Наверное, можно было бы не описывать рулеточное колесо и разграфлённое поле, на клетки которого бросают денежные жетоны. И всё же несколько слов для читателей, незнакомых с художественной литературой о Монте-Карло, сказать стоит. Рулетка – это большая тарелка, дно которой может вращаться относительно неподвижных бортов. Дно-колесо разбито на 37 ячеек, пронумерованных от 0 до 36 и покрашенных в два цвета: чёрный и красный. Колесо закручивается, и на него бросается шарик. Он танцует, беспорядочно перепрыгивая из ячейки в ячейку. Темп колеса замедляется, шарик делает последние нерешительные прыжки и останавливается. Выиграло, скажем, число 14 – красный цвет.
   Игроки могут ставить на красное или чёрное; на чёт или нечет; первую, вторую или третью дюжину и, наконец, на номер.
   За угадывание цвета или чётности вы получаете денег вдвое больше, чем внесли на игру, за выигрыш дюжины – втрое, за выигрыш номера – в тридцать шесть раз. Эти числа строго соответствовали бы вероятностям появления, если бы не одно маленькое «но» – это ноль (зеро). Зеро – выигрыш банкомёта. При нём проигрывают и поставившие на чёрное, и те, кто надеялся на красный цвет.
   Ставя на красное, искатель счастья действует с шансом на выигрыш, равным 18/37: чуть-чуть меньше половины. Но за счёт этого «чуть-чуть» существует государство Монако и получают хорошие дивиденды пайщики Монте-Карло. Из-за зеро игра в рулетку уже не равноценна для игрока и банкомёта. Поставив 37 раз по франку, я в среднем выиграю 18 раз, а проиграю 19.
   Если я 37 раз ставлю по франку на 14-й (или какой-либо другой) номер, то в среднем я выиграю один раз из тридцати семи, и за этот выигрыш мне уплатят лишь 36 франков. Так что, как ни крути, при длительной игре проигрыш обеспечен.
   Значит, нельзя выиграть в рулетку? Да нет. Конечно, можно. И мы легко подсчитаем вероятность выигрыша. Для простоты положим, что игрок пробует своё счастье каждый день. Ровно в 18.00 он появляется в казино и ставит пять раз по франку на красное.
   За год игры герой встретится со всеми возможными вариантами красного и чёрного (точнее, не красного, так как и зеро мы отнесём к чёрному). Вот эти варианты:
   Как видно, их всего 32 варианта. Один из них содержит пять к, пять – состоят из четырех к, десять – из трех к. Разумеется, те же числа будут и при подсчёте чёрных случаев (ч).
   Из составленной таблички мы сейчас увидим все «секреты» рулетной игры. Будем считать, что в году 320 дней рабочих и полтора месяца выходных: работа ведь нелёгкая – сплошная трёпка нервов. Количество дней с разными выигрышами и проигрышами получается от умножения на 10 числа различных комбинаций, приведённых в таблице. Таким образом, счастливых дней в «среднем» году будет десять. Но зато столько же будет «чёрных» дней сплошного проигрыша. На число «хороших» дней, когда фортуна откажет лишь один раз, придётся столько же дней неудачных, когда лишь один раз появится красный цвет, – их будет пятьдесят. Чаще всего – по сто дней – мы встретимся со случаями, когда выигрышей выпадет три, а проигрышей – два, или наоборот, когда проигрышей три, а выигрышей – два.
   Пока результат нашего сражения с рулеткой нулевой. Так что занятие можно было бы считать безобидным, если бы не упомянутое зеро. Мы говорили, что вероятность красного цвета не 1/2, а 18/37. Поэтому проигрыши и выигрыши в среднем не уравновесятся, и год закончится с убытком для клиентов, поскольку число грустных дней для них будет несколько превышать число радостных. Например, вероятность полностью «красного» дня равна 18/37 в пятой степени, а сплошь «чёрного» – 19/37 в пятой степени. Если вы не поленитесь заняться арифметикой, то найдёте, что эти вероятности равны соответственно 0,027 и 0,036. Это значит, что один «красный» день в среднем приходится уже не на 32 дня, а на 36, а один «чёрный» будет встречаться через 28 дней.
   Я отдаю себе полностью отчёт, что все эти доказательства о проигрыше «в среднем» не подействуют на азартного игрока. Из наших чисел он прежде всего обратит внимание на то, что всё-таки десяток «красных» дней на год приходится. Кто его знает, подумает он, может быть, именно сегодняшний день и будет таким! Хорошо бы было, если бы этот день оказался для него «черным». Он отбил бы у него охоту к играм, и на этом он наверняка выиграл бы, дело это добром никогда не кончается.
