Смазка двигателя осуществлялась при помощи разбрызгивания. Черпачки на нижних головках шатунов взбалтывали масло в картере и смазывали им цилиндры и подшипники.
   Для распыления бензина применялись хитроумные приспособления, такие как карбюратор Маркуса. Его работа напоминала процесс стряхивания краски со щетки. А во взбалтывающем карбюраторе Бенца воздух проходил через бензин в баке. По мере расходования бензина смесь становилась беднее.
   В конце концов остановились на карбюраторе, работавшем по принципу пульверизатора. Пульверизационный карбюратор Бенца и Майбаха состоял из поплавковой и смесительной камер. В поплавковой камере автоматически поддерживался постоянный уровнень топлива. Благодаря разрежению бензин выходил из жиклера смесительной камеры распыленной струей. Схожая конструкция применяется и до сих пор.
   Большие сложности были с зажиганием. На первом автомобиле Бенца были установлено ленуаровское зажигание, и он работал на ровной дороге в сухую погоду с запасом сухих элементов. Динамо-машина при малых оборотах не работала, поэтому для запуска двигателя было необходимо сильно раскрутить вал или разогнать автомобиль. Кислотный аккумулятор был тяжелым, заряд был малым.
   До конца XIX в. на «Даймлерах» устанавливались платиновые калильные трубки, несмотря на их дороговизну и пожароопасность. Позже Даймлер применил на своих автомобилях магнитоэлектрическую машину инженера Боша. Она вырабатывала ток благодаря движению якоря в электрическом поле между полюсами магнита. В момент наибольшей силы тока электрическую цепь разрывала тяга, соединенная с якорем. Разрыв происходил в камере сгорания, вызывая искру, воспламенявшую смесь. Машину Боша назвали «магнето высокого напряжения».
   Пуск двигателя имел не меньшее значение, чем зажигание. Вращая рукоятку, нужно было преодолевать давление в цилиндрах двигателя. Обратные удары рукоятки травмировали руки водителей. Конструкторы принимали меры к тому, чтобы заменить рукоятку более удобным устройством. Простым и надежным оказался электромотор с шестеренкой, сцепляемой в нужный момент с зубчатым венцом на маховике двигателя. Маховик начинал вращаться и запускал двигатель. Стартер изобрел американский конструктор Ч. Кеттеринг.
   Особую роль в развитии двигателей внутреннего сгорания сыграл немецкий инженер Рудольф Дизель. В 1892 г. он получил патент на двигатель нового типа, общие принципы работы которого изложил в брошюре «Теория и конструкция рационального теплового двигателя», вышедшей в 1893 году.
   Предложение Дизеля сводилось к осуществлению в полости двигателя высокого сжатия воздуха с целью повышения его температуры выше температуры воспламенения горючего. Поданное в полость двигателя в конце хода сжатия горючее воспламенялось от нагретого воздуха и нагнетаемое постепенно, осуществляло процесс подвода тепла без изменения температуры в соответствии с циклом Карно. Произведя тепловой расчет своего двигателя мощностью 100 л. с., Дизель получил в конце сжатия температуру 1 073 °C, давление 250 атм и КПД, равный 0,73.
   Предлагая свой рациональный двигатель, Дизель считал, что широкое распространение его «будет противодействовать развитию централей», что мелкая промышленность будет размещаться вне больших городов, не будет «…централизованной в городах без света, без воздуха и без достаточного пространства…». Работа Дизеля получила широкий отклик среди ученых-теплотехников. Многие отрицательно высказывались об идее Дизеля. Но наряду с отрицательными отзывами имелось и восторженные, принадлежавших весьма авторитетным ученым, среди которых были К. Линде, Г. А. Цейнер и М. Шредер.
   Положительные отзывы о работе Дизеля помогли ему заинтересовать два крупных предприятия: фирму Круппа и Общество аугсбургских машиностроительных заводов. В 1893 г. были подписаны договоры, по которым фирма Круппа брала на себя финансирование разработки нового двигателя; Аугсбургский завод предоставлял помещение и оборудование в одном из своих цехов.
