Страница:
К 1959 году монтаж и наладка машины в Институте вычислительной техники АН КНР, которыми руководил В. А. Мельников, в основном закончились. В апреле 1959 года из Пекина отбыл последний представитель ИТМ и ВТ А. С. Федоров — отношения между СССР и Китаем стремительно ухудшались. Поэтому о том, что машина в Пекине заработала, сотрудники Лебедева узнали из статьи в журнале «Китай» на русском языке, который кто-то принес в ИТМ и ВТ. Как свидетельствует сотрудник лаборатории Лебедева Ю. И. Визун, в «статье не встретилось даже самого слова „БЭСМ“, никак не был упомянут ИТМ и ВТ, ни слова о нашей стране вообще…» [1.14].
Попасть снарядом по снаряду?
Полупроводниковые ЭВМ
Вершина
Попасть снарядом по снаряду?
В начале 1951 года, своем письме в АН УССР по поводу перспектив применения ЭВМ, Лебедев писал: «Быстрота и точность вычислений позволяют ставить вопрос о создании устройств управления ракетными снарядами для точного поражения цели путем непрерывного решения задачи встречи в процессе полета управляемого реактивного снаряда и внесения корректив в траекторию его полета». Сергей Алексеевич любил говорить, что расчеты полета снаряда на БЭСМ проходят быстрее, чем летит сам снаряд. В 1955 году ему представилась возможность осуществить свои предвидения на практике — ИТМ и ВТ был привлечен к работе по созданию системы противоракетной обороны.
Далеко не все верили, что перехват ракеты — вообще осуществимая задача. Григорий Васильевич Кисунько, по инициативе и под руководством которого создавалась «Система А», вспоминает [1.15]: «По существу проблематики ПРО еще в 1953 году высказались маститые академики при обсуждении письма семи маршалов Советского Союза о необходимости приступить к разработке этой проблемы: „ПРО — это такая же глупость, как стрельба снарядом по снаряду“». О сложности задачи говорит тот факт, что первые испытания подобной системы в США в 1962 году закончились неудачей, и перехват у американских систем ПРО был возможен лишь при условии использования в противоракете ядерного заряда с большим радиусом поражения, небезопасного для защищающейся стороны. А первый перехват баллистической боеголовки с неядерным ее поражением был осуществлен в США 10 июня 1984 года — на 23 года позже первых успешных испытаний ПРО в СССР.
В одном из своих выступлений член-корреспондент РАН Геннадий Георгиевич Рябов (директор ИТМ и ВТ в 1984–2004 годах) рассказал о вычислительной задаче для этой ПРО, которая и сейчас внушает уважение: время реакции системы на сигнал от радиолокаторов не должно было превышать десятой доли секунды! Вот что об этом пишет Г. В. Кисунько: «В противоракетной системе при перехвате баллистической ракеты все свершается с непостижимой для человеческого восприятия быстротой. Сближение противоракеты с целью происходит со сверхкосмической скоростью, и отслеживать этот процесс, управлять наведением противоракеты на цель невозможно без использования быстродействующей ЭВМ и без автоматизации на основе ЭВМ взаимодействия всех средств ПРО. Для этого ЭВМ и все подсистемные компоненты ПРО должны быть связаны между собой линиями обмена информацией, принимаемой и передаваемой в реальном масштабе времени.
В системе „А“ центральная ЭВМ должна была обеспечивать взаимодействие в реальном масштабе времени полета цели восьми абонентов, территориально разнесенных от нее на расстояниях до 250 километров. Таким образом, речь шла о создании компьютерно-автоматизированной многокомпонентной системы, не имевшей прецедентов ни в военной, ни в гражданской технике».
Впрочем, в ИТМ и ВТ уже имелся задел по этой проблематике. Все началось с того, что, когда отладка БЭСМ подходила к концу, Сергей Алексеевич привел отличившегося в этой работе молодого специалиста Всеволода Сергеевича Бурцева в один из московских НИИ, разрабатывавших радиолокаторы. Результатом стало создание в 1952–1955 годах двух специализированных ЭВМ «Диана-1» и «Диана-2» для автоматического съема данных с радиолокатора и автоматического слежения за воздушными целями. Опережая даже работы по М-20, Бурцев сумел создать к 1958 году еще две мощные по тем временам машины для тех же целей: М-40 (40 тыс. операций в секунду) и М-50 (с плавающей запятой). Обе машины были заранее рассчитаны на коллективную работу в сети — в них был встроен мультиплексный канал для приема данных по шести направлениям, и они имели развитую систему прерываний.
Всеволод Сергеевич Бурцев (1927–2005), начало 1950-х
Однако, когда Кисунько впервые посетил ИТМ и ВТ, всей этой техники еще не существовало. Увидев БЭСМ, он посчитал, что «эта самоделка» не имеет перспектив, но не стал разрывать отношений с институтом Лебедева, а решил подстраховаться, заключив с СКБ 245 договор о разработке специализированной ЭВМ на базе «Стрелы». В дальнейшем этот договор так и не был выполнен, зато в здании на полигоне появилась М-40. Интересно, что работа по созданию программ для «Системы А» проводилась без технического задания — его еще никто не мог написать. Не связанные какими-то рамками исполнители творили программное обеспечение «по месту» — тайная мечта любого разработчика, потому работа шла с большим энтузиазмом.
