Для общества, переживающего переход от присваивающей системы хозяйствования к производящей, очень важно было предвидеть изменения год от года:
   1) погодно-климатической ситуации;
   2) ближайших перспектив важнейших промыслов (улов рыбы, добыча зверя, урожайность дикорастущих и возделываемых сельскохозяйственных культур);
   3) демографического положения (в своей общине и у ближайших соседей);
   4) риска наступления особо неблагоприятных интервалов времени (эпидемии, локальные социальные кризисы, отдельные катастрофические события типа наводнений и т. п.). Основной принцип прогноза можно пояснить на при
   мере прогноза погодно-климатических изменений, к которым хозяйственная деятельность наших предков была много более чувствительна, чем наша.
   Погода, климат и солнечная активность. Надо сразу же отметить, что прогноз погодных изменений в те далекие времена осуществлялся, вероятно, большим набором примет, использующих разнообразные признаки-геофизические, поведение животных и т. п. "Космические" признаки были, вероятно, только частью их полного набора. Древние наверняка хорошо знали об одной важной особенности погодно-климатических изменений в данном районе-тенденции к более или менее устойчивой повторяемости похожих (аналогичных) ситуаций. Эта повторяемость имеет довольно сложную временную структуру - существует набор циклов, характерный для определенной географической области. Такая регулярность возникает в связи с влиянием на климат (погоду) солнечной активности. Это решительное безоговорочное суждение способно покоробить читателя, слышавшего нечто Ь дискуссиях по проблеме "солнечная активность - погода и климат". Действительно, дебаты о реальности корреляционных связей между индексами солнечной активности и погодно-климатическими параметрами длятся уже столетие. В литературе по этой проблеме можно встретить немало противоречий и взаимно исключающих друг друга суждений. Характер солнечно-атмосферных связей оказывается довольно сложным. Основной 11-Летний цикл солнечной активности плохо выражен в рядах метеорологических наблюдений. Сами эти ряды довольно короткие. Влияние эффектов солнечной активности на атмосферную циркуляцию, как выяснилось, существенно зависит от сезона и географического региона. В общем, эти и некоторые другие причины не позволили пока выявить всей совокупности основных закономерностей, некоторые из которых, похоже, ускользают от узко специализированного подхода, характерного для нашей современной науки. Самое же главное-даже то, что эмпидически надежно установлено, не имеет пока теоретического обоснования. Надо признать, мы не понимаем пока механизмов воздействия солнечной активности на атмосферные процессы. Некоторые специалисты даже полагают, что такое понимание будет достигнуто не скоро. Для нашего изложения вопрос о создании теории не
   столь важен. Гораздо важнее то, что сам факт связи "солнечная активность- погодно-климатические изменения" сейчас все-таки можно считать надежно установленным, Ограничимся несколькими примерами. Найдено, что для западных районов США засухи-с начала XVIII века и до наших дней-появляются регулярно с циклом около 22 лет. Несомненно, что эта ритмика связана с известным 22-летним циклам солнечной активности (состоит из двух 11-летних циклов). Этот результат получен из тщательного анализа данных по изменениям толщины колец деревьев (регистрирующей структуры, прочитанной впервые профессором Одесского университета Ф. Н. Шведовым еще в прошлом веке). Аналогичная тенденция в появлении крупных засух существует и для определенных областей нашей страны, что было обнаружено советской исследовательницей Т. В. Покровской с использованием метеорологических данных. Не вызывает теперь споров связь солнечной активности с частотой следования гроз. Для территории Англии, в частности, грозы происходят заметно чаще в эпоху максимума солнечной активности (в этих данных отчетливо виден 11-летний цикл).
   Пожалуй, самые убедительные результаты были получены при изучении реакции атмосферы на отдельнце проявления солнечной активности. Известный советский астроном Э. Р. Мустель и его сотрудники обнаружили, что при изолированных геомагнитных бурях атмосферное давление одновременно меняется на огромных территориях, причем для одних областей оно уменьшается, а для других, наоборот, закономерно возрастает. Эти изменения, очень небольшие по абсолютной величине, особенно резко выражены зимой.
