Вторая закономерность, или правило парности хромосом, заключается в том, что хромосомы в кариотипе парные. Хромосомы, относящиеся к одной паре, называют гомологичными, что означает их сходство как по строению, так и по набору генетической информации. Каждая гомологичная пара хромосом представлена одной хромосомой материнского организма, другой – отцовского. Парный, или двойной, набор хромосом в соматических клетках называют липлоилным и обозначают 2n. В половых клетках животных одинарный набор хромосом – от каждой пары по одной. Одинарный набор хромосом в половых клетках называют гаплоидным и обозначают n.
   Диплоидность и гаплоидность хромосомных наборов в соматических и половых клетках относительна. Под воздействием различных факторов количество хромосом в клетках может измениться, что приведет к возникновению мутаций (наследственных изменений).
   Третья закономерность, или правило индивидуальности хромосом, выражается в том, что хромосомы одних пар отличаются от хромосом других по форме, величине, строению и набору генетической информации.
   Четвертая закономерность, или правило непрерывности хромосом, состоит в том, что хромосомы за счет синтеза в них молекул ДНК воспроизводят себе подобных. После этого процесса хромосомы состоят из двух аналогичных хроматид, удерживаемых вместе центромерой.
 
   Кариотип женской особи отличается от кариотипа мужского организма по одной паре хромосом, получивших название половых. У женских особей млекопитающих половые хромосомы составляют гомологичную пару и обозначаются как Х-хромосомы. У мужских особей одна хромосома X, а другая, обычно меньшего размера, Y.
   У птиц самцы имеют половые хромосомы 22 (XX), а самки ZW (XY). Все остальные хромосомы, за исключением половых, имеющихся в кариотипах женских и мужских организмов, называют аутосомами.
   Ген является элементарной единицей наследственности и представляет собой часть молекулы ДНК. Каждая хромосома содержит большое количество генов, возможно тысячи. Ген состоит приблизительно из 600 последовательных пар азотистых оснований. Однако одни гены могут иметь больше таких оснований, другие – меньше. Каждый ген в хромосоме занимает определенное место – локус. Гомологичные пары хромосом имеют набор одноименных генов. Пару генов, расположенных в одном и том же локусе гомологичных хромосом и контролирующих развитие одного и того же признака, называют аллельной парой. У каждого организма один аллельный ген от матери, другой – от отца.
   Соматические клетки, за редким исключением, имеют один и тот же набор генов. Аллельные гены могут существовать во многих формах, каждая из которых влияет на развитие одного и того же признака по-разному.
   Х– и Y-хромосомы неоднозначны по набору соответствующих генов. На Y-хромосоме генов содержится меньше, чем на Х-хромосоме.
   Все основные свойства животных определяются структурой и функцией белковых молекул. В сочетании с другими веществами они участвуют в формировании различного рода клеточных структур, биохимических реакциях и физиологических процессах. Наиболее важными белками являются ферменты. Они отличаются высокой специализацией и принимают участие в различных реакциях синтеза и ресинтеза органических веществ.
   Основные структурные элементы белковых молекул – аминокислоты. Наличие в белковой молекуле тех или иных аминокислот, порядок их расположения, повторяемость определяют специфику белка.
   Ген, представляющий собой участок молекулы ДНК, несет в себе информацию для синтеза белковой молекулы с определенной аминокислотной последовательностью. Строение белковой молекулы закодировано в одной из цепочек гена – ДНК-смысловой цепочке. Кодирование аминокислотного состава белка в гене осуществляется определенным расположением в нем азотистых оснований. Каждая тройка азотистых оснований кодирует одну аминокислоту.
   Реализация генетической информации для синтеза белка, заложенной в гене, осуществляется в цитоплазме клетки с помощью РНК (и-РНК, р-РНК, т-РНК).
   Гены действуют на развитие признака через посредство синтезирующихся под их контролем белковых молекул, в частности ферментов. Для развития одного хозяйственно полезного признака животных необходимо наличие многих ферментов, которые синтезируются под контролем генов.
   Действие группы генов, определяющих развитие одного хозяйственно полезного признака животных, регулируется отдельными парами генов. Так, например, американские ученые еще в 30-х г. установили, что действие генов, определяющих молочную продуктивность коров, регулируется тремя парами генов, находящихся в гомологичных хромосомах с парой генов, регулирующих содержание жира в молоке. Ряд генов характеризуется действием на развитие многих признаков (плейотропное, или множественное, действие).
   Один и тот же признак у животных может встречаться в нескольких формах. Например, масть животных бывает черной, белой, палевой и др.