Строительство полигона «Системы А» началось в 1956 году, в пустынной местности неподалеку от озера Балхаш: летом плюс сорок, зимой до минус тридцати, вокруг — одни фаланги, змеи и скорпионы. На отчужденной для полигона территории, как вспоминает Кисунько, проживал лишь один казах, которого сотрудники прозвали «дядей Колей». С ведома командования «дядя» получил компенсацию на переселение, но остался в своем домишке, снабжая сотрудников полигона дарами Балхаша, по словам Кисунько, «многие из которых сейчас следует считать выбывшими даже из Красной книги». Строили почти все одновременно: железнодорожные ветки, автодороги, линии электропередач, прокладывали связь, возводили военные и гражданские объекты, поднимали городок испытателей.
Рассказывают, что одна из дочерей Сергея Алексеевича спросила его: «Зачем ты делаешь ЭВМ для военных?» «Чтобы не было войны», — ответил он. Лебедев мог бы добавить, что такой, казалось бы, неопределенный и расплывчатый ответ совершенно точно отражает его род занятий и их конечную цель. Мало того, перед нами редчайший пример ученого, цель которого именно в такой постановке была достигнута — назревавшей было войны между двумя мировыми полюсами действительно так и не случилось, и работы Лебедева в этом начинании сыграли одну из главных ролей.
Среди всех достижений в этой первой компьютерной системе для ПРО, к числу важнейших, безусловно, относится создание одной из первых в мире компьютерных сетей. Считается, что первое удаленное соединение двух компьютеров было установлено в 1965 году между Массачусетским Технологическим институтом (шт. Массачусетс, США) и корпорацией SDC (Санта-Моника, шт. Калифорния). Но даже для самих США это явная ошибка: еще задолго до начала экспериментов с ARPANET там начала функционировать довольно «продвинутая» компьютерная сеть из сотен узлов — в рамках упомянутой системы NORAD. Сеть для «Системы А» была построена практически одновременно с первыми элементами американской SAGE, и, несмотря на свой экспериментальный характер, была весьма совершенной.
Всеволод Бурцев воспроизводит в своих воспоминаниях [1.16] структурную схему вычислительной сети «Системы А». Она работала на частоте 1 МГц, включала несколько вычислительных машин разной мощности, в том числе на мобильной (!) платформе, связанных между собой в беспроводную (!) сеть, работавшую на расстояниях до 200 км. Обратите внимание, что беспроводные сети в мире получили распространение лишь в 1980-е годы.
Схема вычислительной сети советской экспериментальной ПРО, развернутой в 1959–1960 гг. в Казахстане, недалеко от озера Балхаш (иллюстрация из статьи автора разработки В. С. Бурцева, с разрешения редакции журнала «Информационные технологии и вычислительные системы»). РТН — радиолокаторы точного наведения; СМ — специальные вычислительные машины; СД — станция дальнего обнаружения; РПР — радиолокатор противоракеты (передача сигналов на противоракету); СТ — мобильная стартовая установка противоракет; ППД — процессор приема и передачи данных; М-4, М-40 и М-50 — электронные вычислительные машины; Б — запоминающее устройство на магнитном барабане; УУБ — устройство управления барабаном; КРА — контрольно-регистрирующая аппаратура; РЛ — радиорелейные линии
Отсюда понятно, почему А. И. Китов и В. М. Глушков (см. соответствующие очерки в этом сборнике) в своих проектах компьютерных систем масштаба государства с такой легкостью рассуждали про автоматизированный удаленный сбор данных: технически этот вопрос для советских компьютерщиков был давно решен.
Следует добавить, что М-50 оказалась настолько удачной разработкой, что ее конструкция потом многократно воспроизводилась в системах военного назначения разных поколений (ламповая 5Э92 и транзисторные 5Э92б, 5Э51), рассчитанных на применение в качестве комплекса обработки данных.
Далеко не все верили, что перехват ракеты — вообще осуществимая задача. Григорий Васильевич Кисунько, по инициативе и под руководством которого создавалась «Система А», вспоминает [1.15]: «По существу проблематики ПРО еще в 1953 году высказались маститые академики при обсуждении письма семи маршалов Советского Союза о необходимости приступить к разработке этой проблемы: „ПРО — это такая же глупость, как стрельба снарядом по снаряду“». О сложности задачи говорит тот факт, что первые испытания подобной системы в США в 1962 году закончились неудачей, и перехват у американских систем ПРО был возможен лишь при условии использования в противоракете ядерного заряда с большим радиусом поражения, небезопасного для защищающейся стороны. А первый перехват баллистической боеголовки с неядерным ее поражением был осуществлен в США 10 июня 1984 года — на 23 года позже первых успешных испытаний ПРО в СССР.
В одном из своих выступлений член-корреспондент РАН Геннадий Георгиевич Рябов (директор ИТМ и ВТ в 1984–2004 годах) рассказал о вычислительной задаче для этой ПРО, которая и сейчас внушает уважение: время реакции системы на сигнал от радиолокаторов не должно было превышать десятой доли секунды! Вот что об этом пишет Г. В. Кисунько: «В противоракетной системе при перехвате баллистической ракеты все свершается с непостижимой для человеческого восприятия быстротой. Сближение противоракеты с целью происходит со сверхкосмической скоростью, и отслеживать этот процесс, управлять наведением противоракеты на цель невозможно без использования быстродействующей ЭВМ и без автоматизации на основе ЭВМ взаимодействия всех средств ПРО. Для этого ЭВМ и все подсистемные компоненты ПРО должны быть связаны между собой линиями обмена информацией, принимаемой и передаваемой в реальном масштабе времени.