   А теперь оставим моральные поучения, к которым азартные игроки скорее всего глухи, и рассмотрим ещё несколько рулеточных проблем.
   Стоит, пожалуй, обсудить вопрос о «счастливом месяце».
   «В этот летний месяц, – прочитал я в воспоминаниях какого-то любителя острых ощущений, – мне здорово везло. За весь месяц я проиграл лишь два раза, не пропустив ни одного дня».
   Для простоты будем считать, что вероятность выигрыша равна одной второй (1/2). Тогда так же, как при составлении таблички к и ч, можно подсчитать вероятности появления «чёрных» дней за месяц. Что же окажется?
   Выигрывать 29 и 30 дней в месяц совершенно немыслимо; 28 выигрышных дней имеют вероятность одну миллионную долю; выигрывать 27 дней в месяц можно с шансом одна стотысячная; 26 дней – одна пятнадцатитысячная; 25 дней – одна трехтысячная и 24 выигрышных дня осуществляются с вероятностью в одну тысячную. Лишь это число может внушить мне доверие к автору упомянутого мемуара. Что же касается случая, когда число «красных» дней, по крайней мере, в два раза больше «чёрных» (двадцать и десять), то это уже вполне реальная вещь, ибо соответствующая вероятность равна одной десятой. Тот, кто играет всю свою жизнь, переживал такие счастливые месяцы, но… не надо забывать, что ему пришлось претерпеть такое же число несчастливых месяцев.
   Игроки в рулетку (или в другие игры, где ни расчёт, ни психологический анализ «не работают») могут быть поделены на два семейства. Одни играют как попало или по приметам. Скажем, сегодня двадцать третье число, рассуждает такой игрок, это день рождения моей невесты, значит, число двадцать три принесёт мне счастье. Или, думает другой, среди игроков есть некто, которому сегодня дико везёт, – играю как он. И так далее до бесконечности.
   Другая группа игроков пытается уловить систему. Разумеется, в этом деле никакой системы нет и быть не может. Такова уж природа случая. И тем не менее я нисколько не сомневаюсь, что по мере роста серии ккккк… число игроков, ставящих на «чёрное», будет непрерывно расти. «А как же иначе, – обычно рассуждают они, – ведь длинные серии одинакового цвета встречаются значительно реже. Значит, после пяти или шести „красных“ уж наверное появится „чёрное“.
   Абсурдность этого рассуждения очевидна. Оно противоречит очень простой мысли: у рулетки нет памяти, рулетка не знает, что было раньше, и перед каждым броском шарик все прошлое стирает. А если так, то перед каждым броском (даже и таким, который следует после двадцати «красных») вероятность «чёрного» и «красного» одинакова.
   Правильно? Вы не находите аргументов против этого простого рассуждения? Да их и нет.
   – Позвольте, – вмешивается читатель, которого назовём рассеянным, – вы же сами писали, что длинные серии бывают редко. И чем они длиннее, тем реже выпадают.
   – Ну и что же? – поддерживает автора читатель внимательный. – Это не имеет ни малейшего отношения к утверждению, что у рулетки отсутствует память
   – То есть как не имеет? – сердится рассеянный читатель. – Пять «красных» бывает реже, чем четыре, а шесть реже, чем пять. Значит, если я ставлю на «чёрное» после того, как «красное» вышло четыре раза подряд, я и следую теории вероятностей, которую автор пытается нам втолковать.
   – Нет, не следуете. Серий из пяти «красных» ровно столько же, сколько из четырех «красных» подряд и одного «чёрного»: ккккк и ккккч имеют равные вероятности.
   – Как так?! Ведь автор говорил пять «красных» бывает реже, чем четыре «красных»?
   – Нет, мой дорогой, автор говорил не так. Из пяти игр появление «красного» цвета пять раз реже, чем появление четыре раза «красного» из пяти в любом порядке. Вы лучше вернитесь к табличке на странице 17 [ссылка].
   Рассеянный читатель с недовольным видом листает книгу.
   – Нашли? Вы видите, ккккк встречается один раз, а четыре «красных» в серии из пяти игр (ккккч, кккчк…) встречаются четыре раза.
   – Так я же прав!
   – Ничего вы не правы. Вариант-то ккккч всего лишь один.
   – ?!!!
   – Начинаете понимать? Вот в том-то и дело. Конечно, чем одноцветная серия длиннее, тем она реже встречается. Но серия в десять «красных» имеет ту же вероятность, что девять «красных» подряд с завершением на «чёрном» цвете. Серия в двадцать «красных» будет встречаться столько же раз, сколько серия из девятнадцати «красных» и двадцатого «чёрного». И так далее.
   – Я, кажется, действительно понял. Как странно! На чём же тогда основывается это столь распространённое заблуждение?
