Примечательно, что все остальные теплокровные функционируют практически в том же температурном диапазоне. Лошадь, овца и бык работают при 39 градусах, свинья – при 39,7, кролик – при 39,8; у обезьян температура 38,1 градуса, у птиц она повыше и переваливает за «сороковку»… То есть практически все теплокровные существа работают в довольно узком диапазоне температур – от 36 до 42 градусов Цельсия.
   Почему? Биологи ответа на этот вопрос не знают. Потому как ответ лежит вне рамок биологии. И даже вне рамок химии. Он – в физике. Дело тут в свойствах основного теплоносителя – воды, ведь 70 % нашего тела состоит из нее, родимой. Вода является главным аккумулятором тепла в нашем теле – точно так же, как океаны являются главным аккумулятором тепла для планеты в целом.
   А вода имеет одно интересное свойство (точнее, не одно, но о других парадоксальных свойствах воды мы поговорим позже): ее теплоемкость экстремально зависит от температуры. Вы, конечно же, помните, что такое удельная теплоемкость вещества, – это количество энергии (в калориях), которое нужно вбухать в килограмм этого вещества, чтобы повысить его температуру на 1 градус. Теплоемкость воды вообще чудовищна, она в разы выше, чем у других веществ. Прекрасный накопитель тепла!
   Так вот, теплоемкость воды минимальна в диапазоне температур от 36 до 40 градусов. Именно в эту потенциальную ямку и закатились теплокровные организмы. Поняли, в чем суть? Нам все время надо подогреваться – поддерживать температуру тела выше температуры окружающей среды. Иными словами, нам все время нужно греть воду. И выгоднее всего делать это в означенном диапазоне температур, потому что для нагрева килограмма воды при температуре 37 градусов требуется меньше всего энергии. Энергетически это самая выгодная для поддержания температура. Любой конструктор сделал бы то же самое, проектируя «движок» млекопитающих.
   Так что знание физики для понимания человеческой сути – штука немаловажная! Поэтому в 1992 году в МГУ был открыт факультет фундаментальной медицины, где готовят редких специалистов – врачей со знанием фундаментальных наук: физики, химии, математики, молекулярной биологии. Там проводятся семинары по «медицинской физике», и никого это уже не удивляет. Правда, как я понял, основная идея создания подобного факультета заключалась в том, что в медицину нынче приходит довольно сложное оборудование, основанное на физических принципах, – ультразвуковое, лазерное… Известный ныне всем томограф, например, основан на эффекте ядерно-магнитного резонанса, то есть «резонансного поглощения электромагнитной энергии веществом, содержащим ядра с ненулевым спином во внешнем магнитном поле, обусловленного переориентацией магнитных моментов ядер». И хотелось бы, чтобы врачи хотя бы в общих чертах, так сказать, понимали, о чем речь, а то ведь они пользуются этими штуками, как обыватель телевизором, – включают и выключают, а что внутри и как работает – бог весть.
   А ведь когда-то физику и медицину создавали одни и те же люди, их тогда еще называли естественниками! И разделение между ними произошло не более полутора сотен лет назад.
   Мало кто знает, что Томас Юнг, которого мы все с вами проходили в школе на уроках физики в разделе о волновой природе света, был врачом.
   Уильям Гилберт, которого называют отцом электромагнитных исследований, был придворным врачом при дворе Елизаветы I. Он изобрел электроскоп, ввел в науку понятие магнитного полюса и выпустил в 1600 году фундаментальный труд «О магните, магнитных телах и великом магните Земли».
   Герман Гельмгольц, который разработал термодинамическую теорию химических процессов, ввел понятие свободной энергии, заложил основы вихревой гидродинамики и прописал на языке математики закон сохранения энергии, закончил Военно-медицинский институт в Берлине и работал эскадронным хирургом гусарского полка в Потсдаме, а диссертацию защитил по строению нервной системы. Именно он открыл нейроны, и было ему на тот момент всего 22 года.
   Какие люди! Глыбы!.. И перечислять эти глыбы можно долго.
