После этого наша пара спокойно отправляется обедать, нисколько не взволнованная революционностью полученного результата.
   Но современникам открытия Эйнштейна принятие этого вывода давалось с большим трудом.
   – Время не абсолютно!
   – Время зависит от движения наблюдателя!
   – Один и тот же процесс протекает с разной скоростью, если наблюдать за ним с разных позиций!
   Все эти формулировки одного и того же факта казались необычными, странными, противоречащими здравому смыслу. Особенно неприятно было соглашаться со следствием, вытекающим из симметрии наблюдателей: для каждого из двоих измерения своих событий приводят к меньшим цифрам. Так, Миша сообщает Пете: мой световой сигнал затратил на прохождение пути 1 микросекунду, а твой сигнал – 1.1 секунды; но Петя сообщает Мише: мой световой сигнал затратил на прохождение пути 1 микросекунду, а твой сигнал – 1.1 микросекунды. Чтобы парадокс был яснее, его можно сформулировать так: Миша устанавливает, что отстают Петины часы, а Петя – что отстают Мишины часы.
   А нельзя ли выяснить, чьи часы отстают на самом деле после того, как Миша и Петя возвратятся из своего учебного путешествия в космос? Сверить, конечно, можно, но это не способ проверки вывода специальной теории относительности, содержание которой мы сейчас излагаем. Изложенный вывод принадлежит только этой теории, которая касается, только случая равномерного прямолинейного движения. При таком движении наблюдатели могут встретиться только один раз, и проверка поведения часов может быть сделана только путем радиоразговоров.
   А что все-таки произойдет, если сверить Мишины и Петины часы после их возвращения? Будут ли часы показывать одно и то же время или какие-то уйдут вперед? Оказывается, чтобы дать ответ на этот вопрос, надо точно описать, как происходило движение обоих космонавтов по отношению к звездному небу.
   Один случай представляет особенный интерес. Предположим, что из какого-то места ушла в далекое путешествие космическая ракета, а потом через какое-то время вернулась в то же место. Перед отправлением часы на ракете и на космодроме были сверены. Вторая сверка происходит после возвращения ракеты. Можно строго доказать, что больше времени пройдет на часах космодрома. Если путешествие было очень быстрым (близким к скорости света), то на ракете могут пройти годы, в то время как на космодроме пройдут десятилетия и даже столетия.
   Но на этих занятных выводах нет возможности останавливаться подробнее. Хотелось лишь подчеркнуть, что строгое физическое рассуждение, основывающееся на бесспорных аксиомах, привело к новым взглядам на такое фундаментальное понятие, как время. Оказалось, что промежуток времени есть относительная величина, то есть с разных точек зрения время одного и того же события оказывается разным.
   Ясно, что уже и этого единственного заключения теории относительности вполне достаточно, чтобы возмутить «здравый смысл». Выслушав меня терпеливо, «здравый смысл» вступает в беседу.
   – Что за чушь: с одной точки зрения, с другой точки зрения? Это же противоречит здравому смыслу… А на самом деле сколько времени прошло?
   – Да нисколько, так спрашивать нельзя.
   – Ну, знаете! Как это – нельзя? Вздор!
   – Но, позвольте, ведь есть много вещей, про которые спрашивать нельзя. Скажем, ведь вы согласны, что бессмысленно спрашивать, какой город ближе – Ленинград или Париж. Для нас, жителей Москвы, Ленинград ближе Парижа, а население Марселя не сомневается, что Париж у них под боком, а Ленинград далековато.
   – Ну, да это совсем другое дело.
   – Другое?! Да нет, очень похожее. На вопрос, не имеющий смысла, нельзя дать ответа.
   – Но почему вопрос о том, сколько на самом деле прошло времени между выстрелом и попаданием в цель, лишен смысла? Ведь время…
   – Да, да, пожалуйста, ведь время… Вы, кажется, хотели сказать, что такое время?
   – Ведь время – это… да не спрашивайте про пустяки, всякий знает, что такое время… Ну, в конце концов время – это то, что меряется часами.
