Газовым фильтром может служить постоянный магнит (рис. 10), установленный на входе в электромагнитный газовый клапан. Этот клапан имеет корпус (8) и отстойник (12). Внутри отстойника (15) расположен фильтрующий элемент из технической замши, заключенный в металлическую обойму (10), которая уплотнена резиновым кольцом (11). Постоянный кольцевой магнит (14) прикреплен к днищу отстойника. Фильтр имеет входной (13) и выходной (9) штуцеры. Уплотнитель выполнен из бензо-маслостойкой резины. Для очистки отстойника его снимают с основания (8) и чистят фильтрующий элемент. Клапан имеет уплотнитель (7), направляющую втулку (1) со стопорными кольцами (2) и (6), пружину (3), якорь (4) и катушку (5) с клеммой.
   Сжиженный нефтяной газ через штуцер (13) подается в полость (15) отстойника, проходит фильтр (10), поступает в кольцевую полость (16) и через зазор между приподнятым уплотнителем и седлом поступает в выходной штуцер (9), а из клапана – непосредственно в редуктор-испаритель.
   Газовые электромагнитные клапаны (рис. 9) с фильтром управляются от переключателя вида топлива. Они предназначены для перекрытия подачи газа при работе двигателя на бензине, перекрытия подачи газа при выключенном зажигании и для фильтрации газа.
   Электромагнитный бензиновый клапан (рис. 11) отключает подачу бензина при работе двигателя на газе.
   Устанавливать электромагнитный бензиновый клапан следует в таком месте, чтобы отрезок бензопровода между ним и бензонасосом был как можно короче. Дело в том, что при работе на бензине на этом участке сохраняется постоянный уровень бензина, поддерживаемый бензонасосом. Бензин может сильно нагреваться, вызывая нежелательное повышение давления в шланге. И чем он короче, тем более безопасен. По той же причине необходимо особое внимание уделять надежной герметизации соединений между бензонасосом и электромагнитным бензиновым клапаном.
   Клапан всегда закрыт. Он служит для дистанционного управления подачи топлива. На корпусе клапана есть ручной привод в виде ручки или вентиля. Ручным управлением пользуются во время подкачки бензонасосом бензина в карбюратор: в холодное время года, после длительной стоянки автомобиля и в случае отказа электромагнита. При этом ручку или вентиль переводят в положение «Открыто». После подкачки бензина ручку или вентиль ставят в положение «Закрыто» – это их постоянное положение, а переключатель вида топлива в салоне в положение «Бензин». Если этого не сделать, то двигатель будет одновременно работать и на бензине, и на газе. В этом случае не поможет даже отключение дистанционного переключателя вида топлива, а это недопустимо!
    РЕДУКТОР-ИСПАРИТЕЛЬпредназначен для превращения жидкой фазы газа в паровую и подачи паровой фазы в смеситель.
   Обслуживание. Через каждые 1500–2000 км пробега (на горячем двигателе) следует отвернуть пробку (винт), находящуюся в нижней части редуктора, и слить конденсат (маслянистый отстой).
   Редукторы-испарители играют важную роль в работе газобаллонного оборудования, поэтому им следует уделить особое внимание.

Общие сведения о газовых редукторах

   Газовые редукторы, устанавливаемые на автомобилях как отечественного, так и зарубежного производства, имеют одинаковое назначение. Они служат для автоматического снижения давления газа в системе питания до заданного уровня при постоянно изменяющемся давлении газа, зависящем от его количества и температуры окружающей среды.
   Газовый редуктор должен обеспечивать на выходе требуемые характеристики состояния газа в широком диапазоне температур, при переходе с одного режима работы двигателя на другой. Он должен автоматически перекрывать подачу газа при выключенном двигателе. Конструкция газового редуктора должна быть компактной и удобной в обслуживании.

