А. и анализ развивались в 17-18 вв. в тесной связи. В А. проникали функциональные представления, в этом направлении её обогатил И. .С другой стороны, А. принесла анализу свой богатый набор формул и преобразований, игравших большую роль в начальный период интегрального исчисления и теории дифференциальных уравнений. Крупным событием в А. этого периода было появление курса алгебры Л. ,работавшего тогда в Петербургской академии наук. Этот курс вышел сначала на русском языке (1768-69), а затем неоднократно издавался на иностранных языках. Отличие А. от анализа в 18-19 вв. характеризуется тем, что А. имеет своим основным предметом прерывное, конечное. Эту особенность А. подчеркнул в 1-й половине 19 в. Н. И. ,назвавший свою книгу «Алгебра, или Вычисление конечных» (1834). А. занимается основными операциями (сложение и умножение), производимыми конечное число раз.

  Простейшим результатом умножения является одночлен, например 5a 3bx 2y. Сумма конечного числа таких одночленов (с целыми степенями) называется .Если обратить внимание на одну из входящих в многочлен букв, например x, то можно придать ему вид: a 0x n+ a 1x n-1+ ... + a n, гдекоэффициенты a o, a 1, ...., a nуже не зависят от х. Это - многочлен n-йстепени (другое наименование - полином, целая рациональная функция). А. 18-19 вв. и есть прежде всего А. многочленов.

  Объём А., т. о., оказывается значительно уже, чем объём анализа, но зато простейшие операции и объекты, составляющие предмет А., изучаются с большей глубиной и подробностью; и именно потому, что они простейшие, их изучение имеет фундаментальное значение для математики в целом. Вместе с тем А. и анализ продолжают иметь много точек соприкосновения, и разграничение между ними не является жёстким. Так, например, анализ перенял от А. её символику, без которой он не мог бы и возникнуть. Во многих случаях изучение многочленов, как более простых функций, пролагало пути для общей теории функций. Наконец, через всю дальнейшую историю математики проходит тенденция сводить изучение более сложных функций к многочленам или рядам многочленов: простейший пример - .С другой стороны, А. нередко пользуется идеей непрерывности, а представление о бесконечном числе объектов стало господствующим в А. последнего времени, но уже в новом, специфическом виде (см. ниже - Современное состояние алгебры).

  Если приравнять многочлен нулю (или вообще какому-либо определённому числу), мы получим алгебраическое уравнение. Исторически первой задачей А. было решение таких уравнений, т. е. нахождение их корней - тех значений неизвестной величины х,при которых многочлен равен нулю. С древних времён известно решение квадратного уравнения х 2+ px + q =0в виде формулы:

  Алгебраическое решение уравнения 3-й и 4-й степеней было найдено в 16 в. Для уравнения вида x 3+ px + q =0 (к которому можно привести всякое уравнение 3-й степени) оно даётся формулой:

 Эта формула называется формулой Кардано, хотя вопрос о том, была ли она найдена самим Дж. или же заимствована им у других математиков, нельзя считать вполне решенным. Метод решения алгебраических уравнений 4-й степени указал Л. .После этого начались настойчивые поиски формул, которые решали бы уравнения и высших степеней подобным образом, т. с. сводили бы решение к извлечениям корней («решение в радикалах»). Эти поиски продолжались около трёх столетий, и лишь в начале 19 в. Н. и Э. доказали, что уравнения степеней выше 4-й в общем случае в радикалах не решаются: оказалось, что существуют неразрешимые в радикалах уравнения n-йстепени для любого n,большего или равного 5. Таково, например, уравнение x 5- 4x - 2 = 0. Это открытие имело большое значение, т. к. оказалось, что корни алгебраических уравнений - предмет гораздо более сложный, чем радикалы. Галуа не ограничился этим, так сказать, отрицательным результатом, а положил начало более глубокой теории уравнений, связав с каждым уравнением подстановок его корней. Решение уравнения в радикалах равносильно сведению первоначального уравнения к цепи уравнений вида: y m = а, которое и выражает собой, что

  Сведение к таким уравнениям оказалось в общем случае невозможным, но возник вопрос: к цепи каких более простых уравнений можно свести решение уравнения заданного? Например, через корни каких уравнений корни заданного уравнения выражаются рационально, т. е. при помощи четырёх действий - сложения, вычитания, умножения и деления. В таком более широком понимании продолжает развиваться вплоть до нашего времени.