   Первый двигатель, отличавшийся рядом необычных свойств, был готов летом 1893 г. Он должен был работать на угольной пыли, вводимой в полость двигателя насосом в конце хода сжатия, когда давление в полости достигало 90 атм, а температура – 800 °C. Охлаждение двигателя отсутствовало, так как предполагалось, что горение не вызовет большого повышения температуры, а эффективность цикла будет настолько велика, что лишнее тепло будет успешно эвакуироваться из полости двигателя с выхлопными газами. Двигатель был запущен от трансмиссии и взорвался, чуть не покалечив изобретателя. В этом же месяце был готов второй двигатель. Дизель, учтя неудачу с первым опытным образцом, отказался от угольной пыли и применил водяное охлаждение. В этом двигателе удавалось получить лишь одну вспышки при впрыскивании бензина. В августе испытанию подвергся третий опытный двигатель, который уже делал несколько оборотов на холостом ходу. Испытания показали несовпадение результатов с предварительными расчетами Дизеля.
   Дизель с исключительным остроумием вышел из казалось бы безвыходного положения. В ноябре 1893 г. он получил новый патент (являющийся дополнением к основному патенту), который предусматривал метод регулирования мощности двигателя «…путем видоизменения характера кривой процесса сгорания…». При этом, несмотря на снижение давления в конце сжатия с 90 до 35–40 атм, в связи с чем температура в конце сжатия достигала величины 600 °C вместо 900 °C, в конце сгорания температура повышалась до 1500 °C. Это потребовало интенсивного охлаждения стенок цилиндра.
   Упорные работы над усовершенствованием нового двигателя продолжались. Двигатель 1894 г. работал только на холостом ходу. Двигатель 1895 г. с распыливанием керосина от компрессора и хорошим водяным охлаждением был первым опытным двигателем, способным работать с небольшой нагрузкой. Только в 1896 г. испытание нового опытного образца принесло успех. Но в этом образце двигателя был сделан ряд отступлений от принципов, изложенных в брошюре Дизеля в 1893 г.: вместо угольной пыли – керосин, вместо насоса – компрессор, сжатие вместо 35 атм – 90 атм, вместо полного отсутствия охлаждения – интенсивное водяное охлаждение. Испытание опытного образца 1896 г. было проведено в начале 1897 г. М. Шредером и показало, что КПД двигателя не достиг расчетной величины: индикаторный КПД оказался равным 33,4 %, что при сравнительно низком механическом КПД (75,0 %) давало экономический КПД 25,0 %.
   В то время КПД лучших газовых двигателей достигали 24,0 %, но они были связаны с источником газа (газогенератор, домна) и не могли работать на транспортных установках. КПД калоризаторных двигателей низкого сжатия не превышал 16,0 %.
   После демонстрации на Парижской выставке 1900 г. двигателя Дизеля, усовершенствованного Аугсбургским заводом и получившего впоследствии название «дизель», ряд заводов приступили к «дизелестроению». Вначале дизели получили распространение в силовых установках небольших заводов и фабрик, но тенденция капиталистической концентрации стала предъявлять требования к повышению их мощности. Завод Зульцера, сконструировав двухтактный двигатель в первом десятилетии XX в., довел его мощность до 2400 л. с. Кроме Германии, дизели стали строить в Англии, Дании, Австро-Венгрии.
   Сам Дизель вынужден был до конца своей жизни (1913 г.) защищать свои патентные права в ряде стран, так как горение при постоянном давлении (правда, без высокого сжатия), к которому он постепенно пришел, было запатентовано рядом авторов в разных странах.
   У дизеля есть существенные преимущества по сравнению с карбюраторным двигателем: он не нуждается в электрическом зажигании, может работать на более тяжелом и дешевом топливе. Расход топлива в дизеле в 1,5 раза меньше, чем у карбюраторного двигателя. Экономия достигается за счет более высокой степени сжатия.
   Недостатками дизеля является применение дорогого насоса и форсунок. Высокое давление топлива требовало повышения прочности, а следовательно, и массы конструкции. Тяжелые детали ограничивали частоту вращения вала дизеля. В холодную погоду завести дизель было сложно. Дизели оказались более шумными, чем карбюраторные двигатели.
   Все это ограничивало применение дизельных двигателей на легковых автомобилях. Но в конце 20-х – начале 30-х годов они устанавливались на автобусах и большегрузных автомобилях. Позже, во второй половине 30-х годов, в СССР был разработан быстроходный двигатель В-2, для средних танков Т-34 и тяжелых КВ и ИС.
