Страница:
А сегодня доктор биологических наук А. П. Дубров, десятки лет занимающийся исследованием сверхслабого ментального взаимодействия (СМВ), в своей книге «Когнитивная психофизика» пишет:
Принцип неопределенности Гейзенберга гласит, что любая физическая система не может находиться в состояниях, в которых координаты ее центра инерции и импульс одновременно принимают вполне определенные, точные значения. Никакой эксперимент не может привести к одновременно точному измерению динамических переменных, и чем точнее определена одна из величин, например центр инерции, тем менее определенно значение другой величины – импульса. Важным моментом является то, что это ограничение не имеет никакого отношения к несовершенству измерительных приборов. Это принципиальное ограничение, обусловленное самой природой атомной действительности. Если мы собираемся точно определить местонахождение частицы, она просто НЕ ИМЕЕТ определенного импульса, а если мы хотим измерить импульс, она НЕ ИМЕЕТ точного местонахождения.
В классической физике также существуют ограничения в применении некоторых понятий к определенным объектам. Например, понятие температуры не имеет смысла применять для одной молекулы, понятие о точечной локализации (пребывании в одной точке) неприменимо к определению положения волны и т. д. Однако в классической механике определенному значению координаты частицы соответствуют точные значения ее скорости и импульса. В квантовой механике существуют ограничения в возможности одновременного точного определения координаты частицы и величины ее импульса.
Соотношения между неопределенностями местонахождения и импульсами частицы – не единственное проявление принципа неопределенности. Чрезвычайно интересно то, что похожие соотношения существуют между другими величинами, например между временем, в течение которого происходит атомное явление, и количеством энергии, принимающим в нем участие.
Ученые установили, что неопределенность положения события во времени оказывается связанной с неопределенностью количества энергии точно так же, как неопределенность пространственного положения частицы обнаруживает связь с неопределенностью ее импульса (1). Это означает, что мы не можем с одинаковой точностью определить, когда произойдет то или иное событие и какое количество энергии будет при этом задействовано. Явления, происходящие за короткий период времени, характеризуются значительной неопределенностью энергии, а явления, в которых принимает участие четко определенное количество энергии, могут быть локализованы только внутри продолжительных промежутков времени.
Принцип неопределенности существенен в основном для явлений атомных (и меньших) масштабов и не вносит ограничений в опыты с макроскопическими телами. Волновые свойства у таких тел не проявляются, поэтому принцип Гейзенберга к ним неприменим.
Принцип дополнительности. Сформулированный Н. Бором принцип дополнительности гласит, что получение экспериментальной информации об одних физических величинах, описывающих микрообъект (например, атом, элементарную частицу, молекулу), неизбежно связано с потерей информации о некоторых других величинах, дополнительных к первым.
Получение информации о свойствах объекта осуществляется в результате измерения – взаимодействия прибора с объектом. Взаимодействия прибора с макрообъектом и микрообъектом существенно различны. В первом случае прибор не оказывает или оказывает ничтожно малое воздействие на объект и процесс измерения может быть описан с той или иной степенью точности. Во втором случае в связи с двойственностью микрообъекта процесс измерения непременно связан с существенным влиянием прибора на протекание исследуемого явления.
Принцип дополнительности объясняют влиянием на состояние микросреды измерительного прибора, который является макроскопическим объектом. При точном измерении одной из дополнительных величин, например координаты, с помощью соответствующего прибора другая величина (импульс) в результате взаимодействия частицы с прибором претерпевает полностью неконтролируемое изменение.
Даже простейший эксперимент по измерению с помощью микроскопа координаты частицы (например, электрона) подтверждает полностью неконтролируемое изменение ее импульса, которое объясняется только взаимодействием частицы с прибором. Дело в том, что для определения положения электрона его необходимо «осветить» светом возможно более высокой частоты. В результате соударения фотона с электроном изменяется его импульс.
Прибор искажает то, что исследует. Оказывается, сам акт наблюдения изменяет наблюдаемое. Объективная реальность зависит от прибора, то есть в конечном счете от произвола наблюдателя. «С позиции современной квантовой теории измерений роль прибора заключается в „приготовлении“ некоторого состояния системы» (4). Было установлено, что если прибор предназначен для измерения волны, то электрон в эксперименте ведет себя как волна. Если используется прибор для изучения свойств частицы, то электрон в таком приборе будет уже частицей. Словом, наблюдатель превращается в конечном счете из зрителя в действующее лицо.
Все, к чему мы «прикасаемся», превращается в материю. Вероятно, самое удивительное свойство этих частиц заключается в том, что кванты проявляются как частицы, только когда мы на них смотрим. Например, когда электрон не наблюдаем, он всегда проявляет себя как волна, что подтверждается экспериментами. Физики смогли прийти к такому выводу благодаря хитроумным опытам, придуманным для обнаружения электрона без его наблюдения.
Представьте, что у вас в руке шар, который становится шаром для боулинга только при том условии, что вы на него смотрите. Если посыпать тальком дорожку и запустить такой «квантованный» шар по направлению к кеглям, то он будет оставлять прямой след только тогда, когда вы на него смотрели. Но когда вы моргали, то есть не смотрели на шар, он переставал чертить прямую линию и оставлял широкий волнистый след наподобие зигзагообразного следа, который оставляет змея на песке пустыни.