   Если аллельные гены действуют на развитие признака одинаково, организм называют гомозиготным по данному гену; если они различаются в своем действии на развитие признака, организм называют гетерозиготным. Так, если один аллельный ген и другой определяют черную окраску шерсти животного, оно будет гомозиготным. Если же один аллельный ген определяет черную масть, а другой белую, животное будет гетерозиготным.
   Аллельные гены могут быть доминантными и рецессивными. Доминантные гены контролируют развитие доминирующих признаков (проявляющихся у гибридов первого поколения), рецессивные – рецессивных признаков (не проявляющихся у гибридов первого поколения).
   Под генотипом понимают совокупность всех генов организма. Каждая особь имеет свой, индивидуальный для нее, генотип. Аналогичными генотипами могут обладать лишь однояйцовые близнецы. Действие генов любого генотипа на организм представлено сложной системой взаимодействия аллелей и генов из неаллельных пар. Г енотип животного может быть гомозиготным (доминантная или рецессивная гомозигота) или гетерозиготным. В связи с большим количеством генов, представляющих генотип особи, истинную степень гомозиготности или гетерозиготности животного установить невозможно. Говоря о гомозиготности или гетерозиготное животного, имеют в виду состояние ограниченного числа аллельных пар генов.
   Фенотип особи – это сумма индивидуальных признаков и свойств животного, доступных наблюдению или анализу. Фенотип животных определяется генотипом и условиями внешней среды.
   Для обеспечения практически приемлемого фенотипического сходства потомков с каким-либо предком у них, вероятно, должно быть не менее 20 % его генетического материала. Это количество генетического материала предка у потомков в дальнейшем будет являться критерием, характеризующим предполагаемую эффективность разных вариантов родственных спариваний.
   Сельскохозяйственные животные размножаются половым путем, особенностями которого являются обязательное образование женских и мужских половых клеток (гамет) и оплодотворение.
   Образование гамет называется гаметогенезом. У самок этот процесс называется оогенезом, а у самцов – сперматогенезом.
   Женские половые клетки – яйцеклетки – образуются из соматических клеток яичников, мужские – сперматозоиды – из клеток семенников.
   Процессы оогенеза и сперматогенеза в принципе сходны между собой. Различия между ними состоят только в том, что при оогенезе из одной соматической клетки образуется одна яйцеклетка, а при сперматогенезе – четыре сперматозоида.
 
   Схематически гаметогенез можно представить следующим образом. Половые железы животных представлены соматическими клетками – сперматогониями (у мужских особей) и оогониями (у женских), которые размножаются путем митоза. В определенный период развития животных часть этих клеток превращается в сперматоциты и ооциты I порядка, которые претерпевают два быстро следующих друг за другом деления. В результате первого деления из каждого сперматоцита I порядка образуются два сперматоцита II порядка, из одного ооцита I – один ооцит, и порядка и одно полярное тельце. При этом почти вся цитоплазма сосредоточивается в ооците II. При втором делении из каждого сперматоцита II образуются по две сперматиды, которые в процессе созревания превращаются в сперматозоиды. При втором деление оогенеза из полярного тельца образуются еще два полярных тельца, а из ооцита II – одна оотида, содержащая основную часть цитоплазмы, и одно полярное тельце.
   Оотида в дальнейшем превращается в женскую половую клетку.
   Как было отмечено выше, в половых клетках животных гаплоидный набор хромосом – от каждой пары по одной. Такой набор хромосом гаметы получают в процессе специального деления соматических клеток половых желез – мейоза.
   Мейоз – это два быстро следующих друг за другом деления сперматоцитов и ооцитов I порядка, в результате которых сперматозоиды и яйцеклетки получают одинарный набор хромосом. Первое деление мейоза называют редукционным, второе – эквационным. Каждое из делений мейоза имеет интерфазу, профазу, метафазу, анафазу и телофазу. Фазы первого деления обозначаются цифрой I, второго – II.
   В интерфазе I в сперматоцитах и ооцитах I порядка за счет синтеза молекул ДНК происходит удвоение хромосом. Затем через посредство профазы, метафазы, анафазы и телофазы сперматоциты и ооциты I делятся на сперматоциты II, ооциты II и полярное тельце. В этих клетках будет гаплоидный набор хромосом (от каждой пары по одной), но состоящих из двух хроматид. После короткой интерфазы II происходит деление сперматоцитов II, ооцитов II и полярных телец, в которые попадает по одной хроматиде от каждой хромосомы. Образующиеся при этом сперматиды и оотиды превращаются в половые клетки животных с гаплоидным набором хромосом.