   – Превосходно, совершенно правильно. Лучшего ответа нам и не надо. С этого ведь я и начал объяснение. Я просил вас только обратить внимание на то, что каждый носит свои часы при себе и о своем времени судит легко. А вот о чужом времени…
   – Свое время, чужое… Не влезает мне это в голову. Время одно.
   – Уфф! Ну как же одно? У первого путешественника свои часы, а у второго свои, и если они хотят сверить часы, то одному из них надо послать сигнал другому. Ведь я же вам это объяснял: один смотрит, сколько времени заняло событие, по своим часам, а второй – тот, что движется, – посылает сигналы, сколько времени показали его часы в начале и конце события. Так мы и пришли к выводу, что интервал между событиями, измеренный по своим часам, будет больше.
   – Вы все про часы, а я про время. Ведь время…
   – Ну что, ведь время? Вы же согласились, что время – это то, что измеряется часами.
   – Нет и нет, не запутывайте меня, пожалуйста. Я чувствую, что здесь что-то не так. Не укладывается у меня это в голове.
   Да, тяжело бороться со здравым смыслом. Но спорить с тем, кто отбрасывает строгую логику рассуждения в угоду безапелляционно принятым «истинам», – это как об стену горохом. Разумеется, выводы теории относительности с изумлением, восторгом и преклонением перед мощью аналитического разума были быстро подхвачены тысячами физиков, которые, проверив логическую нить Эйнштейна, не нашли в ней ни малейшего изъяна.
   Но сторонники здравого смысла продолжали негодовать, возмущаться, требовать «других доказательств» еще долгие годы (поразительно, что даже и сейчас изредка слышатся их голоса). А в этих «других доказательствах» недостатка не было. Они появились в совершенно неограниченном числе много времени спустя, когда физики начали работать с частицами, движущимися с околосветовой скоростью.
   Я остановился лишь на выводе теории, касающемся промежутков времени. Но столь же строго из основных постулатов теории относительности следовали и другие революционные выводы. Среди них – заключение о возрастании массы частицы с увеличением скорости ее движения и заключение об эквивалентности энергии и массы.
   Проще всего было подтвердить на эксперименте возрастание массы частиц. Это уже давно было проделано для электронов. Проверка же закона эквивалентности стала возможной, когда физики занялись ядерными превращениями и уравнение Эйнштейна легло в основу всех расчетов ядерных реакций. В последнюю очередь стала возможной в лабораторных условиях непосредственная проверка сокращения интервала времени для движущейся частицы.
   Впрочем, уже много лет никто (за редчайшими исключениями) из физиков не смотрит на эти эксперименты, как на проверку теории. Она получила безоговорочное признание, стала основой будничной работы физиков.
   Но значение теории относительности для физики выходило за рамки открытия нового закона природы. Она повлекла за собой постепенное изменение психологии исследователей, работающих в области естествознания. Физики стали крайне осторожно относиться к заверениям здравого смысла. Они начали приучаться ощупывать со всех сторон каждую фразу, претендующую на объективное значение. Они стали бояться слов, пустых слов, под которыми нет ничего. Прочувствовали необходимость удаления из науки даже ничтожных следов аристотелевой атмосферы.
   На примере с парадоксом времени физики поняли, что любое понятие, фигурирующее в их уравнениях, должно либо отвечать на вопрос: «А как его измерить?», либо быть связанным с измеряемыми величинами функциональными зависимостями.
   Если сказано, каким образом величину можно измерить или вычислить, то к этому добавить больше нечего. Природа объективна, то есть она существует помимо исследователя; а вот физические величины предложены и введены в обиход наблюдателем природы, с тем чтобы как можно лучше ее описывать.
   Постепенно, хотя гораздо медленнее, чем шло развитие науки, из учебников начали устраняться пустые определения, бессодержательный набор слов, определения, которые создавали впечатление, что за словом что-то скрывается, что слово имеет внутренний, подлежащий раскрытию смысл.
   – Что такое сила? – вопрошал учитель.
   – Сила – это физическая величина, измеряемая по растяжению пружины, – отвечал ученик, и совсем неплохо отвечал.
