться в том, что не позже чем через 10 суток корабль сел бы за счет самоторможения.
Зная, что система жизнеобеспечения «Востоков» позволяла космонавту жить на орбите до 10 суток, можно наглядно убедиться в степени безопасности полетов космонавтов на этих кораблях при условии отличной работы стартовой команды.
Система жизнеобеспечения космических кораблей США в первых полетах обеспечивала существование астронавтов на орбите до трех суток. Их корабли поднимались на орбиту не выше 160 километров, что также обеспечивало им возможность возвращения в допустимые сроки.
Да, на первых порах ученые были очень осторожны в своих решениях и пытались обеспечить максимальную безопасность космонавтов. Во всяком случае, до тех пор, пока не была полностью отработана техника стартов. Сейчас, изготовленные на заводе, космический корабль и ракета-носитель доставляются на космодром Байконур и здесь в монтажно-испытательном корпусе \МИКе\ собираются в единое целое.
Длина МИКа более 100 метров, высота с пятиэтажный дом. Поэтому сборка всех основных частей комплекса корабля и ракеты осуществляется горизонтальным способом и в таком же положении на железнодорожной платформе весь комплекс в сборе доставляется на стартовую позицию, расположенную в 1, 5-2 километрах.
Обычно вывоз ракеты-носителя с космическим кораблем выполняют рано утром. И будь то зимой или летом, в леденящую стужу или знойную жару, вокруг состава, забегая с разных сторон, а то и забираясь в вертолет, снимают и снимают торжественный выезд фотокорреспонденты и кинооператоры.
Сама стартовая позиция не очень большая. Квадрат железобетона с отверстием в центре для хвостовой части ракеты-носителя. Мощный установщик устанавливает ракету-носитель в вертикальное положение, и как бы вставляет в пусковую систему, жестко закрепляя в верхней и нижней частях с помощью специальных ферм. Сюда же подводятся кабельная и заправочная мачты и ферма обслуживания.
Несмотря на тщательную проверку всех систем и агрегатов в МИКе, на стартовой площадке все проверки повторяются вновь. Ведь положение ракетно-космического комплекса изменилось с горизонтального на вертикальный, что могло привести к каким то изменениям в работе систем. Да и сама транспортировка могла внести коррективы в состояние систем.
В конце проверок ракета-носитель заправляется топливом и сжатыми газами.
В бункере командного пункта запуска руководитель работ, оценив все доклады, дает команду готовить космонавтов к посадке в корабль. Начинается отсчет времени непосредственной подготовки к полету.
Космонавты на площадке задерживаются не долго. Доклад, последние приветствия, пожелания, и они скрываются в лифте, а через несколько минут выходят на связь с командным пунктом со своих рабочих мест.
Космонавты и ракетно-космический комплекс готовы к старту.
Во время старта, как и во время стыковки, космонавты, космонавты находятся в скафандрах вентиляционного типа, которые не претерпели особых изменений со времен старта Ю. Гагарина.
Нахождение в скафандре связано с повышением безопасности космонавтов в период работы на особо опасных участках полета.
Экипаж космического корабля «Восход» работал без скафандров.
П. Беляев и А. Леонов находились в скафандрах только потому, что планировался выход в открытый космос.
Все космонавты вплоть до полета космического корабля «Союз-11» летали без скафандров. Это позволяло иметь штатную численность экипажа в три человека. И только после гибели Г.Добровольского, В. Волкова и В. Пацаева эта установка была пересмотрена. Штат экипажа установили в два человека. Космонавты получили индивидуальные скафандры и дополнительные средства жизнеобеспечения на случай внезапной разгерметизации корабля.
Место для третьего космонавта осталось, но при старте учитывается каждый килограмм веса, а два скафандра и дополнительное оборудование как раз и поглотили все ресурсные запасы веса.
Лишь с появлением космического корабля «Союз-Т» весовые характеристики оборудования, построенного на приборах нового поколения, позволили снова занять место в кабине третьему члену экипажа.
Собственно скафандр представляет собой герметичный костюм, в котором воздух, необходимый для вентиляции и поддержания внутреннего избыточного давления на случай аварии, а также кислород для дыхания подаются из баллонов, расположенных на возвращаемом аппарате космического корабля.
При нормальном полете в загерметизированной кабине предохранительный щиток шлема или как его еще называют «забрало» поднят и под оболочкой скафандра нет избыточного давления. Продукты дыхания и воздух свободно выходят наружу. Вернее, во внутренний объем корабля. Как только происходит разгерметизация корабля, «забрало» шлема опускается, закрывая лицо. Создается избыточное давление заданной величины в скафандре.
Если космонавт опоздал опустить предохранительный щиток вручную или по какой либо причине не в состоянии сделать это самостоятельно, автоматическая система сама даст команду на опускание щитка при падении давления в кабине до определенного уровня.
В аварийно-спасательном скафандре, который используется космонавтами во время старта, нельзя покинуть корабль, так как он связан короткими шлангами с воздушными и кислородными баллонами, расположенными в корабле. Эти скафандры специально разработаны для размещения вместе с космонавтами в стартовых креслах.