   – Ну это уже область психологии, – удовлетворённо улыбается внимательный читатель. – Но, мне кажется, дело здесь в том, что у игрока создаётся впечатление, что появление длинных серий нарушает равновесие «красного» и «чёрного», и рулетка должна немедленно рассчитаться за нарушение этого равновесия. А то, что такая расплата означает наличие сознания у рулетки, игроков не волнует.
   Поблагодарив внимательного читателя, последуем дальше.
   Другое распространённое заблуждение состоит в том, что можно наверняка выиграть, удваивая ставки. Опять же в основе этой «системы» лежит идея о редкости длинных серий. Скажем, я ставлю один франк на «красное» и проигрываю; ставлю два, опять проигрываю; ставлю четыре… В конце концов я выигрываю. И тогда не только возвращаю свой проигрыш, но и остаюсь в определённом выигрыше. Действительно, пусть мною проигран один франк, затем два, затем ещё четыре, потом восемь, то есть всего пятнадцать монет, а следующая ставка – шестнадцать – приносит удачу в 32 монеты. Итак, за потраченный 31 франк я получаю 32 франка. Чистый доход – один франк.
   Кажется, что при таком поведении выигрыш обеспечен. Однако эта стратегия также порочна. Действительно, число серий ччччк равно числу серий ччччч, то есть число выигрышей на пятом броске равно числу проигрышей на этом же пятом броске, число выигрышей на шестом броске равно числу проигрышей на шестом броске и так далее. Поэтому удвоение приведёт к проигрышу из-за наличия зеро даже в том случае, если у игрока очень много денег. А если их немного, то момент, когда удваивание полностью опустошит карманы, наступит весьма быстро.
   Итак, нет и не может быть системы, которая позволила бы выиграть в такую игру, как рулетка, в игру чистого случая. Выиграть можно, лишь если рулетка работает не по принципу случая, например, если колесо слегка перекошено и какие-то участки оно проходит с повышенным трением. Но такую штуку надо подметить, как это сделал весёлый, умный и наблюдательный герой Джека Лондона – Смок Беллью. Заметив, что из-за того, что рулетка стоит у печки и колесо её в одном месте рассохлось, некоторые номера появляются чаще, он без труда сорвал банк.
   Я читал в газетах, будто, записав длинную последовательность появления номеров рулетки какого-то игорного дома, поручили электронной вычислительной машине выяснить, с равной ли вероятностью появляются её номера. Я уже не помню, чем заканчивалось газетное сообщение и также не уверен в его справедливости. Но идея попытаться воспользоваться для выигрыша порчей рулетки, как мне кажется, верна. Вполне возможно представить, что в какой-то момент рулетка начинает капризничать и условия равной вероятности остановки колеса начинают нарушаться.
   Однако, чтобы игроки могли использовать в своих целях эту неисправность, нарушение симметрии должно быть достаточно большим. Но тогда его, наверное, раньше обнаружит крупье и устранит. Впрочем, это не моя тема, и я не собираюсь учить читателей, как обыгрывать Монте-Карло.
   Чтобы покончить с играми, построенными на чистом случае, скажем несколько слов о лотереях. По сути дела, это та же рулетка, только играют в ней на номера. И номеров не 36, а много больше.
   Перед тиражом денежно-вещевой лотереи число желающих приобрести билеты сильно возрастает. Потолкайтесь среди покупателей, и увидите, что одни предпочитают слепое счастье – тянут билет наудачу, другие выбирают «хороший» номер. Желающих взять билет номер 777777 очень мало. Вы можете сколько угодно убеждать жаждущих получить автомобиль за тридцать копеек, что для этого одинаково пригодны (непригодны) любые билеты (вероятность выпадения выигрыша на все номера совершенно одинакова), тем не менее вам возразят, что никогда не встречали в таблицах выигрышей номера, составленного из одних и тех же цифр. Рассуждение это ошибочно, и ошибочность его после наших разговоров о рулетке достаточно очевидна. Номер, скажем, 594766 столь же уникален, сколь и номер 777777, и, безусловно, встречается в таблицах выигрышей также редко. Но желающий поиграть в лотерею сравнивает вероятность вполне определённого номера, состоящего из семёрок, со всеми номерами вроде 594766. Ясно, что номеров, похожих на этот, то есть обладающих единственной особенностью состоять из беспорядочного ряда цифр, во много раз больше, чем номеров с одинаковыми цифрами. Само собой разумеется, что вероятность выигрыша каким-либо номером вроде 594766, то есть состоящим из произвольного ряда цифр, несоизмеримо велика в сравнении с вероятностью выигрыша по одному из девяти (только девяти: из шести единиц, шести двоек, …, шести девяток) билетов, состоящих из одинаковых цифр. Но ведь непохожесть не должна интересовать человека, выбирающего билет. Его проблема – вероятность выигрыша выбранным билетом! А вот она-то ничуть не отличается от вероятности выпадения выигрыша на номер из семёрок.