   При оплодотворении происходит слияние гамет мужского и женского пола, что приводит к образованию зиготы, дающей начало особи следующего поколения. Оплодотворение обеспечивает восстановление диплоидного набора хромосом, а в пределах диплоидного набора – парность гомологичных хромосом. Оно служит основой для проявления комбинативной изменчивости, являющейся следствием комбинирования у нового организма наследственного материала предков разных поколений.
   Оплодотворение, так же как и расхождение хромосом по гаметам, носит случайный характер, основывающийся на теории вероятности. Поэтому возможности для проявления комбинативной изменчивости неограниченны. Она проявляется у потомков, полученных при межпородных и межвидовых скрещиваниях, а также у чистопородных животных.
   Определенное представление о возможности проявления комбинативной изменчивости у животных, полученных при чистопородном разведении, может дать установление вероятности рождения потомков с генетическим материалом разных предков.
   В процессе выполнения таких исследований установлено, что при четном числе хромосом предка в кариотипе обоих родителей наблюдается наибольшая вероятность рождения тех его потомков, у которых будет половина хромосом предка, имеющихся у родителей. В случае, когда количество хромосом предка в кариотипе родителей нечетное, наиболее вероятным ожидается рождение потомков двух типов, в кариотипе которых количество его хромосом самое близкое к значению медианы от числа их в кариотипе обоих родителей. Вероятность рождения потомков, у которых количество хромосом предка уменьшается от медианы на единицу, соответствует вероятности рождения тех потомков, у которых число хромосом предка увеличивается на ту же единицу.
   Так, например, если у свиньи три хромосомы, полученные ею от бабушки, то у нее с вероятностью 12,5 % может родиться поросенок без хромосом прабабушки, 37,5 % – с одной, 37,5 % – с двумя, 12,5 % – с тремя. Если у спариваемых животных имеется шесть хромосом общего предка, например у свиноматки – две, а у хряка – четыре, то вероятность рождения потомков с хромосомами предка составит: без хромосом – 1,56 %, с одной – 9,37 %, с двумя – 23,45 %, с тремя – 31,24 %, с четырьмя – 23,45 %, с пятью – 9,37 %, с шестью – 1,56 %.
   Из приведенных данных видно, что при одном и том же подборе у потомков комбинативная изменчивость проявится по-разному. Фенотипическое сходство их с предком будет находиться в прямой зависимости от того количества генетического материала, которое они получат от него.
   Если хромосомы независимо распределяются по половым клеткам и таким же образом комбинируются при оплодотворении, то большая часть аллельных пар генов лишена такой возможности.
   На одной хромосоме располагается большое число генов, которые вместе с ней сначала попадают в половую клетку, а затем входят в состав генотипа потомка нового поколения. Такая совместная передача генов, а следовательно, и информации для развития соответствующих признаков называется сцепленным наследованием.
   Наследственные факторы, локализованные на одной паре хромосом, составляют группу сцепления генов. Число групп сцепления генов у животных конкретного вида равно гаплоидному количеству хромосом для данного вида.
   Сцепление генов не всегда бывает полным. Причиной этого является обмен участками между гомологичными хромосомами, или кроссинговер.
   В профазе 1 мейоза гомологичные хромосомы, состоящие каждая их двух хроматид, соединяются и образуют тетрады (четыре хроматиды). Затем одна из хроматид может совместиться с другой под углом и они могут обменяться своими частями между собой. Обмен частями гомологичных хромосом в процессе кроссинговера приводит к образованию новых хромосом в гаметах, которые по генному составу отличаются от родительских хромосом исходной гомологичной пары.
   Хромосомы, не претерпевшие кроссинговера, называются некроссинговерными, в противном случае – кроссинговерными. Аналогичное название имеют особи, получившие некроссоверные и кроссоверные хромосомы. Некроссоверных организмов образуется значительно больше, чем кроссоверных. Максимально возможное число рекомбинаций (перестройка генов в гомологичных хромосомах с помошью кроссинговера) составляет 50 %. Это означает, что кроссинговер происходит только между двумя хроматидами одной пары. Оставшиеся две хроматиды попадают в половые клетки неизменными.
   Гены, приводящие к нарушениям в развитии, снижению продуктивности, воспроизводительной функции и гибели животных, называют вредными.
   Гены, вызывающие гибель плода во время беременности или же при рождении, называют летальны, гены, вызвавшие гибель особи после рождения, полулетальными.
   Вредные гены являются результатом генных или точковых мутаций, которые возникают при изменении структуры ДНК на участке, соответствующем одному гену. Изменение гена может произойти вследствие замены, вставки, утери азотистых оснований, переноса их внутри гена на новое место. Подобные изменения гена приводят к нарушению аминокислотного состава синтезирующихся белковых молекул, что находит свое отражение в развитии и функционировании организма животных.