   Каждому школьнику известен маятник Фуко, но не каждый школьник знает, что Фуко был дипломированным врачом… Такие фундаментальные для физики понятия, как температура и градус, ввел в обиход античный медик Клавдий Гален… В гидродинамике динамическую вязкость измеряют в пуазах в честь французского врача Жана Пуазейля… В механике вал, передающий крутящий момент под углом, назван в честь его изобретателя – итальянского доктора Джироламо Кардано… Знаменитый медик Сеченов открыл закон растворимости газов в водной среде в зависимости от присутствия в ней электролитов…
   Да, были люди… Не то, что нынешнее племя! Нынче все чаще можно услышать слова о кризисе в науке, которая слишком обузилась, потеряла широту охвата, а ведь только с больших высот соседних наук можно уловить некие общие тенденции, действующие и в твоей родной специальности. Разве построил бы свою замечательную металлогидридную теорию геолог Владимир Ларин (кто не в курсе, читайте мою книгу «Верхом на бомбе»), если бы не поднялся из глубин геологии до высот астрофизики и физики электромагнетизма?
   К сожалению, современные студенты и школьники любят лениться и задаваться вопросом: «А зачем мне это надо?» Зачем, мне, врачу, знание физики?.. Зачем мне, гуманитарию, математика?.. Для чего мне, биологу, квантовая механика?..
   Доктор биологических наук Юрий Петренко описывал случай, как студенты-медики упомянутого выше факультета фундаментальной медицины писали контрольную по фотобиологии. Фотобиология изучает взаимодействие электромагнитного излучения с веществом, это стык физики и химии с уклоном в молекулярную биологию. Считается весьма перспективным направлением в борьбе с онкологическими болезнями. Так вот, контрольную студенты-медики завалили – почти половина получила двойки. Несмотря на то, что все вопросы были в рамках уже прослушанных ими лекций. Но лекции были студентами прослушаны в самом прямом смысле этого слова: вся информация пролетела мимо их ушей – они просто не посчитали нужным углубляться в физическую сущность процессов фотосинтеза. При дальнейшем разбирательстве выяснилось: хуже всего работу написали те, у кого в школе были нелады с физикой.
   «В стопке контрольных работ мне попался листок со стихами, – отмечал Петровский. – Студентка, не сумевшая ответить на вопросы, в поэтической форме… восклицала: “Что делать? Ведь мы – медики, нам формул не понять!”»
   А потом они нас лечат…
   Тем любопытнее смотреть на людей, которые ушли в сторону и вверх, чтобы обозреть свою или соседнюю кочку с высоты птичьего полета.

Глава 1
Кровь, текущая по трубам

   Господь живет на 12-м этаже, на улице Молдагуловой. Один глаз у него не видит, а второй видит плохо, поэтому Создатель нашаривает на столе очки с толстыми линзами, отломанная дужка которых примотана изолентой, надевает их, берет карандаш и начинает проектировать Адама. Точнее, его сердечно-сосудистую систему. Ему это сделать несложно, поскольку образование у Создателя человека соответствующее – он инженер-гидравлик.
   На свете существует небольшое число увлеченных граждан, на которых держится мир. Один конструирует в сарае самобеглую коляску; другой у себя дома в перерыве между приемом пациентов проводит опыты с электричеством; третий размышляет о вопросах бытия; четвертый – сумасшедший, одинокий, заросший бородой, живущий в убитой хрущовке, с нестриженными ногтями – всю жизнь бьется, чтобы доказать никому не нужную математическую теорему, к середине жизни доказывает ее и потом отказывается от призового миллиона долларов.
   Все лучше, чем водку пить…
   Когда я зашел в жилище к Ивану Голованову, на меня пахнуло душным теплом. Право, даже на лестничной площадке было прохладнее! Я сразу покрылся потом и затосковал о своей кондиционированной квартире. Небывалая жара стояла уже больше месяца, Москва изнывала от торфяной гари, и было невозможно спать ночью: нагретый за день бетон всю ночь отдавал в квартиры тепло, нарушая сон сердечников и мучая стариков.
   В этой однокомнатной квартире пахло старостью. И пылью. Застекленный балкон завешан какими-то разнокалиберными разноцветными тряпками, закрывающими от солнца, окна открыты, а в комнате тарахтит старинный вентилятор 60-х годов XX века, развевая тюлевую занавеску. На кухне двухконфорочная плита, стол с клеенкой, немытая посуда в раковине. В доме царит неухоженность, присущая старым людям, когда на красоту и уборку уже не хватает сил и организм смиряется с пылью, с захламленностью – хватило бы сил только на себя.