  С чисто практической стороны для вычисления корней уравнения по заданным коэффициентам не было особой необходимости в общих формулах решения для уравнений высших степеней, т. к. уже для уравнений 3-й и 4-й степеней такие формулы практически мало полезны. пошло иным путём, путём приближённого вычисления, тем более уместным, что на практике (например, в астрономии и технике) и сами коэффициенты обычно являются результатом измерений, т. е. известны лишь приближённо, с той или иной точностью.

  Приближённое вычисление корней алгебраических уравнений является важной задачей вычислительной математики, и к настоящему времени разработано огромное число приёмов её решения, в частности с использованием современной вычислительной техники. Но математика состоит не только из описания способов вычисления. Не менее важна - даже для приложений - другая сторона математики: уметь чисто теоретическим путём, без вычислений, дать ответ на поставленные вопросы. В области теории алгебраических уравнений таким является вопрос о числе корней и их характере. Ответ зависит от того, какие числа мы рассматриваем. Если допустить положительные и отрицательные числа, то уравнение 1-й степени всегда имеет решение и притом только одно. Но уже квадратное уравнение может и не иметь решений среди т. н. действительных чисел; например, уравнение x 2+ 2 =0 не может быть удовлетворено ни при каком положительном или отрицательном х,т. к. слева всегда окажется положительное число, а не нуль. Представление решения в виде

 не имеет смысла, пока не будет разъяснено, что такое квадратный корень из отрицательного числа. Именно такого рода задачи и натолкнули математиков на т. н. мнимые числа. Ещё раньше отдельные смелые исследователи ими пользовались, но окончательно они были введены в науку только в 19 в. Эти числа оказались важнейшим орудием не только в А., но и почти во всех разделах математики и её приложений. По мере того как привыкали к мнимым числам, они теряли всякую таинственность и «мнимость», почему теперь их и называют чаще всего не мнимыми, а .

 Если допускать и комплексные числа, то оказывается, что любое уравнение n-й степени имеет корни, причём это верно и для уравнений с любыми комплексными коэффициентами. Эта важная теорема, носящая название основной теоремы А., была впервые высказана в 17 в. французским математиком А. Жираром, но первое строгое доказательство её было дано в самом конце 18 в. К. ,с тех пор были опубликованы десятки различных доказательств. Все эти доказательства должны были, в той или иной форме, прибегнуть к непрерывности; т. о., доказательство основной теоремы А. само выходило за пределы А., демонстрируя лишний раз неразрывность математической науки в целом.

  Если x i-один из корней алгебраического уравнения

a 0x n+ a 1x n-1+ ... + a n= 0,

  то легко доказать, что многочлен, стоящий в левой части уравнения, делится без остатка на х - x i.Из основной теоремы А. легко выводится, что всякий многочлен n-йстепени распадается на nтаких множителей 1-й степени, т. е. тождественно:

a 0 x n+ a 1 x n-1+ ... + a n= a 0( x- x 1)( x- x 2) ... ( x- x n),

причём многочлен допускает лишь одно единственное разложение на множители такого вида.