   Конструкции карбюраторного и дизельного двигателей сложились еще в начале прошлого века и за это время не претерпели существенных изменений. Появившиеся в середине XX в. двигатели Ванкеля так и не смогли вытеснить их. Поэтому и в XXI век человечество въехало на автомобилях, приводимых в движение двигателями внутреннего сгорания.

Дирижабль

   Дирижабль – управляемый аэростат (воздушный шар), летательный аппарат легче воздуха, поддерживаемый подъемной силой газа.
   Первые попытки создания управляемых аэростатов появились вместе с самим аэростатом в XVIII веке. Они были основаны на аналогии плавания аэростата и воздушного судна. Для управления горизонтальным движением аэростата предлагалось использовать паруса, руль и весла. Все эти попытки постигла неудача.
   Впоследствии удалось достичь некоторых результатов в управлении аэростатами с помощью паруса. Для этого применялись специальные устройства, имитировавшие тормозящее влияние воды на надводные суда. Одно из таких устройств, гайдроп, представляло собой тяжелый канат длиной до двухсот метров. При спущенном гайдропе возникает дополнительное сопротивление вследствие трения каната о землю. Это снижало скорость аэростата относительно скорости ветра, и установленный на аэростате парус начинал раздуваться. Меняя положение паруса, можно было добиться некоторого изменения направления полета. Применять гайдроп можно было только при полете над ровной местностью, например над водой. При полете над лесом или населенными пунктами он мог зацепиться за препятствие и сыграть, что нежелательно, роль якоря.
   Вскоре после полета первого монгольфьера была предпринята попытка управления аэростатом при помощи реактивной струи сжатого воздуха, выходящего через отверстие в оболочке. Но изобретателей постигла неудача – аппарат сгорел во время наполнения газом. В 1801 году венский инженер Кайзерер предлагал использовать для передвижения аэростата дрессированных орлов.
   Огромное влияние на развитие управляемых аэростатов оказал проект французского военного инженера Менье. Он представил его на рассмотрение Французской академии наук в 1784 году. Менье предложил использовать вместо сферической формы оболочки форму удлиненного эллипсоида вращения. Это позволяло уменьшить сопротивление при движении. Для поддержания неизменяемости формы аэростата его оболочка делалась двойной. Во внутренней полости находился водород, а пространство между внутренней и внешней оболочками заполнялось воздухом. Эта воздушная полость получила название баллонета. Количество воздуха в баллонете зависит от изменения плотности водорода. При возрастании плотности в баллонет нагнетают дополнительный воздух, при уменьшении – излишек воздуха выпускают. Таким образом, форма остается неизменной. Гондола крепилась к специальному поясу, пришитому вокруг поверхности оболочки.
   В качестве движителя Менье предложил использовать винты, вращать которые должны были восемьдесят человек. Длина аэростата составляла восемьдесят метров, диаметр – сорок два. Постройка этого воздушного корабля так и не состоялась.
   Теоретические исследования и практический опыт, накопленный первопроходцами управляемого воздухоплавания, привели их к выводу: управляемость аэростата можно обеспечить, поместив источник энергии внутри аэростата.
   Паровой двигатель был изобретен практически одновременно с аэростатом. Но долгое время его удельная масса составляла около ста килограммов на одну лошадиную силу. Это делало невозможным применение на аэростате двигателя, обеспечивавшего аппарату скорость, превышавшую скорость ветра.
   В 1851 году французу А. Жиффару удалось построить паровой двигатель весом 45 килограммов и мощностью 3 лошадиные силы. Он предназначался для аэростата, созданного годом позже.
   Первый полет состоялся 23 сентября 1852 года. Жиффар поднялся на высоту 1800 метров и затем благополучно приземлился. Во время полета аэростат двигался перпендикулярно направлению ветра со скоростью 12 км/ч. Дату этого полета принято считать началом эры управляемого воздухоплавания, а сам аппарат – первым дирижаблем.
   Первые дирижабли были весьма беспомощными в полете. Даже слабый ветер становился для них серьезным препятствием. Отсутствие мощного двигателя, позволявшего развивать скорость, превышающую скорость встречного ветра, тормозило развитие дирижаблестроения.