Стартовые кресла в период космических полетов космических кораблей типа «Восток» являлись также средством спасения космонавтов в случае аварии ракеты-носителя на участке выведения. По команде космонавта или автоматики в аварийной ситуации отбрасывался выходной люк, и осуществлялось катапультирование космонавтов вместе с креслом. Право выбора способа приземления – в корабле или на парашюте – представлялось космонавту. Все они предпочли предварительное катапультирование и приземление на парашюте.
Нельзя не сказать и о той обстановке, которая по объективным и субъективным причинам складывается иногда на старте, и влияет очень существенно на психологическое состояние космонавтов.
Перед первым стартом В. Лазарева и О. Макарова на космическом корабле «Союз-12», ничто не предвещало беды, как это было при старте В. Комарова. Но психологическая напряженность все же присутствовала. Это обуславливалось тем, что предыдущий полет экипажа на космическом корабле «Союз-11» закончился трагически. Более того. Через некоторое время в космос была запущена вторая орбитальная станция «Салют-2», на которой почти сразу была обнаружена утечка газовой смеси. Работу со станцией прекратили.
Стартовать в космос после двух неудач подряд трудно, но Лазарев с Макаровым вели себя вполне профессионально и выполнили программу полета практически без замечаний.
Однако. Перед их вторым стартом, который должен был состояться 9 мая 1975 года, обстановка была уже более благоприятной. Отработала полную программу полета на орбите станция «Салют-3». Успешно начала работать станция «Салют-4», на которой отлично поработали А. Губарев и Г. Гречко. Они пробыли в космосе уже 29, 5 суток.
Лазареву с Макаровым предстояло удвоить этот срок, и эта задача уже не была чем-то необычным. Тем более что американцы к этому времени продемонстрировали возможности экипажа при 84-суточном полете.
Нов том то и заключается главная и непреложная истина космического полета каждая секунда полета непредсказуема и требует от космонавтов постоянного внимания и напряженной работы. Вот и на этот раз работа началась штатно, спокойно. Первая ступень отработала нормально. Заработала четко и по программе вторая. И вот она – 261 секунда, когда должно было произойти отделение второй ступени. Однако, вместо ожидаемого отделения в корабле заревела сирена, тревожно замигало красное табло «Авария носителя». Мгновенно вступила в действие система аварийного спасения. И экипажу впервые, не по доброй воле, пришлось испытать ее работоспособность на себе, оказавшись полностью во власти спасительной автоматики. Экипаж мог только ждать.
Аварийный ракетный двигатель увел возвращаемый аппарат с экипажем в сторону, и они стремительно пошли к Земле. Перегрузки в пиковый момент достигали 20 единиц, и экипажу оставалось лишь гадать, куда их несет – на Алтай или в Китай. В Китай не хотелось.
Аварийное приземление произошло на заснеженный склон горы, Возвращаемый аппарат немного протянуло, и он остановился. В. Лазарев отстрелил одну стренгу парашюта, но со второй выполнять эту операцию не торопился. Хотя по инструкции должен был сделать это. Предполагалось, если сразу не отстрелить стренги, то при наличии сильного ветра в поле корабль могло сильно и долго таскать по местности, а это и больно и небезопасно. Но Лазарев не знал обстановки вокруг корабля и, как советовали опытные инструкторы, не торопился.
Лазарев отстрелил выходной люк и выглянул наружу. Аппарат удерживался на голом склоне горы с помощью парашюта, купол которого зацепился за одно единственное дерево. А внизу в нескольких метрах начинался обрыв. Отстрели он вторую стренгу, и вместе с аппаратом космонавты рухнули бы в пропасть.
Экипаж осторожно покинул возвращаемый аппарат, который съехал все же от их движений на несколько сантиметров вниз. Попробовали утеплиться. В снегу, который достигал высоты груди, еле собрали веток на небольшой костерок. Да и тот пришлось разжигать с помощью чистых листов, из ненужного больше никому, бортжурнала.
Авария произошла в полдень, но только к десяти вечера по Москве их обнаружил поисковый самолет, затем появился вертолет. Однако снять ни экипаж, ни возвращаемый аппарат не было никакой возможности. Им сбросили восемь посылок и лишь одну они смогли найти.
Только в пять утра пришел вертолет «МИ-8», который забрал экипаж на борт, а через несколько дней смогли эвакуировать с места приземления и возвращаемый аппарат.
Так, не начавшись, завершился этот полет, который не предвещал никаких сложностей. Космонавты впервые вместо звания Героев получили ордена, и об их старте не нашлось места в официальной космической хронике.
Но станция «Салют-4» продолжала летать, программа не отменялась, и уже через две недели в космос отправился резервный экипаж: П. Климук и В. Севастьянов. Так негаданно – нежданно оба космонавта снова оказались в космосе, спасая престиж советской космонавтики перед предстоящим в июле 1975 года советско-американским полетом, и в который раз преодолевая психологический барьер от неудачного предыдущего старта.
Только через несколько лет в хронике космических полетов старт Лазарева с Макаровым отметили как полет космического корабля «Союз-18а».
К сказанному нужно добавить всего несколько подробностей, которые все же характеризуют и космонавтов, и тех, кто обеспечивал их полет.
Экипаж уже приземлялся аварийно в горах, а телеметристы в ЦУПе продолжали торжественно сообщать по радио в демонстрационном зале: «300-сотая секунда полета. Полет идет нормально. Параметры полета в норме».