   Мы уже говорили в начале брошюры, что магнитосфера Земли испытывает перестройку, ко^да наша планета переходит из одного сектора межпланетного пространства (где межпланетное магнитное поле направлено, скажем, от Солнца) в другой (где это магнитное поле имеет другой знак). Перестройка отражается и на нижней атмосфере и сопровождается, как выяснилось, метеорологическими эффектами. Это замечательное открытие было сделано в 1967 г. советским геофизиком Р. В. Смирновым и подтверждено теперь многими другими исследователями с использованием самых разных показателей. Haj^eno, например, что суммарная пло
   щадь участков с большой циклонической завихренностью в данном полушарии заметно уменьшается на другой день после прохождения секторной границы. Показано, что для средних широт спустя 1-2 дня после прохождения границы заметно изменяется величина электрического поля Земли и тогда же возрастает вероятность регистрации грозы. Если перечисленные эффекты реальны, мы вправе ожидать-для определенного диапазона географических широт-некоторой регулярности в погодных изменениях в пределах синодического лунного месяца: как уже отмечалось, лунные фазы в вероятностном смысле сопряжены с пересечением Землей секторных границ межпланетного магнитного поля. Эта корреляционная связь должна восприниматься как "влияние Луны на погоду". Из-за того что период вращения секторной структуры не всегда равен синодическому месяцу, эта связь не может быть устойчивой. Указанное обстоятельство, возможно, является одной из причин противоречивых суждений, характерных для обильной литературы о связи погоды с фазами Луны.
   Имеются, впрочем, факты, принадлежащие к разряду надежно установленных. Например, для северной части Американского континента, согласно полувековым данным, максимумы числа дождливых дней приходятся на 3-й - 6-й день после новолуния и полнолуния. По другую сторону экватора (Южная Америка) распределение вполне аналогично, но сдвинуто относительно первого на 2-3 дня. Эффект довольно слабый (<10%), откуда тем не менее вовсе не следует, что связь с фазами Луны пренебрежимо мала. Ведь метеорологические следствия пересечения секторных границ, как отмечалось, отчетливо проявляются в определенных географических областях. Поэтому широкое пространственное и временные усреднение данных может нивелировать эффект, и в каком-то районе он, возможно, оказывается Значительным. Во всяком случае, для Европы распределение дней с осадками иное, нежели для Америки.
   Ясно, что рассматриваемая связь является достаточно сложйой, и причин тому много. Своими фазами Луна не только отмечает смену секторов и "маркирует" изменения коротковолнового солнечного излучения с циклами порядка месяца. Своим гравитационным действием она вызывает в океанах и атмосфере приливы, что в определенных ситуациях сказывается в самом нижнем
   "этаже" атмосферы (приливы имеют, между прочим, долгопериодические гармоники: суммарная амплитуд? океанских приливов варьирует с периодами 8,9 лет, 18,6 лет и др.). В общем, Луна, несомненно, может использоваться как "предсказатель" погоды. Соответствующие "правила" прогноза довольно сложны, изменяются от места к месту и нам сейчас неизвестны. Вполне вероятно, что древним астрономам эти "правила" были хорошо знакомы. В клинописных текстах древнего Вавилона есть прямые указания на это.
   Но вернемся к повторяемости погодно-климатических ситуаций, сопряженных с циклическими вариациями солнечной активности. Для предсказания изменений погоды-климата на основе такой закономерности, казалось бы, необходим прогноз солнечной активности. Но он может быть осуществлен с использованием еще одной корреляционной связи-зависимости уровня солнечной активности от конфигураций планет. О солнечной активности по взаимному расположению планет можно судить точнее и надежнее, нежели о времени прохождения секторных границ по лунным фазам. И здесь нам придется сказать несколько слов об одной дискуссионной и малоизученной проблеме физики Солнца.
   Вариации солнечной активности и динамика планет солнечной системы. Изучение вариаций солнечной активности, которое проводится с применением строго научных методов на протяжении более ста лет, постепенно выявило очень сложный многопериодный характер этих вариаций. Было найдено, в частности, что среди вариаций присутствуют сидерические (отсчитываемые относительно звезд) периоды обращения планет вокруг Солнца: Меркурия, Венеры, Земли, Марса и Юпитера. Этот факт послужил основанием для выдвижения гипотезы о том, что солнечная активность непосредственно зависит от динамических воздействий планет на Солнце (прежде всего таких, как приливы). В специальной литературе обсуждались различные варианты этой гипотезы. Сейчас мнение большинства исследователей таково, что сами эти динамические воздействия не могут быть причиной всего комплекса явлений солнечной активности. Последняя обусловлена процессами, протекающими на самом Солнце. Тем не менее существование планетных эффектов в солнечной активности следует считать доказанным. С этим утверждением не все согла
   сятся, поскольку оно не получило пока общепринятого теоретического истолкования. Присутствие планетных эффектов в солнечной активности, однако, можно понять, например, на основе гипотезы, высказанной советским физиком В, П. Козеловым*. Суть этой гипотезы, базирующейся на представлении о планетной системе как нелинейной колебательной системе, состоит в допущении вовлечения Солнца ^конечно, тоже колебательной системы) в общий синхронный колебательный режим. Такая точка зрения не рассматривает слабые гравитационные воздействия со стороны планет на Солнце как причину его циклической активности. Эти воздействия просто поддерживают стабильность колебательного синхронного режима, возникшего в результате длительной эволюции. Цикличность солнечной активности согласно гипотезе определяется колебательной структурой всей Солнечной системы.