   В квартире живут двое стариков – Иван Иванович Голованов и его очень больная супруга. Она практически не видит. И плохо ходит. Но хорошо слышит. И когда я стреляю в Ивана Ивановича жесткими вопросами, она не выдерживает и выходит из-за небольшой перегородочки, которой старики разделили свою однокомнатную квартиру, чтобы выделить «спальню», и начинает помогать ему:
   – Ты все не так объясняешь! Скажи про вот это…
   И тогда Голованов пытается объяснить по-другому, открывая какие-то схемы и подсовывая мне новые графики. Он говорит, а я украдкой оглядываю тесное пространство вокруг, загроможденное книгами, стопками пожелтевших листов, десятками старинных сувенирчиков и пыльных безделушек, подаренных кем-то когда-то на протяжении долгой жизни. Они не нужны. Но их жалко выкинуть. Старики никогда ничего не выкидывают. Выкидывают потом наследники, вынося в огромных крафтовых пакетах к мусорным бакам то, что уже никогда никому не понадобится…
   У них за плечами целая жизнь. О которой можно долго рассказывать.
   – Вы не думайте, что он у меня дурачок, – пытается защитить своего мужа беззубая старушка. – Он был один из тех, кто остановил поворот северных рек в Азию!
   – Было такое, я писал отрицательное заключение на этот проект, – кивает Голованов. – Добро бы, если б они сделали накопительное водохранилище многолетнего регулирования и паводковый сток сбрасывали в Азию. А то ведь они хотели Иртыш завернуть и противотоком погнать в Казахстан, а он – главный приток Оби, значит, и Обь обмелела бы.
   – Да все равно эти реки на северах никому не нужны, – машу я рукой, вспоминая эту позднеперестроечную историю. – Бездарно сливаются в океан.
   – Вот и нам так отвечали! Вы это бросьте – «не нужны»… Это наша вода! Мы ведь о будущем думали. Теперь вот Азия отделилась, а реки нам самим пригодятся, в XXI веке пресная вода станет самым дефицитным товаром, она будет дороже газа и нефти. Я-то уж не доживу, но мне спокойно, что ресурс сохранили. Будет, что продавать. Это же миллиарды стоит!
   Я киваю и продолжаю оглядывать бедное стариковское жилье. На стенках висят бледно-коричневые фотографии с лицами пятидесятых годов. Оказывается, супруга Голованова была когда-то весьма симпатичной женщиной. Как меняет людей старость, как уродует, – вот бы ее отменить!.. Супруга, как и ее муж, по специальности инженер-гидравлик. И сейчас, поскольку то ли понимает его правоту в «сердечном вопросе», то ли просто жалеет, поддерживает мужа в его борьбе с официальной наукой и эмоционально переживает все его неудачи. Пока глаза видели, она переводила его работы на английский. Но все тщетно.
   – Это никому не нужно! – порой, отчаянно махая рукой, восклицает Иван Иванович. – Они отвергают одну мою статью за другой просто потому, что не понимают физики процессов!.. Мне жена, у которой сердце за меня болит, говорит: да что ты все человечество спасаешь! Подумай лучше обо мне! И я понимаю, что она права. Нужно думать о своих близких, о семье. Брошу все…
   Он так говорит, но я знаю, что не бросит, и когда я уйду, старик снова уставится в компьютер через толстые очки зрячим глазом и, стукая по клавиатуре одним пальцем, будет набирать в журнал «Кардиология» очередную ненужную статью, формул и посылов которой медики все равно не поймут. Это же не статья про корвалол, это – физическая теория сердца.
   Сидя на скрипучем, рассохшемся стуле и обливаясь потом от духоты, я понимаю, насколько тяжело будет старикам пережить это лето.