Когда авария была обнаружена, паника была приличной. Учитывая, что возвращаемый аппарат мог приземлиться в Китае, подняли по тревоге воздушно-десантную дивизию, чтобы при необходимости блокировать место посадки, эвакуировать экипаж и самоэвакуироваться. И, слава богу, что все это не понадобилось.
А сам экипаж, когда несся по аварийной траектории, истинно «по-русски», во весь голос и по открытой связи давал характеристики всем причастным. Я мог бы процитировать их дословно, но думаю, что эту лексику знают все. Это слышал весь мир, и долго потом зарубежные командировки Лазареву и Макарову были «заказаны».
В. Лазарев так и не смог восстановить прежнюю форму после старта и в космос больше не попал. А Макаров сумел преодолеть себя и побывал в космосе еще раз.
Говорю это потому, что очень много разговоров было о том, как трудно попасть в космический полет – большая конкуренция и так далее. Все это верно, но для тех, кто идет в полет впервые. Для тех же, кто побывал в космосе, все дальнейшее во многом зависит только от него самого. Хочет в полет – попадет и довольно быстро. Не хочет – найдет повод или медицинскую болячку. Так и не слетали в космос после неудачных стыковок Зудов с Рождественским, Сарафанов с Деминым. Не смог преодолеть себя после неудачи и Н. Рукавишников.
А вот профессиональные судьбы космонавтов В. Титова иГ. Стрекалова могут быть прекрасным примером настойчивости в достижении цели. Их стрессовая ситуация тоже была связана с неудачным стартом в сентябре 1983 года, когда они не по собственной воле снова испытали аварийно-спасательную систему уже прямо на стартовом столе. Они не получили наград, о них не писала пресса. Так принято было в те времена.
Однако, более подробно об этом старте позже. Тем более ему предшествовало другое происшествие с Титовым и Стрекаловым или скорее даже цепочки происшествий, которые частенько сопровождают процесс подготовки космонавтов к полету и даже усложняют этот процесс.
Вот некоторые выписки из моих дневников того времени.
Январь 1983 год. В прошлом году высокое руководство решило, что готовить космонавтов в составе экипажей не стоит. Лучше в составе групп. Военные – в Центре подготовки космонавтов. Гражданские инженеры – на фирме «Энергии» у Глушко. И так далее по профессиональной принадлежности. Экипажи решено формировать на последнем этапе по результатам подготовки через решения Госкомиссии. Вот только как в этих условиях достичь высокой слаженности в работе экипажа, никто не подумал. Она достигается неоднократными дублированиями при подготовке, годами напряженной совместной, именно совместной, работы по определенной программе.
Правда, новая система позволяет без особых хлопот вводить в экипаж на завершающем этапе «нужных» людей без всяких объяснений перед специалистами.
По старой системе в 1982 году Главный конструктор Глушко не смог отправить в космос свою протеже Ирину Пронину. Савицкая слетала в космос, а для Прониной срочно составили новую программу и предложили отправить ее в космос с очередной экспедицией 14 апреля 1983 года.
Чтобы специалисты Центра подготовки космонавтов не сопротивлялись, Глушко согласился даже с неофициальным предварительным формированием экипажей. Якобы для обеспечения лучшей предварительной подготовки космонавтов. Так был сформирован основной экипаж: Титов – Стрекалов – Пронина. Дублерами стали: Ляхов – Александров – Савиных. Пронина на всякий случай дублера среди кандидатов женщин вообще не имела. В резерве был лишь Васютин.
Конец января 198 года. Станция «Салют-7» находится на орбите с апреля 1982 года. На ней отработали один основной экипаж и два посещения. Но до сих пор в Центре подготовки космонавтов нет комплексного тренажера станции. На учебно-тренировочном макете станции космонавты изучают расположение оборудования, им рассказывают, где что включается, заряжают и разряжают пленки. И вот сегодня первая пробная тренировка на таком тренажере. Это не сдача в эксплуатацию – всего лишь показ, но и это для экипажей много значит. Правда пока слишком много условностей – это учтите, будет не так, это будет по-другому. Но все-таки это шаг вперед. Титов, Стрекалов и Пронина провели на комплексном тренажере полную тренировку. Пришло 25 человек гостей и проверяющих. Несколько раз сбоил вычислительный комплекс, но и экипаж допустил много ошибок, так как у них не было тренировок на сработанность.
16 февраля 1983 года. Снова основной экипаж на станции. Пронина долго сидела без дела. Потом ей это надоело и она говорит: «Ребята, я сейчас кино сниму о том, как вы работаете. Завтра посмотрим». Работать с кинокамерой довольно тяжело, и она вскоре устала, положила камеру на пол станции и ушла в другой отсек отдохнуть.
Чтобы представить, о чем идет рассказ, нужно разобраться хотя бы с основными формулировками и понятиями, связанными с пилотируемой космонавтикой. Вот некоторые из них.
Орбита – траектория движения космического летательного аппарата на основном участке полета.
Перигей – ближайшая к Земле точка орбиты космического аппарата.
Апогей – наиболее удаленная от Земли точка орбиты космического аппарата.