  Таким образом, уравнение n-й степени имеет n «корней». В частных случаях может оказаться, что некоторые из множителей равны, т. е. некоторые корни повторяются несколько раз (кратные корни); следовательно, число различных корней может быть и меньше n.Часто не так важно вычислить корни, как разобраться в том, каков характер этих корней. Как пример приведём найденное еще Декартом «правило знаков»: уравнение имеет не больше положительных корней, чем число перемен знака в ряду его коэффициентов (а если меньше, то на чётное число). Например, в рассмотренном выше уравнении x 5- 4x -2 =0 одна перемена знака (первый коэффициент - положительный, остальные - отрицательные). Значит, не решая уравнения, можно утверждать, что оно имеет один и только один положительный корень. Общий вопрос о числе действительных корней в заданных пределах решается .Очень важно, что y уравнения с действительными коэффициентами комплексные корни могут являться только парами: наряду с корнем а+ biкорнем того же уравнения всегда будет и a- bi.Приложения ставят иногда и более сложные задачи этого рода; так, в механике доказывается, что движение устойчиво, если некоторое алгебраическое уравнение имеет только такие корни (хотя бы и комплексные), у которых действительная часть отрицательна, и это заставило искать условия, при которых корни уравнения обладают этим свойством (см. ).

  Многие теоретические и практические вопросы приводят не к одному уравнению, а к целой системе уравнений с несколькими неизвестными. Особенно важен случай системы линейных уравнений, т. е. системы туравнений 1-й степени с nнеизвестными:

a 11 x 1+...+ a 1n x n= b 1,

a 21 x 1+...+ a 2n x n= b 2,

...............................

a m1 x 1+...+ a mn x n= b m.

  Здесь x 1..., x -неизвестные, а коэффициенты записаны так, что значки при них указывают на номер уравнения и номер неизвестного. Значение систем уравнений 1-й степени определяется не только тем, что они - простейшие. На практике (например, для отыскания поправок в астрономических вычислениях, при оценке погрешности в приближённых вычислениях н т. д.) часто имеют дело с заведомо малыми величинами, старшими степенями которых можно пренебречь (ввиду их чрезвычайной малости), так что уравнения с такими величинами сводятся в первом приближении к линейным. Не менее важно, что решение систем линейных уравнений составляет существенную часть при численном решении разнообразных прикладных задач. Ещё Г. (1700) обратил внимание на то, что при изучении систем линейных уравнений наиболее существенной является таблица, состоящая из коэффициентов a ikи показал, как из этих коэффициентов (в случае m= n) строить т. н. ,при помощи которых исследуются системы линейных уравнений. Впоследствии такие таблицы, или ,стали предметом самостоятельного изучения, т. к. обнаружилось, что их роль не исчерпывается приложениями к теории систем линейных уравнений. Теория систем линейных уравнений и теория матриц в настоящее время стали частями важной отрасли науки - .

  (По материалам статьи А.Г. Куроша и О. Ю. Шмидта из 2-го изд. БСЭ).

  Современное состояние алгебры

 Сфера приложений математики расширяется с течением времени, и темп этого расширения возрастает. Если в 18 в. математика стала основой механики и астрономии, то уже в 19 в. она стала необходимой для различных областей физики, а ныне математические методы проникают даже в такие, казалось бы далекие от математики области знания, как биология, лингвистика, социология и т.д. Каждая новая область приложений влечёт создание новых глав внутри самой математики. Эта тенденция привела к возникновению значительного числа отдельных математических дисциплин, различающихся по областям исследования (теория функций комплексного переменного, теория вероятностей, теория уравнений математической физики и т. д.; более новые - теория информации, теория автоматического управления и т. д.). Несмотря на такую дифференциацию, математика остаётся единой наукой. Это единство сохраняется благодаря развитию и совершенствованию ряда общих, объединяющих идей и точек зрения. Тенденция к объединению лежит в существе математики как науки, пользующейся методом абстракции и, кроме того, часто стимулируется тем, что при исследовании задач, возникающих в различных областях знания, приходится пользоваться одним и тем же математическим аппаратом.