Физик Ник Герберт говорит, что иногда ему кажется, что за его спиной мир «всегда загадочен и неясен и представляет собой беспрерывно текущий квантовый суп». Но когда он оборачивается и пытается увидеть этот «суп», его взор «замораживает» содержимое «супа» и видится лишь привычная картина. Герберт считает, что мы немного похожи на легендарного Мидаса, который, согласно греческому мифу, был наделен Дионисом способностью обращать в золото все, к чему прикоснется его рука. «Человеческому постижению недоступна истинная природа „квантовой реальности“, – говорит Герберт, – поскольку все, к чему бы мы ни прикоснулись, превращается в материю» (1). И это действительно так.
В третьей главе мы познакомимся с исследованиями К. Прибрама, доказывающими уникальную способность человеческого мозга переводить поступающую к нему извне волновую информацию в предметную и развертывать ее на нашем внутреннем экране в виде образов.
Все это означает, что классический идеал объективного описания природы отошел в небытие. Человек-наблюдатель представляет собой конечное звено в цепи процессов наблюдения, и, воспринимая свойства любого объекта атомной действительности, следует обязательно учитывать взаимодействие последнего с наблюдателем. Имея дело с атомной действительностью, нельзя следовать картезианскому разделению мира и личности, наблюдателя и наблюдаемого. В атомной физике нельзя сообщить информацию о природе таким образом, чтобы самому при этом остаться в тени.
В глубь ядра
Физика высоких энергий
Приводимые результаты исследований подтверждают, что благодаря СМВ человек способен ментально создавать материю (!) и взаимодействовать с окружающим его миром на фундаментальном уровне – атомных ядер, виртуальных частиц физического вакуума, кварков, нейтринных резонансов, мезонов, электронов.Принцип неопределенности. Когда ученые поняли, что применительно к микрообъектам нельзя использовать хорошо знакомые им понятия координаты и импульса в их классическом смысле, потребовалось введение в интерпретацию этих величин квантовых поправок. Такой поправкой и явился принцип неопределенности, сформулированный немецким физиком В. Гейзенбергом в 1927 году.
Принцип неопределенности Гейзенберга гласит, что любая физическая система не может находиться в состояниях, в которых координаты ее центра инерции и импульс одновременно принимают вполне определенные, точные значения. Никакой эксперимент не может привести к одновременно точному измерению динамических переменных, и чем точнее определена одна из величин, например центр инерции, тем менее определенно значение другой величины – импульса. Важным моментом является то, что это ограничение не имеет никакого отношения к несовершенству измерительных приборов. Это принципиальное ограничение, обусловленное самой природой атомной действительности. Если мы собираемся точно определить местонахождение частицы, она просто НЕ ИМЕЕТ определенного импульса, а если мы хотим измерить импульс, она НЕ ИМЕЕТ точного местонахождения.
В классической физике также существуют ограничения в применении некоторых понятий к определенным объектам. Например, понятие температуры не имеет смысла применять для одной молекулы, понятие о точечной локализации (пребывании в одной точке) неприменимо к определению положения волны и т. д. Однако в классической механике определенному значению координаты частицы соответствуют точные значения ее скорости и импульса. В квантовой механике существуют ограничения в возможности одновременного точного определения координаты частицы и величины ее импульса.
Соотношения между неопределенностями местонахождения и импульсами частицы – не единственное проявление принципа неопределенности. Чрезвычайно интересно то, что похожие соотношения существуют между другими величинами, например между временем, в течение которого происходит атомное явление, и количеством энергии, принимающим в нем участие.
Ученые установили, что неопределенность положения события во времени оказывается связанной с неопределенностью количества энергии точно так же, как неопределенность пространственного положения частицы обнаруживает связь с неопределенностью ее импульса (1). Это означает, что мы не можем с одинаковой точностью определить, когда произойдет то или иное событие и какое количество энергии будет при этом задействовано. Явления, происходящие за короткий период времени, характеризуются значительной неопределенностью энергии, а явления, в которых принимает участие четко определенное количество энергии, могут быть локализованы только внутри продолжительных промежутков времени.
Принцип неопределенности существенен в основном для явлений атомных (и меньших) масштабов и не вносит ограничений в опыты с макроскопическими телами. Волновые свойства у таких тел не проявляются, поэтому принцип Гейзенберга к ним неприменим.
Принцип дополнительности. Сформулированный Н. Бором принцип дополнительности гласит, что получение экспериментальной информации об одних физических величинах, описывающих микрообъект (например, атом, элементарную частицу, молекулу), неизбежно связано с потерей информации о некоторых других величинах, дополнительных к первым.
Получение информации о свойствах объекта осуществляется в результате измерения – взаимодействия прибора с объектом. Взаимодействия прибора с макрообъектом и микрообъектом существенно различны. В первом случае прибор не оказывает или оказывает ничтожно малое воздействие на объект и процесс измерения может быть описан с той или иной степенью точности. Во втором случае в связи с двойственностью микрообъекта процесс измерения непременно связан с существенным влиянием прибора на протекание исследуемого явления.
Принцип дополнительности объясняют влиянием на состояние микросреды измерительного прибора, который является макроскопическим объектом. При точном измерении одной из дополнительных величин, например координаты, с помощью соответствующего прибора другая величина (импульс) в результате взаимодействия частицы с прибором претерпевает полностью неконтролируемое изменение.