   – Да нет, – настаивал учитель, – вы сказали, как измерить силу. А я спрашиваю, что такое сила?
   – Сила – это… это натиск, это действие, это причина движения, – мямлил ученик, вспоминая, что написано в учебнике.
   – Вот это хорошо, – радовался учитель.
   А хорош-то ответ первый. Остальное же – бессодержательные, пустые утверждения.
   После урока, преподнесенного теорией относительности, физические построения стали неизмеримо яснее и строже. Схема физического объяснения явления получила четкие черты.
   Мне несколько раз приходилось по просьбе Министерства просвещения присутствовать на экзаменах школьников по физике. Когда попадался ученик довольно сильный, я просил разрешения у учителей задать ему несколько вопросов.
   – Что произойдет с медным стержнем, если его нагреть?
   – Он расширится, – отвечал экзаменующийся, думая, а нет ли в этом простом вопросе подвоха.
   – Почему?
   – Все тела при нагревании расширяются.
   – Превосходно, а почему?
   Ученик задумывался.
   – Атомы при нагревании движутся быстрее, в результате они как бы расталкиваются, среднее расстояние между ними растет, а значит, и размеры тела возрастут.
   – Великолепно, – здесь я делал небольшую паузу, – а скажите, почему атомы движутся быстрее при нагревании?
   Замешательство. Молчание. Ученик бросает беспомощные взгляды на учителя, во взоре безмолвный упрек: «Ты же нам про это не говорил». Учитель тоже выбит из седла и духмает: «Принесла тебя нелегкая с каверзным вопросом – почему атомы движутся быстрее! А кто же его знает, почему».
   И только один ученик из десяти, недоуменно пожав плечами, отвечал:
   – Да ведь убыстрение движения частиц с температурой – это основной закон природы.
   Правильно, дорогой! Только этого я от тебя и хотел. Ты правильно понял, что физическая схема объяснения явления заключается в сведении частного к общему, в логическом показе, что данное явление есть частный случай общего закона природы. А общий закон природы – это сегодняшний потолок объяснения. Общий закон природы потому так и называется, что его неоткуда вывести. А раз неоткуда вывести, значит нельзя объяснить. Разумеется, такое положение дел может быть временным, потолок объяснения по мере развития науки имеет тенденцию к возвышению. То, что сегодня выглядит общим законом природы, через несколько лет может оказаться следствием открытого еще более общего закона природы, для которого старый закон – лишь частный случай. Так было с законами движения Ньютона. После открытия Эйнштейна мы смотрим на уравнения Ньютона как на частный случай законов движения при малых скоростях.
   Беспримерное свершение Эйнштейна привело и к более глубокому пониманию роли теории в естествознании. Если бы мы ранее спросили физика о том, какова цель теории, то скорее всего он ответил бы, что цель теории – это «выяснить природу явления, получить картину явления, выяснить его механизм, получить наглядное представление о явлении». Я думаю, что сегодня мы услышим этот туманный ответ от меньшинства. На подобный вопрос последует теперь более четкий и, если хотите, более гордый ответ: «Цель теории – предсказывать явления».
   Наглядность, модельность представлений о природе, столь высоко ценившаяся в XIX веке, когда физики старались изобразить на бумаге вихревые движения невидимого эфира, «объясняющие» природу света и электричества, оказалась несостоятельной. Теория относительности не предложила вместо похороненного ею эфира новой механической модели, и тем не менее сила и мощь теории были бесспорны – она позволила предугадать ряд важнейших явлений, о возможности наблюдения которых тогда не имели еще ни малейшего представления.
   Вдумайтесь в это. Разве это не великолепно, что человеческий разум исключает элемент неожиданности, позволяет предвидеть исход несвершившихся событий! Разве это не та мощь, которая приписывается религией лишь божественной силе! Нет другой цели у естествознания в его стремлении к познанию мира, кроме как предвидение будущего.
   Но не одна теория относительности создавала современное физическое мышление. Огромную роль сыграли также потрясающие открытия в мире атомов.

Капитуляция
Глава 8

   …где рассказывается о том, как был окончательно посрамлен «здравый смысл» в результате открытия закона движения электронов.