  Современная А., понимаемая как учение об операциях над любыми математическими объектами, является одним из разделов математики, формирующих общие понятия и методы для всей математики. Эту роль А. разделяет с ,в которой изучаются наиболее общие свойства непрерывных протяжённостей. А. и топология оказались, несмотря на различие объектов исследования, настолько связанными, что между ними трудно провести чёткую границу. Для современной А. характерно то, что в центре внимания оказываются свойства операций, а не объектов, над которыми производятся эти операции. Попытаемся объяснить на простом примере, как это происходит. Всем известна формула ( a+ b) 2= а 2+ 2 аb+ b 2. Её выводом является цепочка равенств: ( а+ b) 2= ( a+ b)( а+ b) = ( a+ b) a+ ( а+ b) b= ( a 2+ ba) + ( ab+ b 2) = a 2+ ( ba+ ab)+ b 2= a 2+ 2 ab+ b 2. Для обоснования мы дважды пользуемся законом :. с( а+ b) = ca+ cb(роль с играет а+ b) и ( a+ b) с= ac+ bc(роль сиграют аи b) ,закон при сложении позволяет перегруппировать слагаемые, наконец используется закон : ba= ab. Что представляют собой объекты, закодированные буквами аи b, остаётся безразличным; важно, чтобы они принадлежали системе объектов, в которой определены две операции - сложение и умножение, удовлетворяющие перечисленным требованиям, касающимся свойств операций, а не объектов. Поэтому формула останется верной, если аи bобозначают на плоскости или в пространстве, сложение принимается сперва как векторное сложение, потом как сложение чисел, умножение - как скалярное умножение векторов. Вместо аи bможно подставить коммутирующие матрицы (т. е. такие, что ab= ba, что для матриц может не выполняться), операторы дифференцирования по двум независимым переменным и т. д.

  Свойства операций над математическими объектами в разных ситуациях иногда оказываются совершенно различными, иногда одинаковыми, несмотря на различие объектов. Отвлекаясь от природы объектов, но фиксируя определённые свойства операций над ними, мы приходим к понятию множества, наделённого алгебраической структурой, или алгебраической системы. Потребности развития науки вызвали к жизни целый ряд содержательных алгебраических систем: , , , и т.д. Предметом современной А. в основном является исследование сложившихся алгебраических систем, а также исследование свойств алгебраических систем вообще, на основе ещё более общих понятий (Q-алгебры, модели). Кроме этого направления, носящего название общей А., изучаются применения алгебраических методов к др. разделам математики за её пределами (топология, функциональный анализ, теория чисел, алгебраическая геометрия, вычислительная математика, теоретическая физика, кристаллография и т. д.).

  Наиболее важными алгебраическими системами с одной операцией являются группы. Операция в группе ассоциативна [т. е. верно ( a * b) * с= а *( b * с) при любых а, b, сиз группы; звёздочкой *обозначена операция, которая в разных ситуациях может иметь разные названия] и однозначно обратима, т.е. для любых аи bиз группы найдутся единственные х, у, такие, что а * х= b, у * а= b. Примерами групп могут служить: совокупность всех целых чисел относительно сложения, совокупность всех рациональных (целых и дробных) положительных чисел относительно умножения. В этих примерах операция (сложение в первом, умножение во втором) перестановочна. Такие группы называют абелевыми. Совокупности движений, совмещающих данную фигуру или тело с собой, образуют группу, если в качестве операции взять последовательное осуществление двух движений. Такие группы (группы симметрии фигуры) могут быть неабелевыми. Движения, совмещающие с собой атомную решётку кристалла, образуют т. н. федоровские группы, играющие основную роль в кристаллографии и через нее в физике твёрдого тела. Группы могут быть конечными (группы симметрии куба) и бесконечными (группы целых чисел по сложению), дискретными (тот же пример) и непрерывными (группа вращений сферы). Теория групп стала разветвленной, богатой содержанием математической теорией, имеющей обширную область приложений. Не менее богатой приложениями является линейная А., изучающая линейные пространства. Под этим названием понимаются алгебраические системы с двумя операциями - сложением и умножением на числа (действительные или комплексные). Относительно сложения объекты (называемые векторами) образуют абелеву группу, операция умножения удовлетворяет естественным требованиям:

а( х+ у) = ax+ ау, ( а+ b) х= ax+ bx, 1Ч x= х, a( bx) = ab( x);

здесь аи bобозначают числа, хи у- векторы. Множества векторов (в обычном понимании) на плоскости и в пространстве образуют линейные пространства в смысле данного определения. Однако задачи, стоящие перед математикой, заставляют рассматривать многомерные и даже бесконечномерные линейные пространства. Последние (их элементами чаще всего являются функции) составляют предмет изучения .Идеи и методы линейной А. применяются в большинстве разделов математики, начиная с аналитической геометрии и теории систем линейных уравнений. Теория матриц и определителей составляет вычислительный аппарат линейной А.