Даже простейший эксперимент по измерению с помощью микроскопа координаты частицы (например, электрона) подтверждает полностью неконтролируемое изменение ее импульса, которое объясняется только взаимодействием частицы с прибором. Дело в том, что для определения положения электрона его необходимо «осветить» светом возможно более высокой частоты. В результате соударения фотона с электроном изменяется его импульс.
Прибор искажает то, что исследует. Оказывается, сам акт наблюдения изменяет наблюдаемое. Объективная реальность зависит от прибора, то есть в конечном счете от произвола наблюдателя. «С позиции современной квантовой теории измерений роль прибора заключается в „приготовлении“ некоторого состояния системы» (4). Было установлено, что если прибор предназначен для измерения волны, то электрон в эксперименте ведет себя как волна. Если используется прибор для изучения свойств частицы, то электрон в таком приборе будет уже частицей. Словом, наблюдатель превращается в конечном счете из зрителя в действующее лицо.
Все, к чему мы «прикасаемся», превращается в материю. Вероятно, самое удивительное свойство этих частиц заключается в том, что кванты проявляются как частицы, только когда мы на них смотрим. Например, когда электрон не наблюдаем, он всегда проявляет себя как волна, что подтверждается экспериментами. Физики смогли прийти к такому выводу благодаря хитроумным опытам, придуманным для обнаружения электрона без его наблюдения.
Представьте, что у вас в руке шар, который становится шаром для боулинга только при том условии, что вы на него смотрите. Если посыпать тальком дорожку и запустить такой «квантованный» шар по направлению к кеглям, то он будет оставлять прямой след только тогда, когда вы на него смотрели. Но когда вы моргали, то есть не смотрели на шар, он переставал чертить прямую линию и оставлял широкий волнистый след наподобие зигзагообразного следа, который оставляет змея на песке пустыни.
Физик Ник Герберт говорит, что иногда ему кажется, что за его спиной мир «всегда загадочен и неясен и представляет собой беспрерывно текущий квантовый суп». Но когда он оборачивается и пытается увидеть этот «суп», его взор «замораживает» содержимое «супа» и видится лишь привычная картина. Герберт считает, что мы немного похожи на легендарного Мидаса, который, согласно греческому мифу, был наделен Дионисом способностью обращать в золото все, к чему прикоснется его рука. «Человеческому постижению недоступна истинная природа „квантовой реальности“, – говорит Герберт, – поскольку все, к чему бы мы ни прикоснулись, превращается в материю» (1). И это действительно так.
В третьей главе мы познакомимся с исследованиями К. Прибрама, доказывающими уникальную способность человеческого мозга переводить поступающую к нему извне волновую информацию в предметную и развертывать ее на нашем внутреннем экране в виде образов.
Все это означает, что классический идеал объективного описания природы отошел в небытие. Человек-наблюдатель представляет собой конечное звено в цепи процессов наблюдения, и, воспринимая свойства любого объекта атомной действительности, следует обязательно учитывать взаимодействие последнего с наблюдателем. Имея дело с атомной действительностью, нельзя следовать картезианскому разделению мира и личности, наблюдателя и наблюдаемого. В атомной физике нельзя сообщить информацию о природе таким образом, чтобы самому при этом остаться в тени.
В глубь ядра
После того как квантовая теория пролила свет на мир атома, главной задачей физиков стало изучение структуры ядра, его компонентов и сил притяжения внутри ядра. В исключительно богатом мире атомных явлений ядра, заключающие в себе почти всю массу атома, исполняют роль предельно малых устойчивых центров, представляющих собой источник электрических сил и образующих основу огромного множества молекулярных структур.
К 1928 году были известны три частицы: фотон, протон и электрон. Фотон – элементарная частица, квант электромагнитного излучения (в узком смысле – света); протон – стабильная элементарная частица, ядро атома водорода; электрон – элементарная частица, обладающая положительной энергией и отрицательным зарядом. Квантовая теория показала, что поразительные свойства атомов обусловлены волновой природой электронов.
Важным шагом к пониманию структуры ядра было открытие его второго компонента – нейтрона (первым является протон, который имеет положительный электрический заряд, равный по абсолютной величине заряду электрона). Нейтрон не имеет электрического заряда. Протон и нейтрон считаются двумя зарядовыми состояниями одной частицы – нуклона – частицы с массой, примерно равной массе протона, в две тысячи раз превышающей массу электрона, но лишенной электрического заряда. Поскольку ядра всех химических элементов состоят из протонов и нейтронов, сила, связывающая частицы внутри ядра, представляла совершенно новое явление. Она не могла иметь электромагнитной природы, поскольку нейтроны электрически нейтральны. Физики поняли, что перед ними – новая сила природы, не существующая вне ядра.
Это так называемое сильное ядерное взаимодействие действует только на очень близком расстоянии, равном примерно двум-трем диаметрам нейтрона (4). На таком расстоянии ядерная сила притягивает нейтроны и протоны; при его сокращении она становится отталкивающей и препятствует дальнейшему их сближению. Так, ядерная сила приводит ядро в исключительно стабильное и исключительно динамическое равновесие. Сильное ядерное взаимодействие действительно сильное: оно удерживает вместе протоны и нейтроны, причем это взаимодействие, например, между двумя протонами в 108 раз мощнее, чем гравитационное взаимодействие между ними же (2).