Принцип работы редуктора-испарителя

   Рассмотрим более детально работу редукторов трех разных фирм – Новогрудского завода (Белоруссия), итальянских фирм «Bedini» и «Lowato» (рис. 14). Все они работают по одной принципиальной схеме, что и показано на рисунке. И если взять еще десяток редукторов разных фирм, то окажется, что в основе работы каждого из них лежит все тот же единый принцип.
   Рис. 14. Схемы редукторов НЗГА (а), «Bedini» (б) и «Lowato» (в): 1 – седло клапана второй ступени; 2 – регулировочный винт системы холостого хода; 3 – клапан холостого хода в сборе с диафрагмой; 4 – пружина клапана холостого хода; 5 – штуцер вакуумного канала; 6 – клапан второй ступени; 7, 12 – патрубки ввода и вывода охлаждающей жидкости; 8 – пружина первой ступени; 9 – регулировочная шайба; 10 – диафрагма первой ступени; 11 – рычаг клапана первой ступени; 13 – клапан первой ступени; 14 – седло клапана; 15 – диафрагма разгрузочного устройства; 16 – канал выхода газа; 17 – пружина разгрузочного устройства; 18 – рычаг клапана второй ступени; 19 – диафрагма второй ступени; 20 – винт регулировки давления во второй ступени; 21 – регулировочная пружина второй ступени; 22 – клапан; 23 – электромагнитное пусковое устройство; А – полость для теплоносителя в испарителе; Б – полость первой ступени; В – полость второй ступени; Г – полость разгрузочного устройства; Д, Е – полости атмосферного давления.
 
   Двигатель еще не работает, зажигание включено, электромагнитный клапан газа открыт.
   Газ, поступающий в редуктор по магистрали через открытый клапан (13), заполняет полость (Б) первой ступени, в которой создается избыточное давление.
   В результате перепада давлений в полостях (Б) и (Е) (полость (Е) всегда сообщается с атмосферой) на диафрагме (10) возникает усилие, уравновешивающее усилие пружины (8) и давление газа, поступившего через клапан (13) со стороны магистрали.
   Диафрагма (10) начинает перемещаться вверх, преодолевая усилие пружины (8), и закрывает связанный с ней через рычажную передачу клапан (13), герметично прижимая его к седлу. Герметичность обеспечивается кольцевым выступом седла и резиновым уплотнителем клапана. Дальнейшее поступление газа в полость (Б) прекращается. РНД в этом случае выполняет функцию автоматического вентиля.
   При снижении давления в полости (Б) до определенного значения давление газа на диафрагму (10) становится недостаточным для удержания клапана (13) в закрытом положении. Под действием суммарного усилия от пружины (8) и давления газа во входной газовой магистрали клапан (13) открывается, и давление в полости (Б) возрастает. Вновь поднимается вверх диафрагма (10), преодолевая усилие сжимающейся пружины (8), и клапан (13) закрывается – в полости (Б) устанавливается постоянное избыточное давление.
   Давление в первой ступени редуктора можно отрегулировать с помощью регулировочной прокладки (9), изменяющей усилие пружины (8).
   Давление в полостях (Г) и (Ж) равно атмосферному, клапан холостого хода (3) под действием пружины (4) закрыт. Разгрузочное устройство удерживает клапан второй ступени (6) под действием пружины (17) в закрытом положении, и клапан оказывается плотно прижатым к седлу (1) дополнительной пружиной (21) регулировочного винта (20).
 
   Перед пуском двигателя.
   Пусковой клапан (22) открывается под действием электромагнитного пускового устройства (23), управляемого переключателем вида топлива. После этого газ поступает в полость В второй ступени и через выходной патрубок (16) подается в смеситель.
 
   При пуске двигателя.
   Во впускной системе двигателя увеличивается разрежение, которое передается через вакуумный штуцер (5). Диафрагма прогибается, преодолевая усилие пружины (4), и открывает клапан (3) системы холостого хода. Газ поступает в полость В второй ступени, что обеспечивает пуск двигателя (это относится только в редукторам с системой холостого хода; в более поздних моделях редукторов эта система отсутствует). Одновременно в полость (Г) разгрузочного устройства также передается разрежение. Увлекаемый упорным диском рычаг (18) приподнимается, частично открывая клапан (6) второй ступени, вследствие чего газ начинает понемногу поступать через полость В на выход к смесителю, встроенному в карбюратор.
 
   Двигатель работает на холостом ходу.
   При работе двигателя на холостом ходу клапан (13) первой ступени редуктора открыт. Газ выходит из полости (Б) редуктора в систему холостого хода через клапан (3) и отверстие регулировочного винта холостого хода (2). Минуя клапан (6), газ попадает в полость (В), несмотря на то, что этот клапан открывается частично. Разгрузочное устройство обеспечивает поддержание в полости (В) второй ступени небольшого избыточного давления 50 МПа (5,1 мм вод. ст.).
   Через патрубок (16) отвода газа и тройник-дозатор, установленный за пределами редуктора, газ подается в смеситель, где формируется газовоздушная смесь, которая проходит через карбюратор в двигатель.
 