   Пока ведутся дискуссии о возможных механизмах планетных влияний на солнечную активность, некоторые исследователи разрабатывают методы прогноза этой самой активности, основываясь на чисто наблюдательных закономерностях. Своеобразную методику прогноза разработал, например, киевский астроном П. Р. Романчук. Выяснилось, что ошибки в предсказании наступления времени минимума и максимума активности, в величине сглаженного значения, индекса на момент максимума, у этой методики во всяком случае не больше, чем для традиционных методов. Здесь, разумеется, было бы неуместно излагать техническую сторону прогноза. Хотелось бы заострить внимание читателя на ее основной руководящей идее, использующей "правила" типа: "Максимум солнечной активности наступает в среднем спустя два года после квадратуры Юпитера и Сатурна" (квадратура - конфигурация, при которой планеты видны от Солнца под прямым углом). Ясно, что наблюдатели на каком-нибудь Стоунхендже или Карнаке вполне могли открыть такие "правила", но использовать их для предсказания не солнечной активности, а непосредственно ее земных проявлений-эпидемий, засух, налетов
   саранчи, особенно высоких урожаев или выдающихс;: по удаче охотничьих сезонов,
   Между прочим, такие "прямые" сопоставления-минуя показатели солнечной активности-некоторых геофизических явлений с конфигурациями планет неоднократно проводились и в наше время. Они неизменно давали обескураживающе четкие результаты-к немалому удивлению и смущению авторов этих исследованиЧ. Так, Э. К. Бигг (Австралия) нашел, что большие магнитные бури на протяжении интервала 1874-1954 гг. почти никогда не регистрировались, если Венера и Меркурий находились в нижнем соединении. Возникли даже теоретические построения, описывающие "прямое" воздействие планет на ионосферу или магнитосферу.
   Итак, теперь можно сформулировать схему, которая, по убеждению авторов, широко использовалась древними астрономами для прогноза: из рассмотренной выше триады корреляционных связей-конфигурации планет-солнечная активность-земные проявления солнечной активности-они исключали солнечную активность (о которой, разумеется, ничего не было известно). Использовалась "сокращенная" цепь корреляционных связей, так что конфигурации планет непосредственно сопоставлялись с эффектами солнечной активности в среде обитания. Такой подход по своей сути ничем не отличается от современных исследований влияния солнечной активности на погодно-климатические изменения или биологические процессы (так называемая гелиобиология), только в качестве индексов солнечной активности используется некоторый очень общий показательпланетные конфигурации. Если вновь вернуться к долгосрочному прогнозу погоды, то можно заметить, например, что для Европы один из важных циклов повторяемости погодных ситуаций -составляет около 2,2 года. Это очень близко к периоду соединений Юпитера и Марса. Проводя систематические наблюдения за их взаимным расположением, можно было отметить, какой именно конфигурации этих планет сопутствует благоприятная погода в данной местности. Когда такая конфигурация повторялась, в данном регионе и следовало ожидать хорошей погоды. Для учета других ритмов повторяемости есть "свои" планетные конфигурации. Так, для учета цикла 4,2 года хорошо "подходит" период парных соединений Юпитера, Земли, Марса и Венеры.
   Самые древние из известных сейчас астрономических текстов -. вавилонские клинописные таблички - содержат обильную информацию именно такого рода:
   "В месяц абд на 6-й день Нин-дар-анна (Венера) появляется на востоке; на небесах будут дожди, на земле - опустошения..."
   "На 11-й день дузу Нин-дар-анна вспыхивает на западе. В стране будут военные действия; урожай будет богатый".