Ядро атома в 100 тысяч раз меньше самого атома и все же содержит почти всю его массу. Это значит, что плотность вещества внутри ядра гораздо выше, чем в привычных нам формах материи. В самом деле, если бы человеческое тело обладало плотностью ядра, оно было бы величиной с булавочную головку. Однако такая высокая плотность не единственное необычное свойство ядерного вещества. Обладая, как и электроны, квантовой природой, нейтроны реагируют на ограничение в пространстве, значительно увеличивая свою скорость, а поскольку им отводится гораздо более ограниченный объем, чем электронам, их скорость очень высока – около 100 тысяч км/с.
Таким образом, ядерное вещество – эта такая форма материи, которая совершенно не похожа ни на одну из форм материи, существующих в нашем макроскопическом окружении. Это вещество ученые весьма образно сравнивают с микроскопическими каплями предельно плотной жидкости, которые бурно кипят и булькают (1). В этом случае атом представляет собой тяжелые, бурно кипящие капли ядер, а в пространстве между ними с огромной скоростью движутся отрицательно заряженные электроны, которые удерживаются силой притяжения между ними и положительно заряженными ядрами.
И хотя масса электронов составляет очень небольшой процент от общей массы атома, именно они, электроны, придают материи свойство твердости и обеспечивают необходимые связи для образования молекулярных структур, состоящих из нескольких атомов, связанных силами взаимного притяжения. Они также участвуют в химических реакциях и отвечают за химические свойства веществ. Таким образом, взаимодействие электронов с ядром обеспечивает возможность существования всех твердых тел, жидкостей и газов, а также живых организмов и биологических процессов, связанных с их жизнедеятельностью. С другой стороны, электроны обычно не участвуют в ядерных реакциях, не обладая достаточной энергией для нарушения равновесия внутри ядра.
Итак, в начале 30-х годов XX столетия в процессе изучения субмикроскопического мира наступил этап, принесший было уверенность в том, что «строительные кирпичики» материи наконец открыты. Было известно, что вся материя состоит из атомов, а атомы – из протонов, нейтронов и электронов. Эти так называемые «элементарные» частицы воспринимались как предельно малые, неделимые единицы материи, подобные атомам Демокрита.
Однако последующие достижения современной физики показали, что нужно отказаться от представлений об элементарных частицах как о мельчайших составляющих материи. Усовершенствование техники проведения экспериментов и создание новых приборов регистрации элементарных частиц (детекторов) привело к тому, что к 1935 году было известно уже не три, а шесть элементарных частиц, к 1955 году – восемнадцать, а к настоящему времени их известно более четырехсот. В такой ситуации слово «элементарный» уже неприменимо. Какая уж тут элементарность, если фотон может породить пару электрон – позитрон, при столкновении протонов и нейтронов могут рождаться пи-мезоны, пи-мезон распадается на мюон и нейтрино и т. д.? Универсальная превращаемость частиц – одно из самых общих свойств микромира.
Античастицы. Эксперименты показали, что частицы, ограниченные в пределах ядра, движутся со скоростью, близкой к скорости света. Следовательно, для описания ядерных явлений и точного понимания мира атома квантовая теория не является всеобъемлющей. Она должна быть дополнена теорией относительности Эйнштейна, которая оказала сильное воздействие на наши представления, в частности, о материи, заставив нас существенно пересмотреть понятие частицы. В классической физике масса тела всегда ассоциировалась с некоей неразрушимой материальной субстанцией, из которой, как считалось, были сделаны все вещи. Теория относительности показала, что масса не имеет отношения ни к какой субстанции, являясь одной из форм энергии (2).
Однако энергия – это динамическая величина, связанная с деятельностью (или процессом). Тот факт, что масса частицы может быть эквивалентна определенному количеству энергии, означает, что частица должна восприниматься не как нечто неподвижное и статичное, а как динамический паттерн[3], процесс, вовлекающий энергию, которая проявляет себя в виде массы частицы.
Начало новому взгляду на частицы положил английский физик Поль Дирак, который первым начал процесс объединения двух великих теорий. Дирак составил уравнение, которое описывало движение электронов с учетом законов квантовой механики и теории относительности, и получил неожиданный результат. Формула для энергии электрона давала два решения: одно соответствовало уже знакомому электрону, частице с положительной энергией и отрицательным электрическим зарядом, другое – частице, у которой энергия была отрицательной, а заряд положительным. В квантовой теории поля состояние частицы с отрицательной энергией интерпретируется как состояние античастицы, обладающей положительной энергией и положительным зарядом (4).
В 1932 году американский физик К.-Д. Андерсен экспериментально обнаружил антиэлектрон в космических лучах и назвал эту частицу позитроном. В 1936 году в космических лучах были обнаружены отрицательные и положительные мюоны, являющиеся частицей и античастицей по отношению друг к другу. В 1955 году в опытах на ускорителе были зарегистрированы первые антипротоны, а несколько позже – антинейтроны. К 1981 году экспериментально были обнаружены античастицы практически всех известных элементарных частиц (4).