Линия апсид – линия, соединяющая точки апогея и перигея.
Восходящий узел орбиты – точка, в которой орбита пересекает плоскость экватора при переходе космического корабля из южной полусферы в северную.
Нисходящий узел орбиты – точка, в которой орбита пересекает плоскость земного экватора при переходе космического аппарата из северной полусферы в южную.
Линия узлов – линия, соединяющая восходящий и нисходящий узлы орбиты.
Наклонение орбиты – угол между плоскостью орбиты космического аппарата и плоскостью экватора.
Величина угла наклонения орбиты определяет границы географических широт, в пределах которых будет летать космический корабль. Чем больше наклонение орбиты, тем больше диапазон достижимых географических широт, но тем меньше вес выводимого на орбиту корабля. Последнее вызвано тем, что при увеличении наклона орбиты уменьшается энергия, передаваемая космическому кораблю за счет ее суточного вращения.
С полярной орбиты можно осматривать всю Землю, но для ее достижения требуются очень и очень многие энергетические затраты.
Одно и то же наклонение орбиты может быть получено при северо-восточном и юго-восточном направлении запуска ракеты-носителя. При старте с космодрома Байконур используется северо-восточное направление, так как в этом случае полет на участке выведения и непосредственно после отделения от ракеты-носителя проходит над территорией Казахстана и России. А это значит, что на наиболее ответственных участках полета наземные станции слежения и контроля могут осуществлять радио и телевизионную связь с кораблем, принимать телеметрическую информацию, более продолжительное время проводить измерения параметров орбиты.
На участке выведения от ракеты-носителя космического комплекса отделяются и падают на Землю отработавшие ступени. Выделить район для падающих частей естественно легче на собственной и дружественной территориях. Однако количество выделенных районов ограничено. Поэтому ограничены и возможные направления запусков ракет-носителей, а, следовательно, и величины угла наклонения.
Трасса выведения пролегает над малонаселенными районами и потому предполагаемый ущерб от падения обломков рассчитывается как минимальный.
Та же задача стоит перед учеными, конструкторами и при выборе возможных областей приземления возвращаемых аппаратов.
В уже выбранных районах выведения и спуска не допускают никакого строительства крупных промышленных объектов, не планируют расширение и развитие уже существующих населенных пунктов. И это понятно. Никто не хочет жить с осознанием того, что в любую минуту на голову может свалиться что-то тяжелое, от которого и убежать будет невозможно.
В СССР и теперь в России наклонение орбиты пилотируемых космических кораблей находится в пределах от 51 до 65 градусов. Большое наклонение было принято для первых космических кораблей. Затем практически была принята орбита выведения с наклонением 51, 6 градуса. Но для интернациональных экипажей при автономных полетах широкий выбор угла наклона сохранялся, так как это позволяло экипажам проводить исследования природных ресурсов над территорией своих стран.
Если бы Земля была неподвижной, то есть не вращалась бы вокруг своей оси, то орбита космического корабля все время проходила бы над одними и теми же районами Земли. Однако Земля вращается не только вокруг Солнца, но и вокруг собственной оси. Вследствие этого вращения при заданном наклонении орбиты географические координаты мест, над которыми будет пролегать полет космического корабля, зависят от периода его обращения – времени одного полного оборота корабля вокруг Земли.
Эти координаты, соединенные одной линией, образуют трассу полета. Трасса каждого нового витка в пространстве точно такая же, как и предыдущего, но из-за собственного вращения Земли сдвинута к западу по долготе на угол поворота Земли относительно плоскости орбиты за период обращения. Долготное межвитковое расстояние сдвига за один оборот составляет 22, 5 градуса.
Полный оборот плоскости орбиты космического корабля вокруг Земли завершается приблизительно через сутки. Можно подобрать период обращения орбиты таким, что к этому моменту корабль сделает целое число витков и его трасса совпадет с трассой предыдущих суток. То есть через сутки полета корабль может оказаться над той же точкой. Например, над точкой старта. Такие орбиты называют суточными.
Если период больше или меньше суточного, то трасса все время сдвигается по долготе соответственно к востоку или западу на величину, называемую суточным смещением трассы. Это особенно важно при полетах международных экипажей, так как каждому новому космонавту хочется получше разглядеть города и села своей страны, полностью выполнить запланированные эксперимент. Ради этого они готовы не спать несколько суток подряд. И практически всегда первую ночь никто из них не спит во время космического полета.
Некоторые объекты, правда, за время полета так и не попадают в поле зрения космонавтов. Например. На первом витке корабль проходит слева от объекта, а на следующем справа.
Через какое-то время положение нужного объекта может все-таки совпасть с трассой и даже будет в это время прекрасно освещен, но это еще не означает, что на объект не наползет сплошная облачность. И так далее и тому подобное. Космонавт может летать месяцами, но так и не увидит родной город со своей высокой орбиты.
Вследствие большой протяженности России в долготном направлении трасса полета в течение суток проходит через ее территорию 11 раз. Причем, корабль движется с юга на север, а орбита смещается с востока на запад.
Кроме того нужно помнить, что чем выше орбита полета, тем больше и период обращения.
Таким образом, изменяя период обращения \или высоту полета\, можно выбрать такую орбиту, что в каждые новые сутки можно будет фотографировать и изучать все новые и новые участки поверхности Земли.