   Двигатель работает с малой и средней нагрузкой.
   По мере открытия дроссельной заслонки первой камеры карбюратора и при относительно небольшой частоте вращения коленчатого вала двигателя расход воздуха, поступающего через всасывающий коллектор и карбюратор, возрастает, разрежение в диффузоре карбюратора усиливается и, как следствие, в полости В понижается давление газа и увеличивается разрежение, которое воздействует на диафрагму (19). Диафрагма прогибается вверх и открывает клапан (6), увеличивая расход газа.
   В то же время вследствие разрежения в полости (Г) происходит изгиб диафрагмы (15), поднятие рычага (18), а также открытие клапана (6) на величину, необходимую для впуска небольшого количества газа. Одновременно клапан (13) первой ступени все больше открывается под действием пружины (8), и через него пропускается необходимое количество газа.
   Диафрагмы (19) и, частично, (15) автоматически регулируют подачу газа в соответствии с разрежением в диффузоре карбюратора. Из редуктора через патрубок (16) газ поступает в двигатель.
 
   Двигатель работает при полной нагрузке.
   Дроссельные заслонки карбюратора приближаются к положению полного открытия. Разрежение в полости (В) возрастает. Это увеличивает перепад давлений в полостях (В) и (Д), (В) и (Б), что в свою очередь приводит к возникновению дополнительных усилий, действующих на диафрагму (19) и клапан (6). По мере открытия клапана (6) увеличивается расход поступающего через него газа.
   Разрежение в полости (Б) первой ступени редуктора также возрастает, растет перепад давлений в полостях (Б) и (Е). Под влиянием усилий, воздействующих на диафрагму (10), открывается клапан (13), через который устремляется газ. Чем больше становится нагрузка на двигатель, тем шире открываются клапаны (6) и (13), увеличивая подачу газа, что приводит к обогащению газовоздушной смеси, обеспечивая работу двигателя на полную мощность.
    Ниже рассмотрены особенности конструкций редукторов-испарителейразных заводов-изготовителей.
    Редуктор-испаритель низкого давления ОАО «Компрессор»Санкт-Петербургского завода (рис. 15) подходит для использования на автомобилях, как с карбюраторной, так и с инжекторной системой питания. Имеет небольшие габаритные размеры: диаметр – 160 мм, толщина 80 мм. Масса редуктора 1,5 кг.
   Рис. 15. Схема редуктора-испарителя низкого давления ОАО «Компрессор»: 1 – патрубок выхода газа; 2 – крышка пружины; 3 – пневматический клапан холостого хода; 4, 5 – штуцеры подвода и отвода теплоносителя; 6 – входной газовый штуцер; 7 – диафрагма второй ступени; 8 – рычаг клапана второй ступени; 9, 14 – пружины; 10 – клапан второй ступени; 11 – седло клапана второй ступени; 12 – диафрагма первой ступени; 13 – стакан – камера теплоносителя; 15 – болты.
 
   Газ поступает в РНД через входной газовый штуцер (6) (с фильтрующим элементом для повышения надежности работы клапанов) в первую ступень, где проходит его испарение от теплоносителя в камере (15). Конструкция испарителя дает возможность поддерживать температуру газа на выходе из редуктора близкой к оптимальной на всех режимах работы двигателя. Теплоноситель из системы охлаждения подводится в редуктор через штуцеры (4) и (5). При запуске двигателя в режиме холостого хода клапан (10) закрыт усилием пружины (9). Газ поступает через канал холостого хода. Поступление газа происходит при открытии пускового пневматического клапана (3).
   При открытии дроссельной заслонки результирующее усилие на клапан (10) и диафрагму (7) изменяется и открывает клапан. Газ поступает через канал в седле клапана второй ступени (11) и открытый клапан (10) в полость второй ступени, а затем выходит из редуктора через патрубок (1).