Дирак обратил внимание на то, что нереальные частицы с отрицательной энергией возникают из своих положительных «антиблизнецов». В результате исследований он пришел к выводу, что пустое четырехмерное пространство Эйнштейна заполнено без предела электрон-позитронными парами, которые до поры до времени никак не проявляют себя. «Этот океан (физический вакуум) заполнен электронами без предела для величины отрицательной энергии, и поэтому нет ничего похожего на дно в этом электронном океане» (2). Образно выражаясь, пространственный вакуум есть бушующий океан отрицательной энергии. Это значит, что в громадном энергетическом океане вакуума Вселенной, который внешне нам кажется совершенно инертным и спокойным, на самом деле невесомые и незримые волны отрицательной энергии непрестанно бушуют с колоссальной скоростью, близкой к скорости света.
Согласно теории Дирака, вакуум битком набит различными античастицами, но мы не можем их обнаружить, потому что они существуют в мире отрицательных энергий и сверхсветовых скоростей, откуда мы физически не можем получить какие бы то ни было сигналы. Как черное тело невозможно увидеть в темноте, так и античастицы не могут быть обнаружены в физическом пространстве.
«Океан» ненаблюдаем до тех пор, пока на него не подействуют определенным образом. Когда же в этот «океан» попадает, например, богатый энергией световой квант – фотон, то он при определенных условиях заставляет «океан» выдать себя, выбивая из него одну из многочисленных античастиц.
Эксперименты показали, что пары частиц и античастиц возникают при наличии достаточного количества энергии и превращаются в чистую энергию при обратном процессе аннигиляции.
Например, если весомый электрон встретится с весомым позитроном, то они превратятся в невесомую энергию двух фотонов, суммарная масса которых будет равна удвоенной массе покоя электрона. Если нам как-то удастся «ударить этой удвоенной массой по вакууму», то он вытолкнет из себя пару элементарных частиц (электрон и позитрон) с почти нулевой скоростью. Новорожденные в непосредственной близости электрон и позитрон притягиваются друг к другу электростатическими силами и превращаются в невесомую энергию. Круг замыкается.
Если же весомый протон встретится с весомым антипротоном, то они превратятся в невесомую энергию двух фотонов, суммарная масса которых будет равна удвоенной массе покоя протона. Если нам как-то удастся «ударить такой удвоенной массой фотонов по вакууму», то он вытолкнет из себя пару элементарных частиц (протон и антипротон) с почти нулевой скоростью. Новорожденные в непосредственной близости протон и антипротон притягиваются друг к другу электростатическими силами и превращаются в невесомую энергию. То же самое произойдет и с другими парами частиц и античастиц. Это значит, что досветовые скорости вещества устойчивы. Иными словами, не так-то легко «утопить» вещество в бушующем океане отрицательной энергии вакуумного пространства.
Существование процессов синтеза и аннигиляции частиц было предсказано теорией Дирака до того, как они были открыты в природе, и с тех пор наблюдались в лаборатории миллионы раз. А теоретической основой для открытий послужил дираковский физический вакуум.
К 1928 году были известны три частицы: фотон, протон и электрон. Фотон – элементарная частица, квант электромагнитного излучения (в узком смысле – света); протон – стабильная элементарная частица, ядро атома водорода; электрон – элементарная частица, обладающая положительной энергией и отрицательным зарядом. Квантовая теория показала, что поразительные свойства атомов обусловлены волновой природой электронов.
Важным шагом к пониманию структуры ядра было открытие его второго компонента – нейтрона (первым является протон, который имеет положительный электрический заряд, равный по абсолютной величине заряду электрона). Нейтрон не имеет электрического заряда. Протон и нейтрон считаются двумя зарядовыми состояниями одной частицы – нуклона – частицы с массой, примерно равной массе протона, в две тысячи раз превышающей массу электрона, но лишенной электрического заряда. Поскольку ядра всех химических элементов состоят из протонов и нейтронов, сила, связывающая частицы внутри ядра, представляла совершенно новое явление. Она не могла иметь электромагнитной природы, поскольку нейтроны электрически нейтральны. Физики поняли, что перед ними – новая сила природы, не существующая вне ядра.
Это так называемое сильное ядерное взаимодействие действует только на очень близком расстоянии, равном примерно двум-трем диаметрам нейтрона (4). На таком расстоянии ядерная сила притягивает нейтроны и протоны; при его сокращении она становится отталкивающей и препятствует дальнейшему их сближению. Так, ядерная сила приводит ядро в исключительно стабильное и исключительно динамическое равновесие. Сильное ядерное взаимодействие действительно сильное: оно удерживает вместе протоны и нейтроны, причем это взаимодействие, например, между двумя протонами в 108 раз мощнее, чем гравитационное взаимодействие между ними же (2).
Ядро атома в 100 тысяч раз меньше самого атома и все же содержит почти всю его массу. Это значит, что плотность вещества внутри ядра гораздо выше, чем в привычных нам формах материи. В самом деле, если бы человеческое тело обладало плотностью ядра, оно было бы величиной с булавочную головку. Однако такая высокая плотность не единственное необычное свойство ядерного вещества. Обладая, как и электроны, квантовой природой, нейтроны реагируют на ограничение в пространстве, значительно увеличивая свою скорость, а поскольку им отводится гораздо более ограниченный объем, чем электронам, их скорость очень высока – около 100 тысяч км/с.