  О других алгебраических системах, указанных выше, см. соответствующие статьи и литературу при них.

  Д. К.Фаддеев.

  Лит.: История алгебры. Выгодский М. Я., Арифметика и алгебра в древнем мире, 2 изд., М., 1967; Юшкевич А. П., История математики в средние века, М., 1961; Вилейтнер Г., История математики от Декарта до середины XIX столетия, пер. с нем., 2 изд., М., 1966.

  Классики науки. Декарт P., Геометрия, пер. с латин., М. - Л., 1938; Ньютон И., Всеобщая арифметика, или книга об арифметических синтезе и анализе, пер. с лат., М., 1948; Эйлер Л., Универсальная арифметика, пер. с нем., т. 1 - 2, СПБ. 1768 - 69; Лобачевский Н. И., Полное собрание сочинений, т. 4 - Сочинения по алгебре, М. - Л., 1948: Галуа Э., Сочинения, пер. с франц., М. - Л., 1936.

  Университетские курсы.Курош А. Г., Курс высшей алгебры, 9 изд., М., 1968: Гельфанд И. М., Лекции по линейной алгебре, 3 изд., М. , 1966: Мальцев А. И., Основы линейной алгебры, М. - Л., 1948.

  Монографии по общим вопросам алгебры.Ван-дер-Варден Б. Л., Современная алгебра, пер. с нем., 2 изд., ч. 1 - 2, М. - Л., 1947; Бурбаки Н., Алгебра, пер. с франц., [гл. 1 - 9], М., 1962 - 66; Курош А. Г., Лекции по общей алгебре, М., 1962.

  Монографии по специальным разделам алгебры.Шмидт О., Абстрактная теория групп, 2 изд., М. - Л., 1933; Курош А. Г., Теория групп, 3 изд., М., 1967; Понтрягин Л. С., Непрерывные группы, 2 изд., М., 1954; Чеботарев Н. Г., Основы теории Галуа, ч. 1 - 2, М. - Л., 1934 - 37; Джекобсон Н., Теория колец, пер. с англ., М., 1947.

Алгебра логики

А'лгебра ло'гики,раздел математической логики, изучающий высказывания, рассматриваемые со стороны их логических значений (истинности или ложности), и логические операции над ними. А. л. возникла в середине 19 в. в трудах Дж. и развивалась затем в работах Ч. ,П. С. ,Б. ,Д. и др. Создание А. л. представляло собой попытку решать традиционные логические задачи алгебраическими методами. С появлением теории множеств (70-е гг. 19 в.), поглотившей часть первоначального предмета А. л., и дальнейшим развитием математической логики (последняя четверть 19 в. - 1-я половина 20 в.) предмет А. л. значительно изменился. Основным предметом А. л. стали .Под высказыванием понимается каждое предложение, относительно которого имеет смысл утверждать, истинно оно или ложно. Примеры высказываний: «кит - животное», «все углы - прямые» и т. п. Первое из этих высказываний является, очевидно, истинным, а второе - ложным. Употребляемые в обычной речи логические связки «и», «или», «если..., то...», «эквивалентно», частица «не» и т. д. позволяют из уже заданных высказываний строить новые, более «сложные» высказывания. Так, из высказываний «х > 2», «х Ј 3» при помощи связки «и» можно получить высказывание «x>2 и х Ј 3», при помощи связки «или» - высказывание «x>2 или х Ј 3», при помощи связки «если..., то...» - высказывание «если x > 2, то х Ј 3» и т. д. Истинность или ложность получаемых таким образом высказываний зависит от истинности и ложности исходных высказываний и соответствующей трактовки связок как операций над высказываниями.