   Главной особенностью дирижабля, сконструированного немецким инженером П. Генлейном, было использование газового двигателя системы Ленуара. Топливом был газ, наполнявший оболочку аэростата. Мощность двигателя – 6 л. с. При помощи винта дирижабль развивал скорость до 18,7 км/ч.
   В 1883 году французы, братья Тиссандье, построили аэростат, на котором установили электродвигатель мощностью 1,5 л. с. Максимальная скорость дирижабля составляла более 14 км/ч.
   В 1884 году французы Ренар и Кребс построили управляемый аэростат, который даже при наличии ветра мог совершать полет по замкнутому маршруту. Передняя часть его оболочки была утолщенной для уменьшения аэродинамического сопротивления. На нем был установлен электродвигатель мощностью 9 л. с. и весом 96 кг. Вес батарей – 400 кг. В передней части гондолы помещался двухлопастный винт диаметром 7 метров, а в задней – вертикальный руль поворота и горизонтальный руль высоты. При их помощи можно было изменять курс корабля. Его назвали «Франция». В первом полете – 9 августа 1884 года – дирижабль за 23 минуты пролетел 8 км. Это был первый по-настоящему управляемый воздушный корабль. Но его максимальная скорость – 21,6 км/ч была недостаточной для практического использования.
   В 1896 году на дирижабле «Германия» конструкции Вельферта впервые был установлен бензиновый двигатель. Во время первого же полета корабль взорвался. Несмотря на первую неудачу, в воздухоплавании все же стали применяться бензиновые двигатели.
   В 1897 году австриец Шварц построил в Германии первый цельнометаллический дирижабль. Его оболочка состояла из алюминиевых листов толщиной 0,2 мм, прикрепленных к жесткому каркасу из алюминиевых же профилей. Гондола тоже была из алюминия и жестко соединялась с оболочкой. В ней поместили бензиновый двигатель мощностью 12 л. с., вращавший четыре винта. Два из них находились по бокам гондолы и служили одновременно для поворотов и перемещения вперед, один размещался позади гондолы и должен был толкать аппарат вперед. Четвертый – подъемный с вертикальной осью – разместили под гондолой. Первый полет состоялся 3 ноября 1897 года. На высоте 250 м отказал двигатель. Пилоты выпустили избыточное количество газа, дирижабль начал быстро снижаться и при ударе о землю взорвался. Аэронавту удалось спастись. Дирижабль Шварца стал первым управляемым жестким аэростатом и прообразом будущих дирижаблей с жесткой системой.
   1900 год ознаменовался появлением первого аппарата конструкции Ф. Цеппелина. С его именем связано целое направление в развитии управляемого воздухоплавания. На Боденском озере в Германии Цеппелин построил гигантский эллинг. Он поддерживался на воде при помощи 80 понтонов. Именно там в 1900 году был построен первый «цеппелин». У него был алюминиевый каркас, разделенный шпангоутами на 17 отсеков. В каждом из них размещался баллон, наполненный водородом. Общий объем баллонов был около 11 300 м3. Длина оболочки составляла 128 м, диаметр – 11,6 м. Под ней размещалась балка длиной 56 м. В каждой находился бензиновый двигатель мощностью 16 л. с. Четыре винта попарно устанавливались по обеим сторонам оболочки. Управлялся дирижабль при помощи вертикальных рулей в носовой и кормовой частях корабля и горизонтального руля в кормовой части. Было сделано три полета с максимальной скоростью 29 км/ч.
   Этот дирижабль был самым крупным аэростатом к тому времени, что достигалось благодаря жесткому и упругому каркасу. Размещение подъемного газа в изолированных баллонах повышало надежность корабля А внешняя оболочка препятствовала утечке газа. Удачно были размещены винты, надежная конструкция клапанов и горизонтального руля. В дальнейшем эта конструкция была признана наиболее рациональной и перспективной.
   На рубеже XIX–XX веков дирижаблестроение вплотную подошло к практическому использованию управляемых аэростатов. Из-за отсутствия других видов воздушного транспорта дальнейшее их использование рассматривалась как одна из важнейших транспортных и оборонных задач. В начале XX века дирижаблестроение переживало период расцвета. Этому в значительной мере способствовали успехи в разработке бензиновых двигателей.