Таким образом, ядерное вещество – эта такая форма материи, которая совершенно не похожа ни на одну из форм материи, существующих в нашем макроскопическом окружении. Это вещество ученые весьма образно сравнивают с микроскопическими каплями предельно плотной жидкости, которые бурно кипят и булькают (1). В этом случае атом представляет собой тяжелые, бурно кипящие капли ядер, а в пространстве между ними с огромной скоростью движутся отрицательно заряженные электроны, которые удерживаются силой притяжения между ними и положительно заряженными ядрами.
И хотя масса электронов составляет очень небольшой процент от общей массы атома, именно они, электроны, придают материи свойство твердости и обеспечивают необходимые связи для образования молекулярных структур, состоящих из нескольких атомов, связанных силами взаимного притяжения. Они также участвуют в химических реакциях и отвечают за химические свойства веществ. Таким образом, взаимодействие электронов с ядром обеспечивает возможность существования всех твердых тел, жидкостей и газов, а также живых организмов и биологических процессов, связанных с их жизнедеятельностью. С другой стороны, электроны обычно не участвуют в ядерных реакциях, не обладая достаточной энергией для нарушения равновесия внутри ядра.
Итак, в начале 30-х годов XX столетия в процессе изучения субмикроскопического мира наступил этап, принесший было уверенность в том, что «строительные кирпичики» материи наконец открыты. Было известно, что вся материя состоит из атомов, а атомы – из протонов, нейтронов и электронов. Эти так называемые «элементарные» частицы воспринимались как предельно малые, неделимые единицы материи, подобные атомам Демокрита.
Однако последующие достижения современной физики показали, что нужно отказаться от представлений об элементарных частицах как о мельчайших составляющих материи. Усовершенствование техники проведения экспериментов и создание новых приборов регистрации элементарных частиц (детекторов) привело к тому, что к 1935 году было известно уже не три, а шесть элементарных частиц, к 1955 году – восемнадцать, а к настоящему времени их известно более четырехсот. В такой ситуации слово «элементарный» уже неприменимо. Какая уж тут элементарность, если фотон может породить пару электрон – позитрон, при столкновении протонов и нейтронов могут рождаться пи-мезоны, пи-мезон распадается на мюон и нейтрино и т. д.? Универсальная превращаемость частиц – одно из самых общих свойств микромира.
Античастицы. Эксперименты показали, что частицы, ограниченные в пределах ядра, движутся со скоростью, близкой к скорости света. Следовательно, для описания ядерных явлений и точного понимания мира атома квантовая теория не является всеобъемлющей. Она должна быть дополнена теорией относительности Эйнштейна, которая оказала сильное воздействие на наши представления, в частности, о материи, заставив нас существенно пересмотреть понятие частицы. В классической физике масса тела всегда ассоциировалась с некоей неразрушимой материальной субстанцией, из которой, как считалось, были сделаны все вещи. Теория относительности показала, что масса не имеет отношения ни к какой субстанции, являясь одной из форм энергии (2).
Однако энергия – это динамическая величина, связанная с деятельностью (или процессом). Тот факт, что масса частицы может быть эквивалентна определенному количеству энергии, означает, что частица должна восприниматься не как нечто неподвижное и статичное, а как динамический паттерн[3], процесс, вовлекающий энергию, которая проявляет себя в виде массы частицы.
Начало новому взгляду на частицы положил английский физик Поль Дирак, который первым начал процесс объединения двух великих теорий. Дирак составил уравнение, которое описывало движение электронов с учетом законов квантовой механики и теории относительности, и получил неожиданный результат. Формула для энергии электрона давала два решения: одно соответствовало уже знакомому электрону, частице с положительной энергией и отрицательным электрическим зарядом, другое – частице, у которой энергия была отрицательной, а заряд положительным. В квантовой теории поля состояние частицы с отрицательной энергией интерпретируется как состояние античастицы, обладающей положительной энергией и положительным зарядом (4).
В 1932 году американский физик К.-Д. Андерсен экспериментально обнаружил антиэлектрон в космических лучах и назвал эту частицу позитроном. В 1936 году в космических лучах были обнаружены отрицательные и положительные мюоны, являющиеся частицей и античастицей по отношению друг к другу. В 1955 году в опытах на ускорителе были зарегистрированы первые антипротоны, а несколько позже – антинейтроны. К 1981 году экспериментально были обнаружены античастицы практически всех известных элементарных частиц (4).
Дирак обратил внимание на то, что нереальные частицы с отрицательной энергией возникают из своих положительных «антиблизнецов». В результате исследований он пришел к выводу, что пустое четырехмерное пространство Эйнштейна заполнено без предела электрон-позитронными парами, которые до поры до времени никак не проявляют себя. «Этот океан (физический вакуум) заполнен электронами без предела для величины отрицательной энергии, и поэтому нет ничего похожего на дно в этом электронном океане» (2). Образно выражаясь, пространственный вакуум есть бушующий океан отрицательной энергии. Это значит, что в громадном энергетическом океане вакуума Вселенной, который внешне нам кажется совершенно инертным и спокойным, на самом деле невесомые и незримые волны отрицательной энергии непрестанно бушуют с колоссальной скоростью, близкой к скорости света.
Согласно теории Дирака, вакуум битком набит различными античастицами, но мы не можем их обнаружить, потому что они существуют в мире отрицательных энергий и сверхсветовых скоростей, откуда мы физически не можем получить какие бы то ни было сигналы. Как черное тело невозможно увидеть в темноте, так и античастицы не могут быть обнаружены в физическом пространстве.