  Связки. Формулы. ВА. л. для обозначения истинности вводится символ и для обозначения ложности - символ Л. Часто вместо этих символов употребляются числа 1 и 0. Связки «и», «или», «если..., то...», «эквивалентно» обозначаются соответственно знаками & (конъюнкция), Ъ (дизъюнкция), ® (импликация), ~ (эквивалентность); для отрицания вводится знак -(чёрточка сверху). Наряду с индивидуальными высказываниями, примеры которых приводились выше, в А. л. используются также т. н. переменные высказывания, т. е. такие переменные, значениями которых могут быть любые наперёд заданные индивидуальные высказывания. Далее индуктивно вводится понятие формулы, являющееся формализацией понятия «сложного» высказывания; через А, В, С,... обозначаются индивидуальные, а через X, Y, Z ,... - переменные высказывания. Каждая из этих букв называются формулой. Если знаком * обозначить любую из перечисленных выше связок, а Б и В суть формулы, то (Б* В) и  суть формулы. Пример формулы:

  Связки и частица «не» рассматриваются в А. л. как операции над величинами, принимающими значения 0 и 1, и результатом применения этих операций также являются числа 0 или 1. Конъюнкция X&Y равна 1 тогда и только тогда (т. и т. т.), когда и Х и Y равны 1; дизъюнкция XЪY равна 0 т. и т. т., когда и Х и Y равны 0; импликация Х®Y равна 0 т. и т. т., когда Х равно 1, а Y равно 0; эквивалентность Х~У равна 1 т. и т. т., когда значения Х и Y совпадают; отрицание  равно 1 т. и т. т., когда Х равно 0. Введённые операции позволяют каждой формуле при заданных значениях входящих в неё высказываний приписать одно из двух значений 0 или 1. Тем самым каждая формула может одновременно рассматриваться как некоторый способ задания или реализации т. н. функций А. л., т. е. таких функций, на наборах нулей и в качестве значений 0 или 1. Для задания функций А. л. иногда используются таблицы, содержащие все наборы значений переменных и значения функций на этих наборах. Так, например, сводная таблица, задающая функции ` , X&Y, XЪY, X®Y и X~Y имеет вид:

XY X&Y X\/Y X®У Х~Y
00 1 0 0 1 1
01 1 0 1 1 0
10 0 0 1 0 0
11 0 1 1 1 1

Аналогично устроены таблицы для произвольных функций А. л. Это - т. н. табличный способ задания функций А. л. Сами же таблицы иногда называют истинностными таблицами.

  Для преобразований формул в равные формулы важную роль в А. л. играют следующие равенства:

(1)   X&Y = Y&X, XЪY = YЪX (закон коммутативности);

(2) (X&Y)&Z = X&(Y&Z), (XЪY)ЪZ = XЪ(YЪZ) (закон ассоциативности);

(3)   X&(XЪY) = X, XЪ (Х&У) = X (закон поглощения);

(4)   X& (YЪZ) = (X&Y)Ъ(X&Z) (закон дистрибутивности);

(5)   X& = 0 (закон противоречия);

(6)   XЪ = 1 (закон исключенного третьего);

(7) Х®Y == ЪY, Х~Y = (X&Y)Ъ( & ).

  Эти равенства, устанавливаемые, например, с помощью истинностных таблиц, позволяют уже без помощи таблиц получать др. равенства. Методом получения последних являются т. н. тождественные преобразования, которые меняют, вообще говоря, выражение, но не функцию, реализуемую этим выражением. Например, при помощи законов поглощения получается закон идемпотентности ХЪХ = X. Упомянутые равенства в ряде случаев позволяют существенно упростить запись формул освобождением от «лишних скобок». Так, соотношения (1) и (2) дают возможность вместо формул (...(Б