Редукторы-испарители «САГА»

   Двухступенчатый редуктор модели «САГА-6» обеспечивает работу как впрыскового, так и карбюраторного двигателя внутреннего сгорания на газе сжиженном нефтяном (ГСН) и компримированном природном газе (КПГ). Такая его универсальность является существенным достоинством по сравнению с редукторами других фирм, ориентированными в основном для работы на каком-то одном виде газового топлива.
   На базе редуктора «САГА-6» для работы на компримированном природном газе создана модель «САГА-7».
   В конструкцию редуктора-испарителя добавлен самостоятельный узел – редуктор высокого давления (РВД), непосредственно присоединенный к корпусу двухступенчатого редуктора низкого давления (РНД) и сообщающийся с его входом. Совмещение двухступенчатого РНД с РВД позволяет поддерживать на входе в РНД рабочее давление компримированного природного газа в пределах 0,5–1,2 МПа при максимальном входном давлении в РВД 20 МПа. Далее газобаллонная установка работает по традиционной схеме, также как для сжиженных газов. РВД обогревается посредством контактной теплопередачи от РНД. В корпусе РВД предусмотрен штуцер для подключения дренажного шланга отвода газа в атмосферу в случае его утечки в каком-либо соединении системы.
   Внешний вид и рабочая схема унифицированных редукторов «САГА» приведены на рис. 16.
   Рис. 16. Редукторы-испарители «САГА-6» и «САГА-7»: 1 – крышка второй ступени; 2 – диафрагма разгрузочного устройства; 3 – полость разгрузочного устройства; 4, 8, 11, 22 – пружины; 5 – полость второй ступени; 6 – диафрагма второй ступени; 7, 24 – рычаги; 9, 25 – клапаны; 10 – седло клапана второй ступени диаметром проходного сечения d3; 12 – дозатор; 13 – канал выхода газа диаметром проходного сечения d4; 14 – регулировочный винт холостого хода; 15, 30 – каналы соответственно подвода и отвода теплоносителя; 16 – канал обратной связи; 17 – канал, соединяющий полости высокого и низкого давления; 18 – полость первой ступени; 19 – подпружиненная полость первой ступени; 20 – винт регулировки давления первой ступени; 21 – диафрагма первой ступени; 23 – крышка первой ступени; 26 – седло клапана первой ступени с диаметром проходного сечения d2; 27 – канал слива конденсата из полости первой ступени; 28 – канал подвода газа с диаметром проходного сечения d1; 29 – корпус редуктора; 31 – канал для подсоединения к впускному трубопроводу двигателя или задроссельному пространству карбюратора; 32 – канал слива конденсата из полости второй ступени; 33 – редуктор высокого давления.
   Для работы на газовом топливе переключатель вида топлива на панели приборов устанавливают в положение «Газ». При включенном зажигании газ под давлением 0,15–0,5 МПа поступает в полость (18) первой ступени редуктора-испарителя или непосредственно из баллона (при работе на ГСН), или из теплообменника (при работе ан КПГ), или из редуктора высокого давления (33) (при работе на сжиженном природном газе).
   Во время пуска двигателя стартером в его впускном трубопроводе создается разрежение, которое через шланг передается в полость (3) разгрузочного устройства. Под действием перепала давлений возникающая на диафрагме (2) разгрузочного устройства сила сжимает пружину (4), освобождая рычаг (7) клапана (9) второй ступени.
   Разрежение воздействует на диафрагму (6) второй ступени. Газ из полостей (19) первой ступени поступает в полость (5) второй ступени, где его давление снижается до величины 0,04 МПа и поддерживается на этом уровне на всех режимах работы двигателя.
   Применение обратной связи между полостями (5) и (19) позволяет обеспечить устойчивую и экономичную работу двигателя на переходных режимах, т. е. при резком открытии и закрытии дроссельных заслонок карбюратора.
   В зависимости от мощности двигателя автомобиля подбирают редуктор, обеспечивающий соответствующую подачу. Для обеспечения постоянного оптимального давления в первой ступени редуктора фирма-разработчик «САГА» перед установкой на автомобиль регулирует его на специальном оборудовании. В полость первой ступени подается сжатый воздух. При помощи регулировочного винта (20) оптимальное давление в первой ступени устанавливается с достаточной точностью. После длительной эксплуатации редуктора эту регулировку рекомендуется повторить.
   Примечание. Проходные сечения редукторов-испарителей «САГА-6» позволяют гарантированно обеспечивать работу двигателей рабочим объемом 4,2 л, 5,5 л и 7 л соответственно.
   Все три редуктора имеют общую конструкцию и отличаются только проходными сечениями седел клапанов первой d2 и второй d3 ступеней и диаметрами входного канала, подводящего газ d1, и канала выхода газа d4 (см. таблицу на рис. 16).
    ДОЗАТОР С ШАГОВЫМ ЭЛЕКТРОДВИГАТЕЛЕМ– изменяет проходное сечение отверстия подачи газа по команде ЭБУ газа, тем самым четко отслеживая количество последнего.
    ВИЛКА-ТРОЙНИКнаходится на трубопроводе низкого давления, который соединяет редуктор и смеситель. Она предназначена для подачи газа к обеим камерам карбюратора. На вилке-тройнике предусматривают один или два винта (винт или винты регулировки мощности), которые служат для регулировки количества газа, поступающего в двигатель через смеситель. Для увеличения мощности винты следует вращать против часовой стрелки, для уменьшения мощности и сокращения расхода газа – по часовой стрелке.
   Управление режимами работы двигателя производится с помощью переключателя «Газ-Бензин», расположенного в салоне автомобиля, в удобном для водителя месте, на приборной панели.
   Прежде чем переключиться с бензина на газ, необходимо дождаться полного израсходования остатка бензина в поплавковой камере карбюратора. Для этого при работающем на бензине двигателе переключить клавишу «Газ-Бензин» из положения «Бензин» в нейтральное положение и подождать 15–20 сек, пока двигатель не начнет работать с перебоями. Только после этого можно перейти в режим «Газ». Переключение с газа на бензин можно осуществлять, минуя нейтральное положение клавиши.
   Вышеуказанные операции следует проводить только при работающем двигателе на месте или в движении.
   На некоторых моделях отечественных газовых систем устанавливались переключатели с четырьмя фиксированными положениями. Четвертое положение отвечало за режим впрыска газа в карбюратор с целью обогащения смеси.
   Этим режимом пользуются также для пуска холодного двигателя сразу на газовом топливе или после длительной стоянки, если двигатель не пускается с первого раза. Продолжительность нажатия на кнопку 1–2 сек, число нажатий перед пуском 2–3 раза.
 