В системе „А“ центральная ЭВМ должна была обеспечивать взаимодействие в реальном масштабе времени полета цели восьми абонентов, территориально разнесенных от нее на расстояниях до 250 километров. Таким образом, речь шла о создании компьютерно-автоматизированной многокомпонентной системы, не имевшей прецедентов ни в военной, ни в гражданской технике».
Впрочем, в ИТМ и ВТ уже имелся задел по этой проблематике. Все началось с того, что, когда отладка БЭСМ подходила к концу, Сергей Алексеевич привел отличившегося в этой работе молодого специалиста Всеволода Сергеевича Бурцева в один из московских НИИ, разрабатывавших радиолокаторы. Результатом стало создание в 1952–1955 годах двух специализированных ЭВМ «Диана-1» и «Диана-2» для автоматического съема данных с радиолокатора и автоматического слежения за воздушными целями. Опережая даже работы по М-20, Бурцев сумел создать к 1958 году еще две мощные по тем временам машины для тех же целей: М-40 (40 тыс. операций в секунду) и М-50 (с плавающей запятой). Обе машины были заранее рассчитаны на коллективную работу в сети — в них был встроен мультиплексный канал для приема данных по шести направлениям, и они имели развитую систему прерываний.
Всеволод Сергеевич Бурцев (1927–2005), начало 1950-х
Однако, когда Кисунько впервые посетил ИТМ и ВТ, всей этой техники еще не существовало. Увидев БЭСМ, он посчитал, что «эта самоделка» не имеет перспектив, но не стал разрывать отношений с институтом Лебедева, а решил подстраховаться, заключив с СКБ 245 договор о разработке специализированной ЭВМ на базе «Стрелы». В дальнейшем этот договор так и не был выполнен, зато в здании на полигоне появилась М-40. Интересно, что работа по созданию программ для «Системы А» проводилась без технического задания — его еще никто не мог написать. Не связанные какими-то рамками исполнители творили программное обеспечение «по месту» — тайная мечта любого разработчика, потому работа шла с большим энтузиазмом.
Строительство полигона «Системы А» началось в 1956 году, в пустынной местности неподалеку от озера Балхаш: летом плюс сорок, зимой до минус тридцати, вокруг — одни фаланги, змеи и скорпионы. На отчужденной для полигона территории, как вспоминает Кисунько, проживал лишь один казах, которого сотрудники прозвали «дядей Колей». С ведома командования «дядя» получил компенсацию на переселение, но остался в своем домишке, снабжая сотрудников полигона дарами Балхаша, по словам Кисунько, «многие из которых сейчас следует считать выбывшими даже из Красной книги». Строили почти все одновременно: железнодорожные ветки, автодороги, линии электропередач, прокладывали связь, возводили военные и гражданские объекты, поднимали городок испытателей.
В своих воспоминаниях, помещенных в сборник, посвященный 100-летию со дня рождения С. А. Лебедева [1.2], Всеволод Сергеевич Бурцев приводит историю о том, как они весело погуляли в один из выходных во время пребывания на полигоне, причем Лебедев был в первых рядах застрельщиков. Ввиду того, что история достаточно длинная, цитировать ее здесь невозможно, а в кратком пересказе она сильно потеряет. Случай, между тем, хорошо иллюстрирует характер Лебедева, до седых волос умудрившегося сохранить в себе того мальчишку Сережу, что, по воспоминаниям его сестры, переплывал Оку. Происходившее было бы характерно для молодой студенческой компании, а ведь ему к тому времени перевалило за пятьдесят. Недаром авторы многих воспоминаний указывают, что Алисе Григорьевне нередко приходилось удерживать мужа от шалостей и внимательно следить за количеством выпитого. История на полигоне вполне могла закончиться трагично: в конце ее Сергей Алексеевич вознамерился попрактиковаться в вождении грузовика (он как раз собирался сдавать на права), влетел в расщелину и разбил головой лобовое стекло. Врачи потом сказали, что небольшое сотрясение все же было.По полигону должны были стрелять ракетами из Капустина Яра и Плесецка. Испытания начались в 1959 году, а 4 марта 1961 года прошло генеральное испытание: с центрального полигона Минобороны в Капустином Яру была запущена баллистическая ракета Р-12, оснащенная вместо штатной боевой части ее весовым макетом в виде стальной плиты весом 200 кг. Обломки Р-12 потом собирали по степи в течение еще трех недель. Испытание не обошлось без драматического момента, о котором вспоминают все участники событий: за 145 секунд до расчетного времени встречи противоракеты с «вражеской» боеголовкой в машине М-20 произошел «аварийный останов». Однако ее сумели мгновенно перезапустить, и перехват произошел в штатном режиме. Кисунько приводит слова одного из участников событий: «…случись еще раз такое или похожее на то, что было в этом пуске, — и начнут выносить нас прямо с пультов с инфарктами».