   Вредные гены могут быть доминантными и рецессивными. Большая часть их рецессивные.
   Каждая особь – носитель определенного числа вредных генов. Так, результаты подсчета показали, что в настоящее время каждое животное является носителем от одного до восьми рецессивных генов, но эта величина может быть и больше. Испытание по потомству шести случайным образом отобранных хряков показало, что каждый из них – носитель от одного до четырех вредных рецессивных генов.
   Вредные гены могут мигрировать из одного стада в другое, из одной страны в другую. Это происходит при искусственном осеменении, ввозе и вывозе животных.
   Профилактика распространения вредных генов в популяции является наиболее актуальной проблемой.
   По типу наследования вредные гены можно подразделить на аутосомные доминантные, рецессивные, доминантные с рецессивным действием и сцепленные с полом.
   Аутосомные доминантные вредные гены локализованы на аутосомах и оказывают свое действие как в гетерозиготном, так и в гомозиготном состоянии. Они обнаруживаются очень редко, так как носитель такого гена обычно погибает или выбраковывается. В связи с этим возможность передачи потомству таких генов исключается.
   Аутосомные доминантные вредные гены с рецессивным действием вызывают у гетерозигот различные отклонения в развитии, а у гомозигот – летальный исход.
   К аутосомным вредным генам с рецессивным действием относятся те гены, которые в гетерозиготном состоянии не проявляются в фенотипе. Носители таких генов фенотипически не отличаются от нормальных животных. Действие рецессивных вредных генов проявляется лишь в гомозиготном состоянии.
   К группе вредных генов, сцепленных с полом, относятся те, которые расположены на половых хромосомах. Они могут быть доминантными и рецессивными. Вредные гены, расположенные на Y-хромосоме, проявляют свое действие только у представителей мужского пола млекопитающих, а у птиц – женского.
   Действие вредных генов может проявиться на любой стадии индивидуального развития организма. Наиболее часто отход молодняка сельскохозяйственных животных вследствие действия вредных генов происходит до рождения или в течение нескольких первых часов после рождения. Действие вредных генов проявляется в самых различных формах – в появлении уродств, снижении воспроизводительных функций, продуктивности, жизнеспособности животных.
   К настоящему времени у сельскохозяйственных животных каждого вида установлено по нескольку десятков генетически обусловленных аномалий, являющихся результатом действия вредных генов. Большая часть из них наследуется по простому аутосомному рецессивному типу. Находясь в гетерозиготном состоянии, рецессивные вредные гены не проявляют своего действия, а поэтому могут быстро распространяться в популяции. При скрещивании двух гетерозигот – носителей вредных рецессивных генов – они переходят в гомозиготное состояние и оказывают неблагоприятное влияние на развивающийся организм. Чаще всего это происходит при родственном спаривании, поскольку животные, находящиеся в родстве, с большей вероятностью могут являться носителями одних и тех же вредных генов, чем неродственные.
Отбор и подбор в животноводстве
   При разведении сельскохозяйственных животных человек стремится получить от них разнообразную продукцию высокого качества при наименьших затратах труда и средств. Это возможно лишь в том случае, если непрерывно вести племенную работу. К ней относится: творческий отбор, сохранение и максимальное использование наиболее ценных животных и выбраковка худших, непригодных для дальнейшего использования;
   подбор животных для спаривания; правильный выбор методов и техники их разведения; создание для животных наилучших условий кормления и содержания во все периоды их жизни.
   В работе по улучшению породных и продуктивных качеств животных важная роль принадлежит отбору и подбору мужских и женских особей.
   Отбор – это первая фаза работы по совершенствованию сельскохозяйственных животных. Под ней понимают естественный или искусственный отбор лучших самок и самцов для хозяйственного использования и в воспроизводстве следующего поколения. Подбор – вторая фаза селекции. Он представляет собой наиболее целесообразное составление из отобранных животных родительских пар с целью получения от них потомства с желательными качествами.
   Отбор и подбор животных необходимо проводить в любом хозяйстве. Оба эти приема дополняют друг друга в процессе совершенствования существующих пород, и они наиболее эффективны, если их проводить одновременно.
   Отбор осуществляют на нескольких этапах жизни животного. В ранний период жизни животных оценивают и отбирают по породности и происхождению, росту и развитию, а затем – по конституции и экстерьеру, продуктивности, качеству потомства. Отбор маточного поголовья для комплектования стада всегда начинают с анализа родословной.