    Внимание!Переключать двигатель в режим «Газ» в холодное время года (при температуре воздуха от –5 °C и ниже) допускается только после прогрева двигателя на бензине до 40–50 °C.
   В холодное время года перед продолжительной парковкой автомобиля за 150–200 м до остановки следует переключать двигатель на бензин.
 
    СМЕСИТЕЛЬ– это устройство, обеспечивающее приготовление газовоздушной смеси в соотношении примерно 1:14 (газ: воздух). Смесители различаются по конструкции и по принципу работы. Поэтому для определенной марки двигателя следует выбирать соответствующий смеситель.
   Наиболее простым типом смесителей является газовый штуцер (рис. 17) в сочетании с карбюраторами типа «Солекс» и «Вебер» производства Дмитровградского автоагрегатного завода.
   Рис. 17. Газовый штуцер и его установка в карбюраторе.
 
   При монтаже штуцеров в стенках и диффузорах первой и второй камер карбюраторов просверливают два отверстия диаметром 8 мм в местах наибольшей скорости истечения газов, т. е. в самых узких местах диффузоров. Далее нарезают резьбу М10 и ввинчивают штуцеры до центра диффузоров так, чтобы их конусы были направлены вниз, как показано на рисунке. На штуцерах крепят хомутами газоподводящие патрубки. Такой карбюратор-смеситель обеспечивает относительную стабильность регулировочных характеристик холостого хода двигателя.
   В автомобилях, оборудованных системой впрыска топлива, используют специально сконструированные смесители кольцевого типа, устанавливаемые в воздушном канале перед дроссельной заслонкой (рис. 18).
   Рис. 18. Установка смесителя для двигателей с системой впрыска топлива.
 
   При проектировании смесителей принимают в расчет диаметр воздушного канала перед дроссельной заслонкой, объем двигателя и конструкцию датчика расходомера воздуха.
   Рис. 19. Газовые смесители для двигателей с системой впрыска топлива.
 