Г. В. Кисунько написал по этому поводу стихи (поется на мелодию «Дымилась роща под горою…»):Полностью введенная в действие в 1961 году, «Система А» стала первой в мире ПРО, способной не только предупреждать о нападении, но и пускать противоракету, сбивая атакующую ракету еще в космосе. Еще раз напомним, что американцы смогли повторить наш успех лишь спустя 23 года. Основы весьма масштабной системы аэрокосмической обороны Северной Америки под названием NORAD (1963 год), закладывались еще в начале 1950-х, но она была куда более примитивной по функциональности, чем советская ПРО, и могла только предупреждать о нападении. Это было даже отражено в названии ее компьютерной основы SAGE (Semi-Automatic Ground Environment, где «semi-automatic» означает «полуавтоматическая» — для отражения ракетной атаки поднимались истребители). Успешные испытания «Системы А» позволили Хрущеву заметить на одной из пресс-конференций в 1962 году: «Наша ракета, можно сказать, попадает в муху в космосе». Эта работа стала основой для создания советских комплексов ПРО и всей системы сдержек и противовесов, ставших базой для глобальных договоров (таких, как СНВ), окончательно превративших ядерное оружие в «оружие сдерживания».
Мне не забыть, как ранним мартом
в машине нашей цифровой
за три минуты перед стартом
произошел случайный сбой.
Но в тот же миг машину эту
мы вновь пустили, чуть дыша,
и все же сбили мы ракету
над диким брегом Балхаша.
Рассказывают, что одна из дочерей Сергея Алексеевича спросила его: «Зачем ты делаешь ЭВМ для военных?» «Чтобы не было войны», — ответил он. Лебедев мог бы добавить, что такой, казалось бы, неопределенный и расплывчатый ответ совершенно точно отражает его род занятий и их конечную цель. Мало того, перед нами редчайший пример ученого, цель которого именно в такой постановке была достигнута — назревавшей было войны между двумя мировыми полюсами действительно так и не случилось, и работы Лебедева в этом начинании сыграли одну из главных ролей.
Среди всех достижений в этой первой компьютерной системе для ПРО, к числу важнейших, безусловно, относится создание одной из первых в мире компьютерных сетей. Считается, что первое удаленное соединение двух компьютеров было установлено в 1965 году между Массачусетским Технологическим институтом (шт. Массачусетс, США) и корпорацией SDC (Санта-Моника, шт. Калифорния). Но даже для самих США это явная ошибка: еще задолго до начала экспериментов с ARPANET там начала функционировать довольно «продвинутая» компьютерная сеть из сотен узлов — в рамках упомянутой системы NORAD. Сеть для «Системы А» была построена практически одновременно с первыми элементами американской SAGE, и, несмотря на свой экспериментальный характер, была весьма совершенной.
Всеволод Бурцев воспроизводит в своих воспоминаниях [1.16] структурную схему вычислительной сети «Системы А». Она работала на частоте 1 МГц, включала несколько вычислительных машин разной мощности, в том числе на мобильной (!) платформе, связанных между собой в беспроводную (!) сеть, работавшую на расстояниях до 200 км. Обратите внимание, что беспроводные сети в мире получили распространение лишь в 1980-е годы.
Схема вычислительной сети советской экспериментальной ПРО, развернутой в 1959–1960 гг. в Казахстане, недалеко от озера Балхаш (иллюстрация из статьи автора разработки В. С. Бурцева, с разрешения редакции журнала «Информационные технологии и вычислительные системы»). РТН — радиолокаторы точного наведения; СМ — специальные вычислительные машины; СД — станция дальнего обнаружения; РПР — радиолокатор противоракеты (передача сигналов на противоракету); СТ — мобильная стартовая установка противоракет; ППД — процессор приема и передачи данных; М-4, М-40 и М-50 — электронные вычислительные машины; Б — запоминающее устройство на магнитном барабане; УУБ — устройство управления барабаном; КРА — контрольно-регистрирующая аппаратура; РЛ — радиорелейные линии
Отсюда понятно, почему А. И. Китов и В. М. Глушков (см. соответствующие очерки в этом сборнике) в своих проектах компьютерных систем масштаба государства с такой легкостью рассуждали про автоматизированный удаленный сбор данных: технически этот вопрос для советских компьютерщиков был давно решен.
Следует добавить, что М-50 оказалась настолько удачной разработкой, что ее конструкция потом многократно воспроизводилась в системах военного назначения разных поколений (ламповая 5Э92 и транзисторные 5Э92б, 5Э51), рассчитанных на применение в качестве комплекса обработки данных.
Полупроводниковые ЭВМ
Рубеж 1950–1960-х годов был отмечен массовым переходом на новую полупроводниковую базу. Полупроводниковые транзисторы еще были дефицитны, дороги и чрезвычайно капризны в эксплуатации: германиевый транзистор запросто мог сгореть от того, что его базовая цепь оказалась оборванной. У схемотехников, привыкших оперировать электронными лампами, с легкостью обеспечивавшими коэффициент усиления по напряжению в несколько тысяч раз, транзисторы с их небольшими усилительными способностями вызывали недоверие и отторжение: там, где работала одна лампа, иногда требовалось ставить пятокдругой транзисторов. Зато транзисторные схемы были надежнее, потребляли намного меньше энергии, занимали в десятки раз меньший объем и работали при напряжениях в единицы-десятки вольт. Лампы требовали для нормальной работы напряжений в сотни вольт, так что последнее обстоятельство не только повышало уровень безопасности работников, но и в совокупности с небольшим количеством выделяющегося тепла резко упрощало проектирование, снижая требования к размерам и электрической изоляции компонентов.