   – Вчера утром недоглядели, проспали, и в открытые окна дым налетел, – жаловался Голованов. – Дышать было нечем…
   Увлекся системой кровообращения советский инженер Голованов не от хорошей жизни. Умирал от инсульта его тесть-врач, умирал тяжело, страдая от пролежней, и вот тогда-то Иван Иванович и задумался о роли крови и подводящей кровь системы в человеческом организме. В этой книге будет достаточно подобного рода людей – которые ринулись покорять вершины не от хорошей жизни, а потому что приперло. Это очень характерно для смелой советской интеллигенции – вторгаться в незнакомые области и копать, копать новую область знания с упорством неофита и багажом смежной науки, чтобы потом обнаружить нечто необычное и… убить остаток жизни на доказывание очевидного и бесконечные поношения.
   – Когда я со своими знаниями гидравлики начал читать медицинские книжки о работе сердца, то сразу понял: существующая теория сердца полностью неверна, – раскладывает передо мной графики Голованов.
   Надо сказать, что в эпоху, когда жили титаны, о коих я писал выше, – в далеком и великом XIX веке, – эти самые титаны, врачи-физики писали целые трактаты, в которых пытались выстроить теорию работы сердца.
   – Вот один из них, – Голованов протягивает мне тяжеленький том. – Тут шестьсот страниц, сплошные формулы, интегралы, дифференциалы. И все это уже устарело, поскольку базовая посылка оказалась неверна: с тех пор появились новые данные о человеческом организме, которые весь этот труд перечеркивают…
   А в XX веке у людей как-то пропал интерес к написанию книжек с интегралами о человеческом организме. Наука о человеке ушла в сторону химии и ее производной – фармацевтики. А физика осталась где-то на обочине. В стороне. А зря!
   Читатель, напряженно внимая автору и стараясь уловить его мысль, может не выдержать: да в чем же тут прикол? Сердце – простейшая вещь, обычный насос для перекачки крови! Даже если в теории есть какие-то мелкие нестыковки, какая нужда их исправлять, ведь сердце – не ракета, которую надо построить и запустить. Оно уже существует и прекрасно работает – вне зависимости от того, есть у нас общая теория сердца или нет.
   А вот не скажите! Не зря же говорят: нет ничего практичнее хорошей теории. Поскольку хорошая теория может указать на ошибки, которые мы делали рашыпе, руководствуясь прежней, неправильной теорией.
   Итак, что мы знаем о сердце и о сосудах, если отбросить любовно-поэтические бредни о вместилище чувств?..
   Улетев в далекое эволюционное прошлое планеты, мы увидим одноклеточные организмы, плавающие в соленой морской воде. Им хорошо! Они свободно кушают, ловя питательные вещества прямо из окружающей среды и туда же, в среду, выделяют отходы своей жизнедеятельности. Никаких проблем. Но потом начали возникать существа многоклеточные. Медузы всякие, человек… Человек, как создание многоклеточное, есть «государство одноклеточных» – сверхорганизм со своей специализацией клеток-индивидов. Одни клетки – гончары, другие кузнецы, третьи повара, четвертые ассенизаторы, пятые воины. А специализация – как на уровне организма, так и на уровне государства – предполагает определенные функциональные ограничения для индивидов, их неуниверсальность. Воин уже не добывает сам себе пропитание, это за него делает крестьянин. А доставляют воину еду торговцы. А посуду делают гончары. Утилизацией своих отходов гончар не озабочен, для этого строители построили ему канализацию, которую обслуживают специальные люди. Другие люди следят за состоянием акведуков, обеспечивающих город чистой водой – основой жизни. Сам воин вкупе с другими воинами перебрасывается к месту сражения по дорогам, которые строили инженеры. Цивилизация не может существовать без транспортных артерий, без каналов поступления и сброса. Организм, как «цивилизация клеток», тоже.
   Едва природа начала слеплять одноклеточные организмы в одну кучу, она столкнулась с проблемой физической тесноты: если клетки прилеплены друг к другу, они уже не плавают вольно в окружающей среде. Стало быть, глубинным клеткам как-то нужно доставлять питание – в централизованном порядке. И токсичные отходы жизнедеятельности отводить тоже централизованно, что даже важнее, поскольку без питания реально протянуть какое-то время на голодном пайке, а вот отравиться отходами можно в одночасье. Если кругом теснота, вопрос отходов начинает играть критическую роль. В противном случае мы получим то, что не раз получали в средневековых городах, где дерьмо текло по канавам, а жители спокойно выплескивали содержимое ночных горшков на улицы, – мы получим эпидемии. Которые порой просто выкашивали целые города. Редко средневековые полисы вымирали от голода. А вот от эпидемий – сплошь и рядом.