   Использование смесителей кольцевого типа (рис. 19) облегчает подбор смесителя индивидуально для каждого впрыскового двигателя. В настоящее время изготавливаются разнообразные смесители для более, чем трех десятков типов автомобилей отечественного и иностранного производства. Смесители обеспечивают эксплуатационные и динамические характеристики автомобилей, работающих на газе, минимально отличающиеся от тех же характеристик при работе двигателя на бензине.
 
    ФОРСУНКИ– применяются для подачи газа в цилиндры двигателя, выполнены в виде трубок с определенным внутренним сечением, зависящим от литража двигателя. Они устанавливаются при переоборудовании под газовое топливо двигателей с распределенным впрыском. Их располагают в непосредственной близости с бензиновыми форсунками.

Типовая схема установки газобаллонного оборудования для легкового автомобиля с карбюраторным двигателем

   В состав оборудования, устанавливаемого на автомобиль, для работы двигателя на сжиженном нефтяном газе (ГСН), входят следующие элементы (рис. 20): баллон (1), фланец (2), к которому прикреплен блок запорно-предохранительной арматуры (3).
   Рис. 20. Схема газобаллонной установки для работы на газе сжиженном нефтяном: 1 – баллон для ГСН; 2 – фланец; 3 – блок запорно-предохранительной арматуры с заправочным устройством и вентиляцией; 4 – шланг к штуцеру водяного насоса; 5 – винт регулировки давления во второй ступени редуктора; 6 – редуктор-испаритель низкого давления; 7 – электромагнитный бензиновый клапан; 8 – шланг подачи бензина; 9 – смеситель; 10 – карбюратор; 11 – винты регулировки; 12 – шланг газовый низкого давления; 13 – переключатель вида топлива; 14 – электромагнитный клапан; 15 – электрическая цепь; 16 – шланг подачи теплой воды от отопителя салона; 17 – вакуумный шланг; 18 – замок зажигания; 19 – предохранитель; 20 – аккумулятор; 21 – катушка зажигания; 22 – электромагнитный газовый клапан с фильтром; 23 – газопровод высокого давления.
 
   Из баллона по гибкому медному (или стальному) газопроводу (23) высокого давления (диаметром 6х1 мм) газ поступает в электромагнитный газовый клапан с фильтром (22).
   Газопровод от баллона до моторного отделения укладывают под днищем автомобиля параллельно бензопроводу и фиксируют крепежными скобами с помощью саморезов. Перед подключением к электромагнитному газовому клапану (22) трубопровод снабжают компенсационным устройством (виток трубки диаметром 80 мм), предохраняющим трубопровод от поломок.
   Электромагнитный газовый клапан, редуктор-испаритель, смеситель и электромагнитный бензиновый клапан устанавливают в подкапотном пространстве. От электромагнитного газового клапана трубопровод проводят у месту входа газа в редуктор (6). В местах, особо подверженных трению или удару, газопровод высокого давления облицовывают хлорвиниловым или резиновым шлангом.
   Соединение редуктора со смесителем (9), устанавливаемого на карбюраторе, производят посредством гибкого армированного шланга (12).
   Редуктор монтируют как можно ближе к смесителю и соединяют со смесителем без резких изменений направления соединительного шланга.
   Резиновым вакуумным шлангом (17) соединяют патрубок холостого хода редуктора с патрубком карбюратора (или впускным трубопроводом).
   Связь бензонасос – карбюратор осуществляется армированным, бензостойким шлангом (8), проходящим от бензонасоса до электромагнитного бензинового клапана (7), и далее – к карбюратору (10).
   Для подогрева газа в редукторе разрезают шланг, соединяющий отопитель салона с насосом системы охлаждения двигателя, и подводят к нижнему патрубку редуктора, так как теплая вода должна поступать в редуктор снизу. Верхний патрубок отвода воды из редуктора соединяют шлангом (4) с водяным насосом.
   При пуске двигателя газ из редуктора под воздействием разрежения, возникающего во всасывающем тракте двигателя, по шлангу, соединяющему редуктор с дозатором газа (6) рис. 21, обеспечивающим автоматическое регулирование количества газа, подается в карбюраторно-смесительную проставку (5) (в зависимости от режима работы двигателя – холостой ход, частичные нагрузки и полная мощность), что обеспечивает экономичное протекание рабочего процесса.