   В 1902 году под руководством инженера Жюлио был построен дирижабль «Лебоди». Мягкая оболочка снизу была укреплена жесткой платформой из стальных труб. В задней части платформы находился киль с рулем направления и горизонтальные поверхности для управления кораблем в вертикальной плоскости. В гондоле установлен бензиновый двигатель мощностью 40 л. с. С обеих сторон на ней крепились два двухлопастных винта, а в нижней части – пирамидальная конструкция из стальных труб для защиты винтов от удара о землю при спуске. Этот дирижабль преодолевал расстояние более 100 км при скорости до 40 км/ч. Он был первым воздушным кораблем, который можно было использовать в практических целях.
   Совершенствовались и аппараты мягкой системы. Во Франции был сконструирован «Клеман Баяр», установивший в 1909 году рекорд высоты для управляемых аэростатов – 1500 метров. Наиболее удачную конструкцию разработал немец Парсеваль. В оболочке размещались два баллонета, в которые при помощи вентилятора и шланга подавался воздух. Стабилизаторами служили две горизонтальные и одна вертикальная поверхности в хвостовой части корабля. Воздушный винт состоял из четырех прямоугольных прорезиненных кусков материи, во внешние части которых были вшиты грузы. В нерабочем состоянии мягкие лопасти свободно свисали, а при вращении распрямлялись под воздействием центробежной силы и принимали форму воздушного винта. Такой винт был легче обычного, удобнее при транспортировке и не представлял опасности для оболочки. В 1907 году этот дирижабль развил скорость 55,8 км/ч, совершив беспосадочный полет продолжительностью более 11 часов.
   В то же время к созданию нового корабля приступил и Цеппелин. При первом же полете дирижабль сильно повредился и был разобран. Неудача не остановила конструктора. Его следующая модель поражала своими размерами: длина – 128 метров, диаметр – 11,7 метров. Два двигателя мощностью 85 л. с. каждый приводили в движение четыре винта. Две подвешенные на рессорах гондолы соединялись коридором. Этот корабль побил мировой рекорд скорости и грузоподъемности. В 1910 году совершил первый полет новый дирижабль – «Германия», длиной 148 метров и диаметром 14 метров. Он был первым специально предназначенным для пассажирского сообщения.
   Лишь в 1907 году начались работы над дирижаблем для российской армии. Первым дирижаблем, построенным в России, стал «Учебный». Летом 1909 года был построен «Кречет», который уже мог конкурировать с лучшими зарубежными образцами. До войны были также построены «Голубь», «Альбатрос», «Сокол» и другие. В 1911 году в Киеве совершил первый полет дирижабль «Киев». К началу Первой мировой войны парк российских дирижаблей насчитывал 15 аппаратов – 7 отечественных и 8 зарубежных. Но к тому времени они уже успели устареть. В 1915 году начались испытания корабля «Гигант». В стране были в то время квалифицированные кадры конструкторов и воздухоплавателей.
   С началом Первой мировой войны выпуск дирижаблей в Германии и в других странах Европы возрос. Дирижабли военных лет представляли собой мощное средство воздушного сообщения, разведки и нападения. Только немецкие дирижабли совершили во время войны около 1000 боевых вылетов.
   Резко возросли и летные характеристики дирижаблей. Скорость выросла до 122 км/ч, высота подъема достигла 7650 метров. Максимальная продолжительность полета составляла 96 часов, полезная нагрузка – 51 000 кг. Лучшим самолетам того времени они уступали только в скорости. Значительно возросли надежность и безопасность полета дирижаблей.
   Во время войны всего было построено 416 дирижаблей. Опыт, накопленный за годы войны, позволил перейти к мирному использованию дирижаблей. В Германии были построены дирижабли «Бодензее» и «Норденштерн». Они предназначались для регулярных пассажирских перевозок. Это были комфортабельные корабли, развивавшие скорость до 130 км/ч.