   Вопрос: «Что там внутри?» – ребенок пытается решить, разламывая пополам любимую игрушку. Очевидно, этот интерес сохраняется у человека на всю жизнь. Так по крайней мере пытаюсь я объяснить сравнительно высокую любознательность, которую проявляет широкая публика к структуре вещества.
   – Скажите, из чего состоит молекула? Да, да, из атомов, вспоминаю. Ну, а вот молекула воды, как она построена, можно узнать?
   – Пожалуйста, посмотрите на рисунок. Атом кислорода в центре, а два атома водорода – по бокам.
   – Замечательно, а главное, как просто, и наука сумела установить, что три атома не лежат на одной прямой. Я теперь совершенно ясно представляю, как построена молекула воды. А атом из чего состоит?..
   К началу XX века физики остановились на модели строения атома, предложенной Резерфордом. Атом состоит из положительно заряженного электричеством крошечного ядра, которое находится в центре атома, а вокруг него вращаются электроны в количестве, как раз соответствующем порядковому номеру элемента в таблице Менделеева.
   – Скажите, как просто, – умилялись читатели журналов того времени. – Напоминает планетную систему.
   Разламывание частичек вещества продолжалось. Добрались физики и до атомного ядра. Оно оказалось построенным из нейтронов и протонов.
   – Потрясающе, – изумлялись читатели. – А разрешите узнать, ядро тоже что-то вроде планетной системы?
   – Нет, нет, – отвечали физики. – Ядро вы можете себе представить… ну, скажем, как горошинки в блюдце. Понятно?
   – Ну, конечно. Это же так просто, – восхищался читатель, – все совершенно ясно.
   Беспрерывно увеличивая мощности своих приборов, физики продолжали сталкивать частицы между собой, изучая их превращения. К середине нашего столетия накопилось уже достаточно опытных данных, чтобы можно было ответить на настойчивые вопросы любителей науки.
   – А протон и нейтрон из чего построены?
   – Установлено, – отвечали физики, – что протон превращается в нейтрон и позитрон.
   – Очень интересно, значит протон состоит из нейтрона и позитрона?
   – Одну минутку, – говорил физик, – так сказать нельзя. Видите ли, опыты показывают, что нейтрон превращается в протон и электрон.
   – Как, как? Я что-то перестаю понимать. Так как же: протон – это часть нейтрона или нейтрон – это часть протона?
   – Да и то и другое неверно, – сообщал физик. – Протон и нейтрон – это элементарные частицы, и особенности их характеризуются законами превращения.
   – Гмм… Понимаю, – неуверенно бормочет читатель теперь уже XX века, – так-то оно, конечно, так, но не вполне ясно. Говорилось, что частица эта элементарная. А какая же она элементарная, если может превращаться? И потом протон в нейтроне, нейтрон в протоне… В общем раньше картина была ясней, а сейчас что-то не то. Дальше надо исследовать…
   Пока структурные картинки могут быть нарисованы на бумаге, так называемое понимание физики достигается без малейшего труда. Иногда можно на бумаге и не рисовать, достаточно сослаться на знакомый образ (как горошинки на блюдце) или на привычный факт и сказать, что и здесь дело обстоит таким же образом. И на лице слушателя появляется выражение полного удовлетворения – он все понял. Покойный наш физик Яков Ильич Френкель часто говорил: «Нет непонятного, есть непривычное». И это золотая правда.
   В конце сороковых годов на меня свалилась известность публичного лектора.
   – Прочитайте популярную лекцию про атомную энергию. Что это за явление? – просили меня раз за разом.
   После нескольких лекций, в которых я пытался связать атомный взрыв с законом эквивалентности Эйнштейна, я понял, как трудно слушателям усваивать материал из моих объяснений. Манеру изложения пришлось изменить. Лекция начиналась с вопроса: «Все знают, что дрова при горении дают тепло?» Зал благодушно кивал головой.
   – Выделение тепла – это результат химической реакции горения, – продолжал я. – Молекулы кислорода сталкиваются с молекулами топлива, старые молекулы разламываются, образуются новые.