Существенную роль при планировании полета играет выбор времени старта и допустимые пределы, в которых эти временные изменения возможны. В принципе старт космического корабля может состояться в любое время суток – и днем и ночью. Это как в авиации – взлететь можно в любую погоду. Вот только для посадки необходимы вполне определенные погодные условия и пригодный район.
У космонавтов время старта полностью зависит от программы предстоящего полета. Если полет автономный и предполагается в основном дистанционное зондирование звезд, то старт возможен в любое время и основные ограничения относятся к желаемым условиям посадки в конце полета.
Если стартующему кораблю предстоит стыковка, например с орбитальной станцией, то ему необходимо стартовать \по принятой нашими учеными схемой стыковки\ в момент прохождения станции над космодромом. Всякие отклонения в ту или иную сторону влекут за собой дополнительные энергозатраты для коррекции орбиты корабля после вывода его на орбиту.
Кроме того, всегда желательно, чтобы космический корабль после завершения полета приземлялся на территории Казахстана или России в светлое время суток. Это значительно облегчает процесс поиска и спасения экипажа.
Обстановка в районе Казахстана \общепринятый район посадки\ по условиям освещенности повторяется через 58 суток. Так что изменение времени старта влечет за собой и ухудшение условий работы экипажа и поисковиков в самый напряженный период завершения полета, когда организм членов экипажа значительно ослаблен, и им чрезвычайно необходима помощь в первые минуты и часы после возвращения на Землю.
При изменении времени старта космического корабля и неизменном наклонении орбиты и ее периода, плоскость орбиты по отношению к Солнцу располагается по разному. Следовательно, в значительных пределах меняются условия освещенности по трассе полета и условиях научных наблюдений Земли.
При расчете времени старта космического корабля обязательно учитывается необходимость контролируемого и точного построения ориентации космического корабля на орбите непосредственно перед будущим возвращением на Землю. Ориентация корабля необходима и перед фотографированием объектов, изучением звезд и перед выполнением других задач, которые требуют приведения космического корабля перед работой в строго определенное положение в пространстве.
Подобные эксперименты также планируются задолго до полета, и четко рассчитываются по времени, так как их выполнение связано с целым комплексом многочисленных условий по взаимному расположению объектов, с динамическими процессами и многим другим.
Важное значение при планировании старта имеет высота апогея и перигея орбиты, на которую выводится космический корабль. Эти величины в течение полета не являются постоянными для любого космического аппарата. На каждом витке, особенно в перигее космический корабль задевает атмосферу и получает определенное торможение. На следующем витке трасса полета проходит еще ниже, а следовательно плотность атмосферы и ее сопротивление увеличиваются, увеличивая при этом и эффект торможения. Как только скорость космического корабля станет ниже 8 километров в секунду, он неминуемо сойдет с орбиты по длинной, растянувшейся на несколько тысяч километров параболе и устремится к Земле. Вот только рассчитать точку посадки в этих условиях чрезвычайно трудно.
С другой стороны, тормозящий эффект атмосферы на высотах ниже 150 километров не позволяет летать за счет инерции. В этих случаях нужна постоянная работа двигателей для поддержания высоты за счет увеличения скорости полета, то есть работе двигателей на разгон. Иначе космический корабль по той же параболе снова устремится к Земле.
Отсюда возникло и такое понятие как время существования космического летательного аппарата на орбите, величина которого равна временному промежутку от выведения космического аппарата на орбиту до его входа в плотные слои атмосферы в пределах 100 – 150 километров.
Критическим значением периода обращения космического корабля на орбите , при котором еще обеспечивается орбитальный полет, считается время 87, 75 минут при высоте 170 километров. Орбита при этом круговая.
Если орбита космического корабля не круговая, а эллиптическая, то очень важным параметром, определяющим время существования, является перигей. Именно в районе этих точек корабль наиболее сильно ощущает плотность атмосферы.
При высоте перигея 100 километров корабль войдет в атмосферу через виток.
При высоте перигея 200 километров время существования корабля уже около ста дней.
При высоте перигея 500 километров время существования корабля достигает десятков лет.
Цифры параметров орбиты могут изменяться в зависимости от многих условий на конкретный момент времени. Играют роль и гравитационные силы, и магнитное поле, и влияние Солнца. Однако ученые на первых этапах пилотируемых космических полетов учитывали в основном факт аэродинамического торможения атмосферы, используя его как один из резервов безопасности полета.
Ниже приводится таблица по космическим кораблям типа «Восток» и «Восход», а также более подробные данные по полету космического корабля «Восток-3».
Из таблицы видно, что все космические корабли серии «Восток» выводились на очень низкую орбиту в перигее, обеспечивая тем самым минимально необходимое время существования на орбите.
Если бы Г. Титова или любого другого космонавта, стартовавшего на этих кораблях, забросили бы слишком низко, то они не смогли бы летать больше суток и не выполнили бы программу полета. Атмосфера заставила бы их корабли приземлиться раньше.
В случае же, если бы корабль при старте забросили бы слишком высоко, а тормозная двигательная установка отказала, то корабль мог бы крутиться на орбите слишком долго и имеющиеся системы жизнеобеспечения не помогли бы космонавту выжить в этом полете. Их ресурс не рассчитан на значительное увеличение продолжительности существования человека в космическом полете.