   В 1927 году совершил первый полет дирижабль «Граф Цеппелин». По комфортабельности он не уступал океанским лайнерам. Пассажиры помещались в двухместных каютах, к их услугам были буфет, кухня, умывальные комнаты, даже почта. Дирижабль летал на трансатлантической трассе. За время своей работы «Граф Цеппелин» совершил 143 перелета и перевез 13 110 пассажиров, преодолев при этом расстояние около 1 700 000 км. Самой яркой страницей его истории стал кругосветный перелет по маршруту Фридрихсгафен – Токио – Лос-Анджелес – Лейкхерст (близ Нью-Йорка) – Фридрихсгафен. Он длился 20 суток (из них летное время – 12,5 суток). За это время корабль пролетел почти 35 000 км. Перелет показал, что жесткие дирижабли могут использоваться на линиях регулярного сообщения любого направления и протяженности.
   20-е годы прошлого века ознаменовались попытками достичь на дирижабле Северного полюса. В 1925 году известный норвежский полярный исследователь Руал Амундсен купил у итальянского правительства дирижабль, названный «Норвегия». 11 мая 1926 года «Норвегия», на которой кроме Амундсена был конструктор дирижабля Нобиле и еще 13 человек взлетел со Шпицбергена и 12 мая достиг Северного полюса. Два дня спустя он приземлился на Аляске.
   В 30-е годы в Великобритании и США создавались гигантские дирижабли для трансокеанских перелетов. На некоторых из них, например на «Акроне» и «Меконе», в качестве несущего газа использовался гелий. Гелий в четыре раза тяжелее водорода, но, в отличие от последнего, не воспламеняется. В марте 1936 года поднялся в воздух крупнейший в истории дирижабль «Гинденбург». Его длина была 250 м, а объем – 200 000 м3. Он совершил 21 перелет через Северную и 16 перелетов через Южную Атлантику. 6 мая 1937 года перед швартовкой в Лейкхерсте «Гинденбург» взорвался. При катастрофе погибло 35 из 97 человек, находившихся на борту. Значительно позже было установлено, что катастрофа была вызвана взрывом мины, установленной одним из членов экипажа. Эта и другие аварии дирижаблей привели к тому, что постепенно от использования дирижаблей отказались.
   Научно-технический уровень того времени не позволил дирижаблям раскрыть все свои достоинства. Кроме того, на первый план уже вышли самолеты. Дирижабли состязаться с самолетами не могли.
   В последние десятилетия наблюдается возрождение интереса к дирижаблям. Это вызвано, в частности, тем, что для современных самолетов требуются огромные дорогостоящие аэродромы, что они расходуют огромное количество топлива. Грузоподъемность самолетов ограничена. Отказ двигателей самолета приводит к катастрофе, в то время как на дирижаблях это не является неизбежным.
   Появление новых материалов позволяет значительно облегчить дирижабли. Производство безопасного, в пожарном отношении, гелия стало значительно дешевле. А применение современных двигателей и компьютеров существенно облегчит управление кораблем. Все это позволяет надеяться, что в ближайшем будущем полеты на новых дирижаблях станут удобными и безопасными.

Доменная печь. Чугун

   Доменная печь предназначена для выплавки железа из железной руды. На заключительной стадии процесса плавки железо соединяется с углеродом и превращается в чугун – сплав железа и углерода, содержащий от 2,14 до 6,67 % углерода.
   Примерно во втором тысячелетии до н. э. человек овладел искусством получения железа из руды. Сначала для этого использовались костры, позже – специальные плавильные ямы – сыродувные горны. В них помещались руда и древесный уголь. Необходимый для горения воздух первоначально подавался естественной тягой, а затем при помощи мехов. В результате получалось железо в виде тестообразной массы с включениями шлака и несгоревших остатков древесного угля. Из-за низкого содержания углерода сыродувное железо было мягким, изделия из него легко тупились, гнулись, оно не закаливалось.
   Постепенно процесс выплавки железа совершенствовался: улучшалась форма горнов, повышалась их мощность. Горны превратились в небольшие печи – домницы (от древнерусского дъметь – дуть). Развитие домниц привело к появлению небольших доменных печей. Часто вместо железа в доменных печах получали высокоуглеродистый сплав, не поддававшийся ковке из-за повышенной хрупкости. Его считали браком. В разных языках сохранились названия, свидетельствующие об отношении к чугуну. В Англии его называли «pig-iron» – свиное железо, русское название произошло от «чушка» – свинья.