Выше мы видели, как из-за ненадежности ламп отладчикам приходилось вести непрерывную гонку на опережение: успеет ли пройти тест до отказа очередного компонента или нет?
Сергей Алексеевич с дочерями во время выпускного бала в школе, 1957 год
Всеволод Сергеевич Бурцев отмечает, что «на этапе развития полупроводниковой элементной базы в процессе отладки машины практически ничего не изменилось, так как, несмотря на то, что надежность полупроводников возросла более, чем на два порядка, во столько же раз, а может быть и более, увеличилась логическая сложность комплексов ЭВМ, т. е. число логических элементов в машине». Сейчас мы знаем, что это противоречие было устранено лишь с появлением твердотельных интегральных схем, где надежность целого кристалла, включавшего сотни и тысячи транзисторов, была практически равна надежности отдельного транзистора.
Тем не менее, преимущества полупроводников были настолько очевидны, что около 1960 года небольшая группа молодых сотрудников ИТМ и ВТ, среди которых были инженеры, техники и самоучки, получила от Лебедева задание освоить первые полупроводниковые элементы. Для отработки созданных схем группа решила повторить БЭСМ на новой элементной базе. Получившийся макет был назван БЭСМ-3М. Эту машину часто упускают из вида при перечислении достижений лебедевской школы, но она все же была выпущена в нескольких экземплярах и устанавливалась в вычислительных центрах страны (например, в компьютерном центре Института математики АН КазССР). Михаил Ахманов[15] писал автору этих строк, что работал на БЭСМ-3М и М-20 больше четырех лет на матмехе ЛГУ, считал на них диплом и диссертацию. «Систему восьмеричных команд ЭВМ М-20 и БЭСМ-3М помню до сих пор», — утверждает Михаил Сергеевич на своем сайте. Воспоминания Михаила Сергеевича об обстановке, сопровождавшей эксплуатацию первых ЭВМ в научных центрах, написанные по просьбе автора этих строк, помещены в приложении к этому очерку.
Вдохновленные успехом, сотрудники группы предложили создать на базе БЭСМ-3М машину, повторяющую структурно-логическую схему удачной М-20, но с использованием новых элементов. Их поддержал руководитель СКБ ИТМ и ВТ О. П. Васильев, а Лебедев не возражал. Полученная в результате машина БЭСМ-4 имела несколько расширенную систему команд в сравнении с М-20, повторяла ее по быстродействию (20 тыс. операций/с), но была намного надежней. По тогдашнему обычаю каждая смена обслуживающего персонала ЭВМ состояла пополам из инженеров и техников, устранявших возникающие неполадки, и программистов, занимавшихся непосредственно эксплуатацией.
Когда через год после установки БЭСМ-4 в Вычислительном центре АН СССР поинтересовались, как она работает, ответ был такой: «Ваша машина разлагает молодых инженеров. Они не выполняют профилактических работ, так как машина не имеет сбоев — она слишком надежна». О том, насколько полупроводники экономичнее ламп, можно составить представление, сравнивая паспортную потребляемую мощность: если ламповые БЭСМ и БЭСМ-2 потребляли порядка 30–35 кВт, а М-20 и вовсе около 50, то БЭСМ-4 всего-навсего 8 кВт, причем значительная часть этой энергии уходила на систему охлаждения — температура блоков на полупроводниках того времени не должна была превышать 35 градусов.
В 1961 году БЭСМ-4 была передана в серийное производство на тот же ульяновский завод им. Володарского, который до этого выпускал БЭСМ-2. До 1966 года, когда ей на смену пришла БЭСМ-6, было произведено 30 машин. Для БЭСМ-4 на факультете ВМиК МГУ была разработана операционная система «БЭСМ-МГУ», впервые в серии БЭСМ использовавшая систему прерываний.
Однако простой перевод ЭВМ с одной элементной базы на другую, пусть и более совершенную, не приносил Сергею Алексеевичу удовлетворения. Не случайно сверхплановая полупроводниковая БЭСМ-4, повторявшая структуру и команды М-20, не была его инициативой. Он не мог не поддержать молодежь в стремлении создать первую полупроводниковую ЭВМ, но сам в это время вместе со своими помощниками уже моделировал будущую БЭСМ-6.
Выше мы видели, как из-за ненадежности ламп отладчикам приходилось вести непрерывную гонку на опережение: успеет ли пройти тест до отказа очередного компонента или нет?
Сергей Алексеевич с дочерями во время выпускного бала в школе, 1957 год
Всеволод Сергеевич Бурцев отмечает, что «на этапе развития полупроводниковой элементной базы в процессе отладки машины практически ничего не изменилось, так как, несмотря на то, что надежность полупроводников возросла более, чем на два порядка, во столько же раз, а может быть и более, увеличилась логическая сложность комплексов ЭВМ, т. е. число логических элементов в машине». Сейчас мы знаем, что это противоречие было устранено лишь с появлением твердотельных интегральных схем, где надежность целого кристалла, включавшего сотни и тысячи транзисторов, была практически равна надежности отдельного транзистора.