   Табличка с этим текстом, хранящаяся теперь в Британском музее, была найдена в библиотеке Ашшурбанипала и представляет собой копию, специально снятую с более ранней записи. Вавилонские астрономы, работавшие в храмах под контролем и руководством жрецов, располагали, видимо, длинными рядами наблюдений и могли в принципе выявить прогностические правила с одновременным учетом нескольких важнейших гармоник повторяемости погоды в их географической области. Связь погоды с движением планет не представлялась им странной или парадоксальной, как это кажется нам (располагая сведениями о природе планет, мы как будто "знаем", что такого "не может быть"...). Они гристально наблюдали за светящимися олицетворениями своих божеств и сопоставляли их движения с земными делами. То, что было необходимо обществу, отвечало его требованиям, понималось как воля Неба и строго закреплялось в образах. В рамках их эмпирической гносеологической системы больше ничего не требовалось.
   Мы теперь продолжим рассмотрение тех явлений, которые было желательно (или необходимо) предвидеть.
   Солнечная активность и биологические процессы. Если солнечная активность влияет на климат и погоду, то нет ничего удивительного, что важнейшие циклы солнечной активности просматриваются в показателях урожайности. Эта корреляционная связь в европейской науке нового времени была впервые подмечена знаменитым английским астрономом В. Гершелем (1738-1822). Из сопоставления очень короткого ряда наблюдений над солнечными пятнами и ценами на товарное зерно он ?аключил, что Солнце как-то влияет на погодно-климатические условия и тем самым на урожайность. Его коллеги без малого двести лет спустя действительно нашли, что мировое производство пшеницы, выражаясь современным научным языком, модулировано солнечной ак
   тивностью с уже упомянутыми периодами II лет и 22 года. Амплитуда этой модуляции совсем не пустяковая: от 10% до 50%, в зависимости от технической оснащенности сельского хозяйства данной страны: При этом установлена такая закономерность: в северном полушарик наибольшая урожайность приходится на годы максимума солнечной активности, в южном полушарии-наоборот, наиболее обильные урожаи собирают, как правило, в эпоху минимума. На эту глобальную закономерность накладываются, как уже говорилось, местные особенности: в некоторых областях указанная регулярность плохо выражена, неустойчива, зато в других-с какимито различиями, обусловленными своеобразием ландшафта,-она часто проявляется длительное время.
   Реальный урожай (в закромах) зависит, понятно, и от ряда других факторов. Таких, например, как массовые болезни сельскохозяйственных культур или вспышки размножения насекомых-вредителей. Очень важно напомнить, что многие эти факторы также имеют ритмику, синхронизированную с солнечной цикличностью. Синхронизация биологических процессов такого рода с вариациями солнечной активности возникает не из-за погодных изменений, а обязана своим происхождением непостоянству совсем другого экологического параметра-электромагнитных фоновых полей. До самого последнего времени этот фактор в эволюции не учитывался, да и сейчас его важное значение недооценивается. Нелишне поэтому коротко рассказать о нем.
   Всегда и всюду существующий фон электромагнитных полей в нашей среде обитания возникает благодаря многим, притом самым разным процессам. На низких (ниже 10* Гц) и сверхнизких (ниже 10" Гц) частотах, где напряженность полей достигает довольно значительных величин, электромагнитное излучение генерируется в верхней атмосфере-магнитосфере. Спектр представляет собой шумы с набором дискретных "линий". Напряженность поля растет с увеличением географической широты, изменяется от точки к точке в связи с изменением электрических характеристик подстилающей поверхности и сильно варьирует во времейи. Самое главное, что эти вариации - необычайно разнообразные и очень сложные-являются тонким индикатором процессов, протекающих в ближайшем космическом окружении Земли. А эти процессу контролируются явления
   ми на Солнце, солнечной активностью (ведь орбита Земли располагается, строго говоря, в пределах самых внешних слоев солнечной атмосферы). Получается, что упомянутые вариации могут отражать вариации солнечной активности. Это и в самом деле так. Отдельные участки спектра электромагнитных полей на поверхности Земли могут быть индексами одновременно и корпускулярной и Жесткой волновой солнечной радиации. Например, микропульсации геомагнитного поля с частотой около 0,1 Гц, регистрируемые на средних широтах в дневное время почти непрерывно, изменением своей частоты все время "следят" за напряженностью межпланет.иого магнитного поля, а своей амплитудой-за скоростью солнечного ветра. Эти колебания генерируются, как полагают, на самой границе магнитосферы. Распространяясь к земной поверхности, они проникают через ноносферу, так что ионосферные возмущения также "травмируют" эти колебания. Но ионосфера - это "регистратор" интенсивности солнечного излучения-от рентгеновского до радиодиапазона.