   Далее я объяснял, что новые молекулы движутся быстрее старых. И в этом все дело. Ведь тепло связано с быстротой движения молекул.
   – Итак, понятно, почему горящие дрова дают тепло?
   Зал удостоверял полное понимание. Как дрова горят, видел каждый, наука объяснила, что так и должно быть. Значит, все в порядке. Я шел дальше.
   – Так вот, выделение атомной энергии ничем не отличается от выделения химической энергии. Только в первом примере сталкиваются молекулы, а во втором атомные ядра.
   Этот обходный маневр, заключавшийся в том, что я объяснял неизвестное на знакомом привычном примере, имел стопроцентный успех. Новое было сведено к обычному. Объяснялось не новое, а то, к чему привыкли, а перенос объяснения на другой предмет ссылкой на полную аналогию воспринимался как нечто само собой разумеющееся.
   Но мы отклонились от темы. Речь у нас шла о том, что завоевания физиков в отношении строения вещества поддавались популяризации довольно легко, поскольку превосходно согласовались со здравым смыслом и интерпретировались при помощи простых рисунков и моделей. Подтверждением этому служит такой факт. В послевоенные годы мною была написана популярная брошюра «Строение вещества», которая разошлась чуть ли не миллионным тиражом. Редакция получала трогательные письма читателей. Одно из них было от старшей доярки колхозной фермы.
   «В обеденный перерыв, дорогой профессор, – писала она, – мы читаем вашу книжечку. Все написано так ясно и отчетливо, что мы хорошо поняли, из чего построены частицы».
   Значит, объяснять, как устроено вещество, было нетрудно. Совсем иначе обстоит дело с попыткой популярного разъяснения законов движения частиц. Эти законы были открыты почти сорок лет назад и привели в состояние полного замешательства своих современников. Причина состояла в том, что не существует аналогии, с помощью которой можно было бы дать представление о характере движения электрона. Нет ничего привычного, на что можно было бы сослаться.
   В своих суждениях о характере движения невидимых частиц материи мы пытаемся исходить из житейского опыта. Возможности наших представлений о движении исчерпываются двумя вариантами. Первый из них – частица перемещается, как крошечная горошинка: в каждое следующее мгновение она переходит из одной точки пространства в другую. Мы уверены, что можно сфотографировать такое движение; на фотопластинке будет виден след – траектория частицы. Второй вариант – мы не видим движений отдельных частиц, а наблюдаем перемещения сплошной среды (морские волны – превосходный пример).
   До 1925 года не было сомнения, что движение материи – идет ли речь о свете, радиоволнах или электронах – может быть либо тем, либо другим. Ведь третьего варианта невозможно себе представить. И верно – представить нельзя. Но оказалось, что элементарные частицы ведут себя иногда, как горошинки, а в других случаях – как сплошная, непрерывная материя. Нельзя перенести на элементарные частицы законы движения, заимствованные из большого мира – макромира.
   До 1925 года звучало аксиомой то, что описание движения частицы заключается в указании траектории, по которой она движется, и в указании скорости движения в каждой точке траектории. Однако это оказалось невозможным сделать для электрона и других элементарных частиц.
   Основной закон движения элементарных частиц (не всеобъемлющий, но охватывающий очень широкий класс событий) был дан немецким физиком Эрвином Шредингером. Исходное положение новой науки, которая получила название волновой, или квантовой, механики, звучало необычно. В противоположность классической механике задание внешних сил не определяет траектории и скорости частицы. Закон новой механики позволяет вычислить лишь вероятность того или иного положения частицы.
   На первый взгляд может показаться, что никаких революционных выводов физика не получила. Просто волновая механика – плохая теория и не позволяет вычислить точно механическое движение электрона. Но дело обстоит совсем не так.
   Несколько позже было показано, что уравнение Шредингера дает исчерпывающее знание поведения электрона. А те данные, которые в принципе не могут быть вычислены, также в принципе не могут быть и измерены на опыте. Скажем, как только вы будете пытаться «рассматривать» электрон, вы столкнете его с траектории. Но то, что ускользает от измерения и вычисления, просто не существует на свете. Пришлось согласиться, что нет такого понятия, как траектория электрона.