Тем не менее, преимущества полупроводников были настолько очевидны, что около 1960 года небольшая группа молодых сотрудников ИТМ и ВТ, среди которых были инженеры, техники и самоучки, получила от Лебедева задание освоить первые полупроводниковые элементы. Для отработки созданных схем группа решила повторить БЭСМ на новой элементной базе. Получившийся макет был назван БЭСМ-3М. Эту машину часто упускают из вида при перечислении достижений лебедевской школы, но она все же была выпущена в нескольких экземплярах и устанавливалась в вычислительных центрах страны (например, в компьютерном центре Института математики АН КазССР). Михаил Ахманов[15] писал автору этих строк, что работал на БЭСМ-3М и М-20 больше четырех лет на матмехе ЛГУ, считал на них диплом и диссертацию. «Систему восьмеричных команд ЭВМ М-20 и БЭСМ-3М помню до сих пор», — утверждает Михаил Сергеевич на своем сайте. Воспоминания Михаила Сергеевича об обстановке, сопровождавшей эксплуатацию первых ЭВМ в научных центрах, написанные по просьбе автора этих строк, помещены в приложении к этому очерку.
Вдохновленные успехом, сотрудники группы предложили создать на базе БЭСМ-3М машину, повторяющую структурно-логическую схему удачной М-20, но с использованием новых элементов. Их поддержал руководитель СКБ ИТМ и ВТ О. П. Васильев, а Лебедев не возражал. Полученная в результате машина БЭСМ-4 имела несколько расширенную систему команд в сравнении с М-20, повторяла ее по быстродействию (20 тыс. операций/с), но была намного надежней. По тогдашнему обычаю каждая смена обслуживающего персонала ЭВМ состояла пополам из инженеров и техников, устранявших возникающие неполадки, и программистов, занимавшихся непосредственно эксплуатацией.
Когда через год после установки БЭСМ-4 в Вычислительном центре АН СССР поинтересовались, как она работает, ответ был такой: «Ваша машина разлагает молодых инженеров. Они не выполняют профилактических работ, так как машина не имеет сбоев — она слишком надежна». О том, насколько полупроводники экономичнее ламп, можно составить представление, сравнивая паспортную потребляемую мощность: если ламповые БЭСМ и БЭСМ-2 потребляли порядка 30–35 кВт, а М-20 и вовсе около 50, то БЭСМ-4 всего-навсего 8 кВт, причем значительная часть этой энергии уходила на систему охлаждения — температура блоков на полупроводниках того времени не должна была превышать 35 градусов.
В 1961 году БЭСМ-4 была передана в серийное производство на тот же ульяновский завод им. Володарского, который до этого выпускал БЭСМ-2. До 1966 года, когда ей на смену пришла БЭСМ-6, было произведено 30 машин. Для БЭСМ-4 на факультете ВМиК МГУ была разработана операционная система «БЭСМ-МГУ», впервые в серии БЭСМ использовавшая систему прерываний.
Однако простой перевод ЭВМ с одной элементной базы на другую, пусть и более совершенную, не приносил Сергею Алексеевичу удовлетворения. Не случайно сверхплановая полупроводниковая БЭСМ-4, повторявшая структуру и команды М-20, не была его инициативой. Он не мог не поддержать молодежь в стремлении создать первую полупроводниковую ЭВМ, но сам в это время вместе со своими помощниками уже моделировал будущую БЭСМ-6.
Вершина
Проектирование новой машины БЭСМ-6 началось сразу после окончания работ по М-20, и продолжалось почти десять лет. Основная цель, которую преследовали авторы проекта машины БЭСМ-6, была такова: создать быстродействующую серийную машину, сравнительно дешевую, но удовлетворяющую наиболее важным современным требованиям. С. А. Лебедеву в этой работе активно помогали его молодые заместители — Владимир Андреевич Мельников, отвечавший за аппаратную часть новой машины, и Лев Николаевич Королев, отвечавший за программное обеспечение.
О БЭСМ-6 написано очень много, потому отметим здесь лишь основные моменты. Машина впервые в отечественной практике разрабатывалась с применением методов автоматизированного проектирования и моделирования ее работы на другой ЭВМ. Монтажную и отладочную документацию на завод выдавали в виде таблиц, которые делались в институте на БЭСМ-2. Сотрудник ИТМ и ВТ Ю. И. Митропольский так описывает историю с принятием системы документации для БЭСМ-6:
«Для более компактного описания логических схем Владимир Иванович Смирнов предложил их формульное описание, однако оно не обеспечивало полного описания всех конструктивных элементов схем. Мною была предложена система таблиц для схем отдельных блоков, так называемых карточек, на которых показывалась схема одного блока или таблица для усилительного блока, а также указывались все связи данного блока с другими. Благодаря этой системе вся схемная документация приобретала регулярный характер, ускорялся поиск нужной схемы и цепи, а главное, сокращался объем графической работы, при этом основную работу по заполнению карточек могли выполнять техники.
Мнения по поводу этой системы в лаборатории разделились. Ее противники утверждали, что без привычных схем будет трудно разобраться другим людям, например, наладчикам на заводе. Окончательное решение должен был принять Сергей Алексеевич. На совещании он внимательно выслушал все мнения и предложил воспользоваться принципом „бани“, который содержался в ответе мудреца на вопрос строителей, строгать ли доски для пола в бане. Мудрец ответил, что строгать надо с одной стороны, а укладывать строганной стороной вниз. Сергей Алексеевич решил поддержать новые идеи, но не хотел вносить раскол в коллективе. Он предложил опробовать новую систему и найти способ согласования с существующими конструкторскими нормами».