   Внедрение канализации в Лондоне XIX века позволило сократить смертность в разы. Аналогичный эффект наблюдался и в других местах. Недаром Бостонский комитет по вопросам здоровья в 1869 году отмечал: «Цивилизованный человек не может найти для себя задачи благородней, чем приступить к реформе канализации». Так прогрессивное человечество, уже овладевавшее электричеством, пришло к пониманию идеи, важность которой осознали еще древние римляне, создавшие благодаря этому пониманию величайшую цивилизацию. У римлян не было ни электричества, ни ньютоновской механики, но уровень жизни в Римской республике был таков, что человечество достигло его после краха империи только к XIX веку. И не слишком большим преувеличением будет сказать, что цивилизация начинается с канализации. Это не шутка, потому что великая цивилизация – это городская цивилизация, цивилизация большого города. А город не может преодолеть некоей критической величины, не наладив централизованного удаления отходов. Так же как многоклеточный организм не может вырасти более комочка слизи, не создав внутри себя системы транспортных каналов.
   Канализация была в Риме, Древнем Египте, Вавилоне, Мохенджодаро. Тысячи лет назад, при довольно низком уровне науки и техники, еще до наступления железного века, человечество тем не менее достигло высочайших уровней полета духа – благодаря канализации.
   За всю историю человечества нехватка чистой воды и отсутствие отвода шлаков унесли больше жизней, чем все войны и революции вместе взятые. Современные международные документы не зря декларируют: «В начале XXI века нарушение права человека на чистую воду и канализацию разрушает человеческий потенциал в эпических масштабах». В эпических!.. В дальнейшем мы увидим, что нарушение канализации внутри клеточных государств приводит к разрушениям не менее эпическим, только для организма.
   Все в этом мире имеет свои положительные и отрицательные стороны. Усложнение тоже. Жизнь всех клеток многоклеточного организма зависит от нормального функционирования части клеток. Непорядок в каком-нибудь одном месте может убить весь организм, что мы наблюдаем на примере раковой опухоли – взбесившихся клеток, убивающих человека.
   То же самое с государствами. Город – концентратор богатства и ума. Но для его обитателей теснота представляет опасность, что мы наблюдаем на примере средневековых городов, не имевших канализации. Город концентрирует в себе и худшее, и лучшее. Жизнь селянина более здоровая. Он – как клетка в океане. Его отходы ему не угрожают, ибо поглощаются средой, а его пища всегда свежая. Горожанина же травит смог, болезни скученности и обилие нечистот.
   Но именно городу, как концентратору цивилизации (знаний, изобретений, лучших лекарств, богатства), удалось резко продлить среднюю продолжительность жизни. И если посмотреть на график детской смертности в том же Лондоне, видно, как резко она скакнула вниз после проведения масштабных работ по строительству городской канализации в конце позапрошлого века. Тогда же подскочила и продолжительность жизни: люди просто перестали отравляться собственными фекалиями!
   Темза перестала вонять. Парламент перестал закрывать окна во время заседаний, чтобы уберечься от этого зловония. До строительства канализации уровень детской смертности в самой передовой стране мира – Англии – был таким же, как сегодня в Нигерии. Ничуть не отставали от Лондона крупные города США – там младенческая смертность была еще выше. Дети умирали в основном от дизентерии. Эпидемии тифа, холеры с завидной регулярностью охватывали американские города, в которых вымирала заметная часть населения. В Чикаго, например, все городские стоки без всякой очистки сливались в озеро Мичиган, откуда город брал питьевую воду. Что сбрасывали, то и пили – в самом буквальном смысле слова…
   К чему был этот экскурс в историю канализации? А просто я хочу, чтобы у вас в голове осталась эта картинка – организм, буквально купающийся в собственных нечистотах и поедающий их. И отравляющийся ими. Эта яркая картинка вам потом пригодится.