Проводя дальнейшие расчеты снижения космического корабля «Восток-3» можно узнать, когда бы он приземлился в случае отказа тормозной двигательной установки. Для этого каждый может построить график снижения и убедиться в том, что не позже чем через 10 суток корабль сел бы за счет самоторможения.
Зная, что система жизнеобеспечения «Востоков» позволяла космонавту жить на орбите до 10 суток, можно наглядно убедиться в степени безопасности полетов космонавтов на этих кораблях при условии отличной работы стартовой команды.
Система жизнеобеспечения космических кораблей США в первых полетах обеспечивала существование астронавтов на орбите до трех суток. Их корабли поднимались на орбиту не выше 160 километров, что также обеспечивало им возможность возвращения в допустимые сроки.
Да, на первых порах ученые были очень осторожны в своих решениях и пытались обеспечить максимальную безопасность космонавтов. Во всяком случае, до тех пор, пока не была полностью отработана техника стартов. Сейчас, изготовленные на заводе, космический корабль и ракета-носитель доставляются на космодром Байконур и здесь в монтажно-испытательном корпусе \МИКе\ собираются в единое целое.
Длина МИКа более 100 метров, высота с пятиэтажный дом. Поэтому сборка всех основных частей комплекса корабля и ракеты осуществляется горизонтальным способом и в таком же положении на железнодорожной платформе весь комплекс в сборе доставляется на стартовую позицию, расположенную в 1, 5-2 километрах.
Обычно вывоз ракеты-носителя с космическим кораблем выполняют рано утром. И будь то зимой или летом, в леденящую стужу или знойную жару, вокруг состава, забегая с разных сторон, а то и забираясь в вертолет, снимают и снимают торжественный выезд фотокорреспонденты и кинооператоры.
Сама стартовая позиция не очень большая. Квадрат железобетона с отверстием в центре для хвостовой части ракеты-носителя. Мощный установщик устанавливает ракету-носитель в вертикальное положение, и как бы вставляет в пусковую систему, жестко закрепляя в верхней и нижней частях с помощью специальных ферм. Сюда же подводятся кабельная и заправочная мачты и ферма обслуживания.
Несмотря на тщательную проверку всех систем и агрегатов в МИКе, на стартовой площадке все проверки повторяются вновь. Ведь положение ракетно-космического комплекса изменилось с горизонтального на вертикальный, что могло привести к каким то изменениям в работе систем. Да и сама транспортировка могла внести коррективы в состояние систем.
В конце проверок ракета-носитель заправляется топливом и сжатыми газами.
В бункере командного пункта запуска руководитель работ, оценив все доклады, дает команду готовить космонавтов к посадке в корабль. Начинается отсчет времени непосредственной подготовки к полету.
Космонавты на площадке задерживаются не долго. Доклад, последние приветствия, пожелания, и они скрываются в лифте, а через несколько минут выходят на связь с командным пунктом со своих рабочих мест.
Космонавты и ракетно-космический комплекс готовы к старту.
Во время старта, как и во время стыковки, космонавты, космонавты находятся в скафандрах вентиляционного типа, которые не претерпели особых изменений со времен старта Ю. Гагарина.
Нахождение в скафандре связано с повышением безопасности космонавтов в период работы на особо опасных участках полета.
Экипаж космического корабля «Восход» работал без скафандров.
П. Беляев и А. Леонов находились в скафандрах только потому, что планировался выход в открытый космос.
Все космонавты вплоть до полета космического корабля «Союз-11» летали без скафандров. Это позволяло иметь штатную численность экипажа в три человека. И только после гибели Г.Добровольского, В. Волкова и В. Пацаева эта установка была пересмотрена. Штат экипажа установили в два человека. Космонавты получили индивидуальные скафандры и дополнительные средства жизнеобеспечения на случай внезапной разгерметизации корабля.
Место для третьего космонавта осталось, но при старте учитывается каждый килограмм веса, а два скафандра и дополнительное оборудование как раз и поглотили все ресурсные запасы веса.
Лишь с появлением космического корабля «Союз-Т» весовые характеристики оборудования, построенного на приборах нового поколения, позволили снова занять место в кабине третьему члену экипажа.
Собственно скафандр представляет собой герметичный костюм, в котором воздух, необходимый для вентиляции и поддержания внутреннего избыточного давления на случай аварии, а также кислород для дыхания подаются из баллонов, расположенных на возвращаемом аппарате космического корабля.
При нормальном полете в загерметизированной кабине предохранительный щиток шлема или как его еще называют «забрало» поднят и под оболочкой скафандра нет избыточного давления. Продукты дыхания и воздух свободно выходят наружу. Вернее, во внутренний объем корабля. Как только происходит разгерметизация корабля, «забрало» шлема опускается, закрывая лицо. Создается избыточное давление заданной величины в скафандре.
Если космонавт опоздал опустить предохранительный щиток вручную или по какой либо причине не в состоянии сделать это самостоятельно, автоматическая система сама даст команду на опускание щитка при падении давления в кабине до определенного уровня.