«Океан» ненаблюдаем до тех пор, пока на него не подействуют определенным образом. Когда же в этот «океан» попадает, например, богатый энергией световой квант – фотон, то он при определенных условиях заставляет «океан» выдать себя, выбивая из него одну из многочисленных античастиц.
Эксперименты показали, что пары частиц и античастиц возникают при наличии достаточного количества энергии и превращаются в чистую энергию при обратном процессе аннигиляции.
Например, если весомый электрон встретится с весомым позитроном, то они превратятся в невесомую энергию двух фотонов, суммарная масса которых будет равна удвоенной массе покоя электрона. Если нам как-то удастся «ударить этой удвоенной массой по вакууму», то он вытолкнет из себя пару элементарных частиц (электрон и позитрон) с почти нулевой скоростью. Новорожденные в непосредственной близости электрон и позитрон притягиваются друг к другу электростатическими силами и превращаются в невесомую энергию. Круг замыкается.
Если же весомый протон встретится с весомым антипротоном, то они превратятся в невесомую энергию двух фотонов, суммарная масса которых будет равна удвоенной массе покоя протона. Если нам как-то удастся «ударить такой удвоенной массой фотонов по вакууму», то он вытолкнет из себя пару элементарных частиц (протон и антипротон) с почти нулевой скоростью. Новорожденные в непосредственной близости протон и антипротон притягиваются друг к другу электростатическими силами и превращаются в невесомую энергию. То же самое произойдет и с другими парами частиц и античастиц. Это значит, что досветовые скорости вещества устойчивы. Иными словами, не так-то легко «утопить» вещество в бушующем океане отрицательной энергии вакуумного пространства.
Существование процессов синтеза и аннигиляции частиц было предсказано теорией Дирака до того, как они были открыты в природе, и с тех пор наблюдались в лаборатории миллионы раз. А теоретической основой для открытий послужил дираковский физический вакуум.
Физика высоких энергий
Возможность возникновения материальных частиц из чистой энергии является прекрасным подтверждением правильности теории относительности. До использования теории относительности при рассмотрении частиц ученые, по сути, решали для себя один вопрос: возможно ли бесконечно делить материю на все более мелкие единицы, или все же существуют мельчайшие неделимые частицы?
Способности человека поражают. Изощренный человеческий ум позволил ученым разделить даже субатомные частицы, столкнув их друг с другом с огромной энергией. Высокоэнергетические столкновения субатомных частиц – основной метод, который используют физики для изучения их свойств, и по этой причине физика частиц носит также название физики высоких энергий. Кинетическая энергия обеспечивается в огромных (достигающих в окружности нескольких миль) ускорителях частиц, в которых частицы разгоняются до скорости, близкой к скорости света, а затем они сталкиваются с другими частицами.
Процесс подготовки. Например, целью эксперимента являются наблюдение и измерение интересующей физиков частицы. Необходимо предварительно подготовить исследуемую частицу: либо изолировать ее, либо создать специально в процессе подготовки эксперимента. Затем разогнать ее в ускорителе частиц до скорости, близкой к скорости света. Когда необходимое количество энергии приобретено, частица покидает ускоритель и перемещается в район мишени, где сталкивается с другими частицами. Рассмотренный этап эксперимента называется подготовкой. Свойства частицы нельзя определить независимо от самого процесса подготовки. Если в подготовку вносятся изменения, свойства частицы тоже изменяются.
Столкновения происходят в пузырьковой камере, которая представляет собой прибор для регистрации следов (треков) заряженных частиц высоких энергий. Большинство частиц, возникающих при столкновениях, очень недолговечны и существуют гораздо меньше одной миллионной доли секунды, после чего они снова распадаются на протоны, нейтроны и электроны. Но, несмотря на крайне непродолжительный срок существования, ученые сумели не только обнаружить эти частицы и измерить их характеристики, но и сфотографировать их следы.
Пузырьковая камера изобретена в 1952 году американским ученым Д. Глейзером, ставшим в 1954 году лауреатом Нобелевской премии по физике. Ее действие основано на вскипании перегретой жидкости вблизи траектории частицы. Прохождение заряженной частицы через перегретую жидкость приводит к образованию вдоль следа частицы «зародышевых» центров кипения. За время порядка 0,5–3 мс образующиеся на зародышах пузырьки достигают размеров 50—300 мкм и могут быть сфотографированы при освещении их импульсным источником света (4). Сами частицы на несколько порядков меньше пузырьков, составляющих следы частиц, но по толщине и искривленности трека физики могут определить, какая частица его оставила. В точках, из которых исходит несколько треков, происходят столкновения частиц; искривления возникают из-за использования исследователями магнитных полей.
В последнее время с целью увеличения энергии столкновения широко применяют встречные пучки, формируемые ускорителями и так называемыми накопительными кольцами: протон-протонные, протон-антипротонные, электрон-электронные, электрон-позитронные. Эти пучки пересекаются, и частицы разных пучков вступают во взаимодействие. В результате они рассеиваются: изменяется состояние их движения, или рождаются новые частицы. С помощью детекторов рассеянные частицы регистрируются и измеряются их характеристики (12).