Нестандартный подход к формальному описанию БЭСМ-6 даже послужил источником неприятностей к моменту ее сдачи: комиссия затребовала обычные, сделанные с помощью кульмана чертежи всех схем. Но сложность этих схем сделала такую задачу практически неразрешимой, и комиссии пришлось отступить.
БЭСМ-6 имела страничную организацию памяти с механизмами виртуализации (с аппаратной поддержкой преобразования виртуального адреса в физический), сверхбыструю кэшпамять с автоматическим управлением загрузкой команд, конвейерную («водопроводную», по терминологии Лебедева) организацию обработки потока команд (до восьми команд на разных стадиях), развитую систему прерываний и возможность мультипрограммного режима работы для одновременного решения нескольких задач с заданными приоритетами.
БЭСМ-6 в Новосибирском институте теоретической и прикладной механики, 1970-е годы
Объем ОЗУ БЭСМ-6 мог составлять от 32 до 128 тыс. машинных слов. Память собиралась из блоков емкостью по 4 Кслов, состоявших из матриц на ферритовых сердечниках диаметром 2 мм, каждый из которых пронизывался четырьмя тонкими проволочками. В то время прошивка матриц производилась вручную, и только через много лет эта нелегкая работа была автоматизирована.
ОЗУ дополнялось промежуточной памятью на магнитном барабане емкостью 512 тыс. слов. Кроме того, могли быть подключены 32 внешних накопителя на магнитной ленте, каждый емкостью до 1 млн слов. К БЭСМ-6 возможно было подключение дисков и графопостроителей, однако до начала семидесятых они отсутствовали: в комплектацию серийных БЭСМ-6 дисковые накопители были включены лишь в 1972 году. Для ввода-вывода в комплектацию машины входили два алфавитно-цифровых печатающих устройства (400 строк в минуту), два устройства вывода на перфокарты (ПИ-80), четыре устройства вывода на перфоленту, четыре устройства ввода с перфоленты, два устройства ввода с перфокарт (ВУ-700), 24 телетайпа.
В электронных схемах БЭСМ-6 использовано 60 тыс. германиевых транзисторов и 180 тыс. полупроводников-диодов, общая тактовая частота — 10 МГц, быстродействие — 1 млн операций с плавающей запятой в секунду. Для сравнения — в мультипроцессорной CDC 6600 (1964 год) примерно в 6 тыс. типовых модулей было упаковано около 400 тыс. транзисторов, причем более прогрессивных, чем в БЭСМ-6 — кремниевых, с временем переключения около 5 нс (хотя основная тактовая частота в этой машине была такой же, как в БЭСМ — 10 МГц) [1.17]. И все-таки CDC 6600 не превышал БЭСМ-6 по производительности. Вот что значит продуманная и тщательно оптимизированная архитектура!
Участники разработки БЭСМ-6 в день награждения Государственной премией СССР, 1969 год. Третий слева — В. А. Мельников, за ним — А. А. Соколов, второй справа — С. А. Лебедев
Типовые германиевые советские транзисторы начала 1960-х годов (например, такие, как импульсные П-16 или высокочастотные П-416) имели время переключения в единицы микросекунд. Чтобы заставить их работать на частотах порядка тактовой частоты БЭСМ-6, разработчикам приходилось идти на ухищрения. Участник разработки В. Н. Лаут вспоминает [18.1]:
«Трудность с использованием транзисторов заключалась в том, что в режиме насыщения они работали очень медленно, а логические элементы с ненасыщенными триодами получались сложными из-за необходимости согласования уровней входных и выходных сигналов. И не только сложными, но и ненадежными. Некоторое время мы не видели выхода из тупика. Но тут возникла абсолютно новая идея, никогда и нигде ранее не описанная, по крайней мере, для элементов вычислительной техники. По-моему, первым ее высказал А. А. Соколов.
Суть идеи заключалась в том, чтобы в известный элемент „токовый переключатель“ ввести автономный источник питания, гальванически не связанный с другими цепями питания. Например, для этой цели можно было бы использовать миниатюрную батарейку от электронных часов. Включение батарейки между коллектором транзистора и коллекторной нагрузкой (резистором) делало переключатель элементом с согласованными уровнями входных и выходных сигналов, причем к автономному источнику питания не предъявлялось особенно сложных требований. Конечно, батарейку ставить было нельзя, так как она со временем разрядится, поэтому в реальной схеме ее заменил крошечный выпрямитель, состоящий из миниатюрного трансформатора на ферритовом кольце, двух полупроводниковых диодов и конденсатора. Назвали эти выпрямители „подвешенными источниками питания“ (ПИП)».
О БЭСМ-6 написано очень много, потому отметим здесь лишь основные моменты. Машина впервые в отечественной практике разрабатывалась с применением методов автоматизированного проектирования и моделирования ее работы на другой ЭВМ. Монтажную и отладочную документацию на завод выдавали в виде таблиц, которые делались в институте на БЭСМ-2. Сотрудник ИТМ и ВТ Ю. И. Митропольский так описывает историю с принятием системы документации для БЭСМ-6:
«Для более компактного описания логических схем Владимир Иванович Смирнов предложил их формульное описание, однако оно не обеспечивало полного описания всех конструктивных элементов схем. Мною была предложена система таблиц для схем отдельных блоков, так называемых карточек, на которых показывалась схема одного блока или таблица для усилительного блока, а также указывались все связи данного блока с другими. Благодаря этой системе вся схемная документация приобретала регулярный характер, ускорялся поиск нужной схемы и цепи, а главное, сокращался объем графической работы, при этом основную работу по заполнению карточек могли выполнять техники.