   При этом учитывают, что наибольшее влияние на продуктивность и племенную ценность животного оказывают родители (50–60 % от общего влияния предков), а затем деды и бабки (25–40 %). При отборе маток по происхождению предпочтение отдают животным с более высокой продуктивностью предков в первых двух поколениях. При отборе по происхождению оценку по родословной дополняют оценкой по боковым родственникам животного – сестрам, полусестрам, братьям и полубратьям.
   Отбор животных по происхождению считается предварительным. Окончательную оценку животному дают после выявления его продуктивных и других свойств, а также проверки по качеству потомства.
   Отбор по продуктивности имеет решающее значение при определении комплексной оценки маток и их
   племенного назначения, так как продуктивность – главное качество сельскохозяйственных животных.
   Отбор свиней по продуктивности осуществляют в основном по плодовитости, величине помета, а также по скороспелости, способности к откорму, качеству мясных туш.
   Совершенствование пород сельскохозяйственных животных можно ускорить, если отбор сопровождать подбором, т. е. спариванием определенных животных с целью воспроизводства следующего поколения с желательными качествами. С помощью целенаправленного подбора обеспечивается непрерывное совершенствование стада и породы путем накопления и закрепления ценных наследственных качеств животных в каждом последующем поколении. Однако высокая эффективность подбора достигается только путем глубокого и всестороннего анализа особенностей отдельных животных, стад и породы в целом, а также результативности племенного подбора прошлых лет. Бесцельные спаривания животных, как правило, успеха не приносят.
   Подбор может быть индивидуальным и групповым. Индивидуальный подбор заключается в том, что при решении вопроса о закреплении производителя за той или иной маткой наиболее полно учитывают индивидуальные качества спариваемых животных: продуктивность, конституцию, особенности экстерьера, происхождение, сочетаемость особенностей самки с качествами производителя. Обычно индивидуальный подбор используют в племенных хозяйствах для создания линий определенного производителя.
   Подбор называют групповым, когда к группе маток, относительно сходных по продуктивным качествам, телосложению или другим особенностям, подбирают одного или двух производителей определенного качества.
   Основное правило подбора – спаривание однородных по желательному признаку животных (гомогенный подбор). Гомогенный подбор применяют для закрепления и усиления в потомстве наиболее желательных качеств, а также для повышения в каждом последующем поколении однородности животных. Необходимость гомогенного, или однородного, подбора формируется как заводское правило «Хорошее с хорошим дает лучшее». Поэтому его применяют в племенных стадах, где ведут углубленную племенную работу.
   В ряде случаев невозможно и нецелесообразно подобрать к стаду самок сходного с ними производителя. К таким маткам подбирают самца лучшего качества, т. е. подбор уже будет не гомогенным (однородным), а гетерогенным (разнородным). При этом спаривании животные имеют существенные различия по продуктивности, качествам, особенностям конституции и экстерьеру, породности и происхождению и т. п.
   Гетерогенный подбор позволяет получать потомство с улучшенными качествами и обладающими обогащенной наследственностью, а также повышенной жизнеспособностью.
   При отборе и подборе необходимо обращать внимание и на воспроизводительную способность животных. Поэтому производителей дополнительно исследуют на половую активность, качество спермопродукиии и оплодотворяющую способность.

Оценка и отбор свиней по экстерьеру и конституции

   Внешний вид, наружные формы животного в целом называют экстерьером. При экстерьерной оценке у животных определяют особенности строения отдельных частей тела животного и оценивают телосложение его в целом. Отдельные части тела животного называют статями. К наиболее важным статям относятся: голова, шея, грудь, холка, спина, поясница, круп, вымя, конечности, половые органы, развитие кожи, мускулатуры, костяка.
   Экстерьер мясных свиней. Свиньи мясного типа имеют среднюю по длине голову, слегка вогнутый профиль, развитые ганаши, небольшие уши. Шея средней длины, хорошо развитая, туловище удлиненное, плоское с умеренно развитыми окороками. Спина и поясница прямые, длинные, широкие. Окорока умеренно развиты.
 
   Экстерьер сальных свиней. Животные отличаются общей округлостью, бочкообразностью туловища. Обхват груди за лопатками равен длине туловиша. Грудь глубокая и широкая. Шея короткая, широкая. Окорока большие, мясистые, голова небольшая с тяжелыми ганашами.
   Экстерьер мясосальных свиней. Свиньи мясосального типа имеют пропорциональное телосложение, сравнительно длинное, глубокое и широкое туловище. Голова средней длины, широкая в ганашах. Окорока округлые, мясистые.