Столкновения частиц – основной экспериментальный метод для изучения их свойств и взаимодействий, и красивые линии, спирали и дуги в пузырьковых камерах имеют первостепенное значение для современной физики. Подвергая математическому анализу следы частиц, ученые могут говорить о свойствах этих частиц; при этом часто используют компьютеры, ибо анализ очень сложен. Все эти процессы составляют акт измерения.
О спине. Значительная часть необъясненных пока физических эффектов, полученных в ускорителях, связана с поведением частиц, обладающих спином. Спин (от англ. spin – вертеться, вращаться) – собственно момент количества движения элементарной частицы, имеющей квантовую природу, не связанный с перемещением частицы как целого.
Разгоняя в ускорителе поток частиц со спинами, одинаково ориентированными относительно спинов частиц мишени, ученые зафиксировали необычное их поведение. Частицы налетающего потока вели себя так, как будто между ними и частицами мишени не существовала сила электрического отталкивания, которая, казалось бы, должна была возникнуть из-за их одинакового электрического заряда. И наоборот, если ориентация спинов в налетающем потоке и в мишени была разная, результаты оказывались другими.
Многочисленные эксперименты, в которых важную роль играют спины частиц, выявили такие эффекты, которые невозможно объяснить с точки зрения обычных теоретических постановок.
Способности человека поражают. Изощренный человеческий ум позволил ученым разделить даже субатомные частицы, столкнув их друг с другом с огромной энергией. Высокоэнергетические столкновения субатомных частиц – основной метод, который используют физики для изучения их свойств, и по этой причине физика частиц носит также название физики высоких энергий. Кинетическая энергия обеспечивается в огромных (достигающих в окружности нескольких миль) ускорителях частиц, в которых частицы разгоняются до скорости, близкой к скорости света, а затем они сталкиваются с другими частицами.
Процесс подготовки. Например, целью эксперимента являются наблюдение и измерение интересующей физиков частицы. Необходимо предварительно подготовить исследуемую частицу: либо изолировать ее, либо создать специально в процессе подготовки эксперимента. Затем разогнать ее в ускорителе частиц до скорости, близкой к скорости света. Когда необходимое количество энергии приобретено, частица покидает ускоритель и перемещается в район мишени, где сталкивается с другими частицами. Рассмотренный этап эксперимента называется подготовкой. Свойства частицы нельзя определить независимо от самого процесса подготовки. Если в подготовку вносятся изменения, свойства частицы тоже изменяются.
Столкновения происходят в пузырьковой камере, которая представляет собой прибор для регистрации следов (треков) заряженных частиц высоких энергий. Большинство частиц, возникающих при столкновениях, очень недолговечны и существуют гораздо меньше одной миллионной доли секунды, после чего они снова распадаются на протоны, нейтроны и электроны. Но, несмотря на крайне непродолжительный срок существования, ученые сумели не только обнаружить эти частицы и измерить их характеристики, но и сфотографировать их следы.
Пузырьковая камера изобретена в 1952 году американским ученым Д. Глейзером, ставшим в 1954 году лауреатом Нобелевской премии по физике. Ее действие основано на вскипании перегретой жидкости вблизи траектории частицы. Прохождение заряженной частицы через перегретую жидкость приводит к образованию вдоль следа частицы «зародышевых» центров кипения. За время порядка 0,5–3 мс образующиеся на зародышах пузырьки достигают размеров 50—300 мкм и могут быть сфотографированы при освещении их импульсным источником света (4). Сами частицы на несколько порядков меньше пузырьков, составляющих следы частиц, но по толщине и искривленности трека физики могут определить, какая частица его оставила. В точках, из которых исходит несколько треков, происходят столкновения частиц; искривления возникают из-за использования исследователями магнитных полей.
В последнее время с целью увеличения энергии столкновения широко применяют встречные пучки, формируемые ускорителями и так называемыми накопительными кольцами: протон-протонные, протон-антипротонные, электрон-электронные, электрон-позитронные. Эти пучки пересекаются, и частицы разных пучков вступают во взаимодействие. В результате они рассеиваются: изменяется состояние их движения, или рождаются новые частицы. С помощью детекторов рассеянные частицы регистрируются и измеряются их характеристики (12).
Столкновения частиц – основной экспериментальный метод для изучения их свойств и взаимодействий, и красивые линии, спирали и дуги в пузырьковых камерах имеют первостепенное значение для современной физики. Подвергая математическому анализу следы частиц, ученые могут говорить о свойствах этих частиц; при этом часто используют компьютеры, ибо анализ очень сложен. Все эти процессы составляют акт измерения.
О спине. Значительная часть необъясненных пока физических эффектов, полученных в ускорителях, связана с поведением частиц, обладающих спином. Спин (от англ. spin – вертеться, вращаться) – собственно момент количества движения элементарной частицы, имеющей квантовую природу, не связанный с перемещением частицы как целого.
Разгоняя в ускорителе поток частиц со спинами, одинаково ориентированными относительно спинов частиц мишени, ученые зафиксировали необычное их поведение. Частицы налетающего потока вели себя так, как будто между ними и частицами мишени не существовала сила электрического отталкивания, которая, казалось бы, должна была возникнуть из-за их одинакового электрического заряда. И наоборот, если ориентация спинов в налетающем потоке и в мишени была разная, результаты оказывались другими.
Многочисленные эксперименты, в которых важную роль играют спины частиц, выявили такие эффекты, которые невозможно объяснить с точки зрения обычных теоретических постановок.