   Все эти детали приведены здесь по той причине, что лабораторные эксперименты в последние десятилетия обнаружили очень высокую чувствительность организмов к сверхнизкочастотным магнитным и электрическим полям малой напряженности. Сейчас йе подлежит сомнению, что амплитудно-спектральные вариации низкочастотного электромагнитного фона приводят к биохимическим, физиологическим и т. п. изменениям в организмах-от бактерий до человека. Такие изменения, как правило, невелики (в пределах изменений, вызываемых любыми другими, обычными экологическими переменными). Их, однако, вполне достаточно, чтобы режим Колебаний в биологических системах (точнее, евтоколебаний) стал синхронным с циклическими вариациями электромагнитного фона, а следовательно-и солнечной активности. По своей физической сути это явление в принципе цичем не отличается от синхронизации колебаний на Солнце динамическими воздействиями со стороны планет, о которой уже говорилось *.
   Одна из наиболее широко известных колебательных моделей в экологии-периодические изменения численности двух видов животных, один из которых служит пищей для другого (модель "хищник-жертва" Лотка-Вольтерра). Колебания такого типа, конечно, тоже должны быть синхронизованы-через посредство тех же электромагнитных полей-с солнечной активностью. Действительно, как показывает статистика добычи пушных зверей в Канаде, на протяжении текущего столетия самые обильные по заготовке шкурок годы разделены промежутками около 10 лет и приходятся на определенные фазы цикла солнечной активности. Для разных видов эти фазы разные, что, разумеется, не является препятствием к применению рассматриваемого древнего прогностического правила. Если численность, скажем, зайца-беляка достигала максимума в годы минимума активности, правило могло бы быть сформулировано так: "Самый удачный год в добыче зайца должен наступить за два года до квадратуры Юпитера и Сатурна"... Однотипные правила прогноза, конечно, могли быть найдены и для других видов промыслового зверя, а также для улова рыбы, поскольку для динамики численности некоторых видов рыб известны те же закономерности.
   В заключение этого раздела остановимся на возможности предсказания - с помощью того же алгоритма явлений, непосредственно касающихся здоровья человека, Сюда надлежит причислить и процессы, от которых зависит поддержание демографически устойчивого положения общины. Для общества, находящегося на самой грани выживания, предвидение (а значит, и контроль над всеми этими процессами) было не менее важно, чем продовольственная проблема.
   Прежде всего вспомним о приуроченности к максимумам солнечной активности наиболее крупных эпидемий, обнаруженной А. Л. Чижевским при анализе европейской статистики смертности от чумы и холеры. Механизм возникновения периодичности в данном случае аналогичен рассмотренному выше. Ясно, что наступление эпидемий было вполне доступно для астрономического прогноза. Такой прогноз, возможно, использовался и при организации контроля над воспроизводством общины. Сейчас известны статистические данные, указывающие на увеличение числа случаев осложнений при родах
   при возрастании уровня геомагнитной возмущенности (степень выраженности такого явления усиливается с приближением к высоким широтам). Здесь мы сталкираемся, видимо, не с биологическим ритмом, а с прямым модифицирующим и повреждающим воздействием электромагнитных возмущений. С точки зрения общебиологических закономерностей такого повреждающего воздействия следует ждать прежде всего в тех случаях, когда гриспособительные (адаптационные) механизмы биологической системы еще полностью не сформировались, т. е. на самом раннем этапе развития организма. Вот почему особого внимания заслуживают данные о влиянии всякого рода возмущений во внешней среде на организм человека в период его эмбрионального (внутриутробного) развития.
   Что касается электромагнитного фона, то лабораторные эксперименты дают в данном случае четкие однотипные результаты. Пожалуй, наиболее сильное впечатление оставляют данные опытов с изоляцией организма от его внешнего электромагнитного окружения. Оказывается, во всех тех случаях, когда электромагнитное экранирование было высокоэффективным, т. е. обеспечивало затухание колебаний на сверхнизких частотах, н когда подопытные организмы находились в пределах экранированного объема длительное время (включая период эмбрионального роста), в процессах развития неизменно отмечались значительные аномалии. В качестве иллюстрации можно сослаться на эксперименты В. П. Казначеева и Л. П. Михайловой, проводивших наблюдения на клеточных культурах и куриных эмбрионах. В их камерах магнитостатическое поле не превышало 0,1% от геомагнитного. Было найдено, что клеточные культуры в условиях экранирования относительно быстро погибали, а цыплята, вылупившиеся из инкубированных в экране яиц, в 30% случаев были не жизнеспособны *. Аномалии развития отмечались и в экспериментах, где на эмбрион действовали искусственным слабым сверхнизкочастотным полем, так что отклонения от привычного электромагнитного фона как в сторону его понижения, так и повышения для развития организма нежелательны.