   В общем, если вы, как Главный конструктор, создаете сложную жизнь из кубиков одноклеточных, вам в вашем первом пробном комочке протоплазмы нужно предусмотреть специальные каналы для транспортировки – туда и обратно. Это будет кровеносная система. По ней пустим баржи, доставляющие товарный кислород до потребителя. Это будут эритроциты. А еще, раз уж у нас теперь есть система путей, пустим по ней боевые отряды лейкоцитов, чтобы быстро перебрасывать в нужное место войска для борьбы с внутренним или вторгшимся врагом.
   Но одних внутренних рек мало. Для того чтобы жидкость в каналах двигалась, эволюции нужен был насос, и она такой насос сделала. Причем сделала по всем законам техники – получился отличный такой насосик, как из магазина, – спаренный, двухступенчатый, с клапанами и манжетами.
   Сердце.
   Со школы мы все знаем, что сердце прокачивает по телу кровь. От сердца ярко-красная, насыщенная кислородом кровь идет по артериям, разветвляясь по более узким руслам вплоть до капилляров. Таким образом происходит транспорт кислорода и питательных веществ к клеткам нашего тельца. Затем по венам негожая темно-красная, почти черная кровь, насыщенная углекислым газом и продуктами клеточного распада, движется обратно к насосу, забегая по пути в легкие и печень с почками, где происходит газообмен и очистка «канализационных стоков» соответственно. Все просто…
   Но просто только в идее. А вот с реализацией неожиданно возникают трудности. Которые и пытается разрешить Творец с улицы Молдагуловой. Старик протягивает мне листки с цифрами, а его жена, держась за стул, стоит рядом и переживает за него.
   – Не получается! Общая длина сосудов в человеческом теле достигает 100 тысяч километров, – делится знаниями инженер-физиолог. – А мощность сердца – всего от 3 до 10 ватт. Вы здесь никакой нестыковки не видите?
   Нестыковку я вижу, но молчу, ожидая продолжения.
   – Подобное соотношение не отвечает элементарным гидромеханическим законам! Имея такую мизерную мощность, продавить густую жидкость по десяткам тысяч (!) километров трубок просто невозможно!..
   – Капилляры сами засасывают, – кидаю я.
   – Хм… У одного из теоретиков физиологии я нашел такую фразу: «Сопротивление венозному притоку крови в сердце не может быть выражено количественно». Это написано в трехтомнике Шмидта и Тевса «Физиология человека». И меня как гидромеханика, помню, написанное немало удивило! Кровеносная система – та же водопроводная или канализационная сеть, то есть сплошные трубы. Никаких проблем с расчетом трубопроводных сетей у человечества давно нет – построены миллионы километров трубопроводов! Спрашивается, почему гидродинамическое сопротивление стальных труб измерить можно элементарно, а сопротивление кровеносных сосудов нельзя? Что за мистическое отношение такое? Я решил разобраться…
   – Похвальное желание, – одобрил я, устроился поудобнее и, как говорят в Интернете, запасся попкорном.
   Голованов мой интерес почувствовал. Его глаза тоже загорелись:
   – Многие врачи, которые сердцем не занимаются, считают, что с теорией кровообращения все в порядке. У других есть подозрение, что теория выстроена не до конца. А вот некий Джон Марпл вообще полагает, что здесь конь не валялся, и решение проблемы кровообращения достойно Нобелевской премии… Давайте для начала посмотрим на то устройство, которое занимается прокачкой жидкости в нашем организме. Сердце давно и хорошо изучено, оно состоит из нескольких отделов – желудочки, предсердия… Но с инженерной точки зрения сердце – это просто комплекс из двух спаренных насосов, каждый из которых имеет всасывающую и нагнетательную часть. Один насос стоит в артериальной части, другой – в венозной. То есть мы имеем как бы два сердца – правое и левое. Каждое сердце состоит из двух насосов – в медицине они называются предсердием и желудочком. Медики не знают, почему конструкция именно такая, и до сих пор спорят, зачем нужно предсердие, если основную перекачку осуществляет желудочек, но как технарь я вижу перед собой самой обычный двухступенчатый насос. Предсердие – всасывающая линия, желудочек – нагнетательная. И если врачи хотят понять, почему все так устроено, пусть почитают о преимуществах двухступенчатых насосов перед одноступенчатыми.