   Если траектории нет, то как же описать движение электрона? Оказывается, можно вычислить и измерить вероятность нахождения электрона в том месте, которое нас интересует. Если речь идет об электроне, вращающемся около ядра атома, то нельзя нарисовать орбиты, по которой он движется, зато можно заштриховать кольцевую область, внутри которой электрон может быть найден с шансами 99:1 или 999:1 (в последнем случае кольцо будет пошире).
   Неопределенность, с которой мы узнаем местонахождение электрона, определяет точность, с которой может быть вычислена скорость его движения. Немецкий физик Вернер Гейзенберг показал, что произведение неопределенностей координаты частицы и соответствующей скорости равно частному от деления некоторого постоянного числа – константы Планка – на массу частицы. Поэтому, чем точнее известна скорость, тем более расплывчаты сведения о местонахождении частицы, и наоборот.
   Может все же показаться, что речь идет всего-навсего о неполном описании движения электрона: траектория у него, наверное, есть, не может быть, чтобы ее не было, убеждает нас здравый смысл, просто физики еще не научились ее ни вычислять, ни измерять.
   Придется привести описание схемы опыта, который покажет несостоятельность и такого мнения. Представьте себе экран с двумя щелями. На экран направлен поток электронов, часть электронов проходит через отверстия и попадает на помещенную сзади экрана фотопластинку. Делаем две фотографии: первую, закрывая одну из щелей, и вторую – когда обе щели открыты. Сопоставляя два снимка, мы на втором увидим сложную систему темных и светлых полос – будто в одни места пластинки электроны попали, а в другие нет. Для электронов, ведущих себя как горошинки, это совсем непонятно. Но дальше – хуже. Обратим внимание лишь на одну подробность: на фотографии одной щели мы можем найти такое место, куда электроны, безусловно, попали, а это же место на фотографии двух щелей оказывается не тронутым электронами. Кажется, чудо. Ведь открытие второй щели должно привести к дополнительному попаданию электронов-горошинок, но уж никак не к посветлению фотографии.
   Положение дел, наблюдаемое на опыте, категорически исключает возможность представить электроны, как частицы, имеющие траекторию. Как же тогда быть? Оказывается, явление легко объясняется, если допустить мысль, что электроны – волны. Тогда гребень одной волны, приходя на впадину другой, может привести к нулевому результату, хотя при действии порознь обе волны вызывают определенный эффект.
   Приходится согласиться с тем, что представление об электроне, как о частице с траекторией (и то же самое относится к другим элементарным частицам), противоречит опыту.
   На вопрос – в какой мере и в каких опытах электрон проявляет то свои волновые свойства, то сходство с горошинкой – исчерпывающе отвечает уравнение Шредингера.
   Огромное количество экспериментальных фактов большой сложности объясняет это уравнение. С его помощью предсказываются сложнейшие события в жизни элементарных частиц. Ни один из физиков не сомневается в справедливости этого закона природы.
   Закон квантовой механики возводит волновокорпускулярный дуализм частицы в ранг аксиомы. Правда, следует помнить, что мы говорили о временном характере научного потолка. Вполне возможно, что сегодняшние аксиомы окажутся следствиями еще не найденных более общих законов природы.
   Один остроумный довод в пользу того, что закон волновой механики является временным потолком, если не ошибаюсь, принадлежит виднейшему физику современности англичанину Полю Дираку.
   Три фундаментальные константы входят в основные законы, управляющие поведением элементарных частиц, – это скорость света, заряд электрона и постоянная Планка, о которой недавно была речь. Если помножить постоянную Планка на скорость света и разделить на квадрат заряда электрона, то получится безразмерное число 137. (Безразмерное – значит не зависящее от выбора единиц измерения.) Почему это отношение равно именно 137, а не какому-либо другому числу? Будущая теория должна дать ответ на этот вопрос. Но если она это сделает, то вместо трех фундаментальных констант их окажется две. Теория, которую мы ждем с нетерпением, должна автоматически вывести значение одной из них через две Другие.