В аварийно-спасательном скафандре, который используется космонавтами во время старта, нельзя покинуть корабль, так как он связан короткими шлангами с воздушными и кислородными баллонами, расположенными в корабле. Эти скафандры специально разработаны для размещения вместе с космонавтами в стартовых креслах.
Стартовые кресла в период космических полетов космических кораблей типа «Восток» являлись также средством спасения космонавтов в случае аварии ракеты-носителя на участке выведения. По команде космонавта или автоматики в аварийной ситуации отбрасывался выходной люк, и осуществлялось катапультирование космонавтов вместе с креслом. Право выбора способа приземления – в корабле или на парашюте – представлялось космонавту. Все они предпочли предварительное катапультирование и приземление на парашюте.
Нельзя не сказать и о той обстановке, которая по объективным и субъективным причинам складывается иногда на старте, и влияет очень существенно на психологическое состояние космонавтов.
Перед первым стартом В. Лазарева и О. Макарова на космическом корабле «Союз-12», ничто не предвещало беды, как это было при старте В. Комарова. Но психологическая напряженность все же присутствовала. Это обуславливалось тем, что предыдущий полет экипажа на космическом корабле «Союз-11» закончился трагически. Более того. Через некоторое время в космос была запущена вторая орбитальная станция «Салют-2», на которой почти сразу была обнаружена утечка газовой смеси. Работу со станцией прекратили.
Стартовать в космос после двух неудач подряд трудно, но Лазарев с Макаровым вели себя вполне профессионально и выполнили программу полета практически без замечаний.
Однако. Перед их вторым стартом, который должен был состояться 9 мая 1975 года, обстановка была уже более благоприятной. Отработала полную программу полета на орбите станция «Салют-3». Успешно начала работать станция «Салют-4», на которой отлично поработали А. Губарев и Г. Гречко. Они пробыли в космосе уже 29, 5 суток.
Лазареву с Макаровым предстояло удвоить этот срок, и эта задача уже не была чем-то необычным. Тем более что американцы к этому времени продемонстрировали возможности экипажа при 84-суточном полете.
Нов том то и заключается главная и непреложная истина космического полета каждая секунда полета непредсказуема и требует от космонавтов постоянного внимания и напряженной работы. Вот и на этот раз работа началась штатно, спокойно. Первая ступень отработала нормально. Заработала четко и по программе вторая. И вот она – 261 секунда, когда должно было произойти отделение второй ступени. Однако, вместо ожидаемого отделения в корабле заревела сирена, тревожно замигало красное табло «Авария носителя». Мгновенно вступила в действие система аварийного спасения. И экипажу впервые, не по доброй воле, пришлось испытать ее работоспособность на себе, оказавшись полностью во власти спасительной автоматики. Экипаж мог только ждать.
Аварийный ракетный двигатель увел возвращаемый аппарат с экипажем в сторону, и они стремительно пошли к Земле. Перегрузки в пиковый момент достигали 20 единиц, и экипажу оставалось лишь гадать, куда их несет – на Алтай или в Китай. В Китай не хотелось.
Аварийное приземление произошло на заснеженный склон горы, Возвращаемый аппарат немного протянуло, и он остановился. В. Лазарев отстрелил одну стренгу парашюта, но со второй выполнять эту операцию не торопился. Хотя по инструкции должен был сделать это. Предполагалось, если сразу не отстрелить стренги, то при наличии сильного ветра в поле корабль могло сильно и долго таскать по местности, а это и больно и небезопасно. Но Лазарев не знал обстановки вокруг корабля и, как советовали опытные инструкторы, не торопился.
Лазарев отстрелил выходной люк и выглянул наружу. Аппарат удерживался на голом склоне горы с помощью парашюта, купол которого зацепился за одно единственное дерево. А внизу в нескольких метрах начинался обрыв. Отстрели он вторую стренгу, и вместе с аппаратом космонавты рухнули бы в пропасть.
Экипаж осторожно покинул возвращаемый аппарат, который съехал все же от их движений на несколько сантиметров вниз. Попробовали утеплиться. В снегу, который достигал высоты груди, еле собрали веток на небольшой костерок. Да и тот пришлось разжигать с помощью чистых листов, из ненужного больше никому, бортжурнала.
Авария произошла в полдень, но только к десяти вечера по Москве их обнаружил поисковый самолет, затем появился вертолет. Однако снять ни экипаж, ни возвращаемый аппарат не было никакой возможности. Им сбросили восемь посылок и лишь одну они смогли найти.
Только в пять утра пришел вертолет «МИ-8», который забрал экипаж на борт, а через несколько дней смогли эвакуировать с места приземления и возвращаемый аппарат.
Так, не начавшись, завершился этот полет, который не предвещал никаких сложностей. Космонавты впервые вместо звания Героев получили ордена, и об их старте не нашлось места в официальной космической хронике.
Но станция «Салют-4» продолжала летать, программа не отменялась, и уже через две недели в космос отправился резервный экипаж: П. Климук и В. Севастьянов. Так негаданно – нежданно оба космонавта снова оказались в космосе, спасая престиж советской космонавтики перед предстоящим в июле 1975 года советско-американским полетом, и в который раз преодолевая психологический барьер от неудачного предыдущего старта.