Мнения по поводу этой системы в лаборатории разделились. Ее противники утверждали, что без привычных схем будет трудно разобраться другим людям, например, наладчикам на заводе. Окончательное решение должен был принять Сергей Алексеевич. На совещании он внимательно выслушал все мнения и предложил воспользоваться принципом „бани“, который содержался в ответе мудреца на вопрос строителей, строгать ли доски для пола в бане. Мудрец ответил, что строгать надо с одной стороны, а укладывать строганной стороной вниз. Сергей Алексеевич решил поддержать новые идеи, но не хотел вносить раскол в коллективе. Он предложил опробовать новую систему и найти способ согласования с существующими конструкторскими нормами».
Нестандартный подход к формальному описанию БЭСМ-6 даже послужил источником неприятностей к моменту ее сдачи: комиссия затребовала обычные, сделанные с помощью кульмана чертежи всех схем. Но сложность этих схем сделала такую задачу практически неразрешимой, и комиссии пришлось отступить.
БЭСМ-6 имела страничную организацию памяти с механизмами виртуализации (с аппаратной поддержкой преобразования виртуального адреса в физический), сверхбыструю кэшпамять с автоматическим управлением загрузкой команд, конвейерную («водопроводную», по терминологии Лебедева) организацию обработки потока команд (до восьми команд на разных стадиях), развитую систему прерываний и возможность мультипрограммного режима работы для одновременного решения нескольких задач с заданными приоритетами.
БЭСМ-6 в Новосибирском институте теоретической и прикладной механики, 1970-е годы
Объем ОЗУ БЭСМ-6 мог составлять от 32 до 128 тыс. машинных слов. Память собиралась из блоков емкостью по 4 Кслов, состоявших из матриц на ферритовых сердечниках диаметром 2 мм, каждый из которых пронизывался четырьмя тонкими проволочками. В то время прошивка матриц производилась вручную, и только через много лет эта нелегкая работа была автоматизирована.
ОЗУ дополнялось промежуточной памятью на магнитном барабане емкостью 512 тыс. слов. Кроме того, могли быть подключены 32 внешних накопителя на магнитной ленте, каждый емкостью до 1 млн слов. К БЭСМ-6 возможно было подключение дисков и графопостроителей, однако до начала семидесятых они отсутствовали: в комплектацию серийных БЭСМ-6 дисковые накопители были включены лишь в 1972 году. Для ввода-вывода в комплектацию машины входили два алфавитно-цифровых печатающих устройства (400 строк в минуту), два устройства вывода на перфокарты (ПИ-80), четыре устройства вывода на перфоленту, четыре устройства ввода с перфоленты, два устройства ввода с перфокарт (ВУ-700), 24 телетайпа.
В электронных схемах БЭСМ-6 использовано 60 тыс. германиевых транзисторов и 180 тыс. полупроводников-диодов, общая тактовая частота — 10 МГц, быстродействие — 1 млн операций с плавающей запятой в секунду. Для сравнения — в мультипроцессорной CDC 6600 (1964 год) примерно в 6 тыс. типовых модулей было упаковано около 400 тыс. транзисторов, причем более прогрессивных, чем в БЭСМ-6 — кремниевых, с временем переключения около 5 нс (хотя основная тактовая частота в этой машине была такой же, как в БЭСМ — 10 МГц) [1.17]. И все-таки CDC 6600 не превышал БЭСМ-6 по производительности. Вот что значит продуманная и тщательно оптимизированная архитектура!
Участники разработки БЭСМ-6 в день награждения Государственной премией СССР, 1969 год. Третий слева — В. А. Мельников, за ним — А. А. Соколов, второй справа — С. А. Лебедев
Типовые германиевые советские транзисторы начала 1960-х годов (например, такие, как импульсные П-16 или высокочастотные П-416) имели время переключения в единицы микросекунд. Чтобы заставить их работать на частотах порядка тактовой частоты БЭСМ-6, разработчикам приходилось идти на ухищрения. Участник разработки В. Н. Лаут вспоминает [18.1]:
«Трудность с использованием транзисторов заключалась в том, что в режиме насыщения они работали очень медленно, а логические элементы с ненасыщенными триодами получались сложными из-за необходимости согласования уровней входных и выходных сигналов. И не только сложными, но и ненадежными. Некоторое время мы не видели выхода из тупика. Но тут возникла абсолютно новая идея, никогда и нигде ранее не описанная, по крайней мере, для элементов вычислительной техники. По-моему, первым ее высказал А. А. Соколов.
Суть идеи заключалась в том, чтобы в известный элемент „токовый переключатель“ ввести автономный источник питания, гальванически не связанный с другими цепями питания. Например, для этой цели можно было бы использовать миниатюрную батарейку от электронных часов. Включение батарейки между коллектором транзистора и коллекторной нагрузкой (резистором) делало переключатель элементом с согласованными уровнями входных и выходных сигналов, причем к автономному источнику питания не предъявлялось особенно сложных требований. Конечно, батарейку ставить было нельзя, так как она со временем разрядится, поэтому в реальной схеме ее заменил крошечный выпрямитель, состоящий из миниатюрного трансформатора на ферритовом кольце, двух полупроводниковых диодов и конденсатора. Назвали эти выпрямители „подвешенными источниками питания“ (ПИП)».