Только через несколько лет в хронике космических полетов старт Лазарева с Макаровым отметили как полет космического корабля «Союз-18а».
К сказанному нужно добавить всего несколько подробностей, которые все же характеризуют и космонавтов, и тех, кто обеспечивал их полет.
Экипаж уже приземлялся аварийно в горах, а телеметристы в ЦУПе продолжали торжественно сообщать по радио в демонстрационном зале: «300-сотая секунда полета. Полет идет нормально. Параметры полета в норме».
Когда авария была обнаружена, паника была приличной. Учитывая, что возвращаемый аппарат мог приземлиться в Китае, подняли по тревоге воздушно-десантную дивизию, чтобы при необходимости блокировать место посадки, эвакуировать экипаж и самоэвакуироваться. И, слава богу, что все это не понадобилось.
А сам экипаж, когда несся по аварийной траектории, истинно «по-русски», во весь голос и по открытой связи давал характеристики всем причастным. Я мог бы процитировать их дословно, но думаю, что эту лексику знают все. Это слышал весь мир, и долго потом зарубежные командировки Лазареву и Макарову были «заказаны».
В. Лазарев так и не смог восстановить прежнюю форму после старта и в космос больше не попал. А Макаров сумел преодолеть себя и побывал в космосе еще раз.
Говорю это потому, что очень много разговоров было о том, как трудно попасть в космический полет – большая конкуренция и так далее. Все это верно, но для тех, кто идет в полет впервые. Для тех же, кто побывал в космосе, все дальнейшее во многом зависит только от него самого. Хочет в полет – попадет и довольно быстро. Не хочет – найдет повод или медицинскую болячку. Так и не слетали в космос после неудачных стыковок Зудов с Рождественским, Сарафанов с Деминым. Не смог преодолеть себя после неудачи и Н. Рукавишников.
А вот профессиональные судьбы космонавтов В. Титова иГ. Стрекалова могут быть прекрасным примером настойчивости в достижении цели. Их стрессовая ситуация тоже была связана с неудачным стартом в сентябре 1983 года, когда они не по собственной воле снова испытали аварийно-спасательную систему уже прямо на стартовом столе. Они не получили наград, о них не писала пресса. Так принято было в те времена.
Однако, более подробно об этом старте позже. Тем более ему предшествовало другое происшествие с Титовым и Стрекаловым или скорее даже цепочки происшествий, которые частенько сопровождают процесс подготовки космонавтов к полету и даже усложняют этот процесс.
Вот некоторые выписки из моих дневников того времени.
Январь 1983 год. В прошлом году высокое руководство решило, что готовить космонавтов в составе экипажей не стоит. Лучше в составе групп. Военные – в Центре подготовки космонавтов. Гражданские инженеры – на фирме «Энергии» у Глушко. И так далее по профессиональной принадлежности. Экипажи решено формировать на последнем этапе по результатам подготовки через решения Госкомиссии. Вот только как в этих условиях достичь высокой слаженности в работе экипажа, никто не подумал. Она достигается неоднократными дублированиями при подготовке, годами напряженной совместной, именно совместной, работы по определенной программе.
Правда, новая система позволяет без особых хлопот вводить в экипаж на завершающем этапе «нужных» людей без всяких объяснений перед специалистами.
По старой системе в 1982 году Главный конструктор Глушко не смог отправить в космос свою протеже Ирину Пронину. Савицкая слетала в космос, а для Прониной срочно составили новую программу и предложили отправить ее в космос с очередной экспедицией 14 апреля 1983 года.
Чтобы специалисты Центра подготовки космонавтов не сопротивлялись, Глушко согласился даже с неофициальным предварительным формированием экипажей. Якобы для обеспечения лучшей предварительной подготовки космонавтов. Так был сформирован основной экипаж: Титов – Стрекалов – Пронина. Дублерами стали: Ляхов – Александров – Савиных. Пронина на всякий случай дублера среди кандидатов женщин вообще не имела. В резерве был лишь Васютин.
Конец января 198 года. Станция «Салют-7» находится на орбите с апреля 1982 года. На ней отработали один основной экипаж и два посещения. Но до сих пор в Центре подготовки космонавтов нет комплексного тренажера станции. На учебно-тренировочном макете станции космонавты изучают расположение оборудования, им рассказывают, где что включается, заряжают и разряжают пленки. И вот сегодня первая пробная тренировка на таком тренажере. Это не сдача в эксплуатацию – всего лишь показ, но и это для экипажей много значит. Правда пока слишком много условностей – это учтите, будет не так, это будет по-другому. Но все-таки это шаг вперед. Титов, Стрекалов и Пронина провели на комплексном тренажере полную тренировку. Пришло 25 человек гостей и проверяющих. Несколько раз сбоил вычислительный комплекс, но и экипаж допустил много ошибок, так как у них не было тренировок на сработанность.
16 февраля 1983 года. Снова основной экипаж на станции. Пронина долго сидела без дела. Потом ей это надоело и она говорит: «Ребята, я сейчас кино сниму о том, как вы работаете. Завтра посмотрим». Работать с кинокамерой довольно тяжело, и она вскоре устала, положила камеру на пол станции и ушла в другой отсек отдохнуть.
Конец бесплатного ознакомительного фрагмента