   Смешное заблуждение. Его психологический источник лишь один: отсутствие номера из семёрок бросается в глаза, а отсутствие конкретного номера, состоящего из беспорядочной последовательности цифр, остаётся незаметным.

Азарт и расчёт

   Мы закончили обсуждение игр, в которых участник – пешка, которой ходит случай. Такие игры, как рулетка, штосс или кости, должны нравиться, с одной стороны, людям резкого, импульсивного действия (им нет времени подумать), а с другой стороны – людям слабовольным, которые охотно вверяют свою судьбу в чужие руки.
   Игры, в которых надо принимать решения, значительно интереснее и для литератора, и для психолога.
   «Но вот, наконец, в три часа ночи игрокам пошла карта. Настал вожделенный миг, которого неделями ждут любители покера. Весть об этом молнией разнеслась по Тиволи. Зрители затаили дыхание. Говор у стойки и вокруг печки умолк. И все стали подвигаться к карточному столу. Соседняя комната опустела, и вскоре человек сто с лишним в глубоком молчании тесно обступили покеристов».
   Так начинается рассказ об игре в покер в романе Джека Лондона «Время не ждёт». За столом пять игроков. Герой романа Харниш и его друзья Луи, Кернс, Кэмбл и Макдональд – все золотоискатели. Сцена борьбы – салун Тиволи в маленьком посёлке на Дальнем Севере.
   Покер у нас мало распространён. Прошу ещё раз у читателя извинения, что приходится уделять внимание столь малоуважительному занятию, как разъяснение правил карточной азартной игры покер. Кстати говоря, слово «азарт» приобрело в русском языке новый смысл. Ведь это перевод французского слова hazard, что означает «случай» (до революции писали – азардные игры). Так что азартные игры – это игры, построенные на случае, что звучит уже вполне научно и респектабельно.
   Однако вернёмся к делу, то бишь к покеру. У каждого игрока по пять карт на руках. Сила карт зависит от того, образуют ли две из них, или три, или четыре, или все пять какую-либо из следующих комбинаций, расположенных нами в порядке возрастания мощи: пару (скажем, две дамы); две пары (это понятно); тройку (например, три валета); стрит (допустим, десять, валет, дама, король, туз); тройку и пару (это тоже понятно); цвет (все карты одной масти); каре (четыре одинаковые); королевский флеш (одноцветный стрит). В покере картами не ходят. Смысл игры состоит в торговле при закрытых картах, причём эта торговля происходит в два приёма. Впрочем, предоставим слово Джеку Лондону.
   «Торговаться начали втёмную – ставки росли и росли, а о прикупе никто ещё и не думал. Карты сдал Кернc. Луи-француз поставил сто долларов. Кэмбл только ответил (то есть поставил столько же. – А. К.), но следующий партнёр – Элам Харниш – бросил в котёл пятьсот долларов, заметив Макдональду, что надо бы больше, да уж ладно, пусть входит в игру по дешёвке. (То есть «всего лишь» за пятьсот долларов, ибо по правилам игры каждый следующий должен поставить по крайней мере столько же, сколько предыдущий по кругу игрок. – А. К.)
   Макдональд ещё раз заглянул в свои карты и выложил тысячу. Кернс после длительного раздумья ответил. Луи-француз тоже долго колебался, но всё-таки решил не выходить из игры и добавил девятьсот долларов. Столько же нужно было выложить и Кэмблу, но, к удивлению партнёров, он этим не ограничился, а поставил ещё тысячу.
   – Ну, наконец-то дело в гору пошло, – сказал Харниш, ставя тысячу пятьсот долларов и, в свою очередь, добавляя тысячу, – красотка ждёт нас за первым перевалом. Смотрите, не лопнули бы постромки!
   – Уж я-то не отстану, – ответил Макдональд и положил в котёл на две тысячи своих марок да сверх того добавил тысячу.
   Теперь партнёры уже не сомневались, что у всех большая карта на руках».
   Хоть и жалко прерывать захватывающее повествование, но нам надо разобраться в происходящем с точки зрения нашей темы.
   Решая, участвовать ему в игре или нет, подравнять свою ставку к уже сделанным или поднять ставку повыше, игрок так или иначе оценивает вероятность своего выигрыша. (Блеф в крупной игре исключён; в конечном счёте при крупной игре всех партнёров не запугаешь, и они не бросят карты, махнув рукой на уже попавшую в котёл ставку, а когда их придётся открыть, то выиграет тот, чья карта сильнее.)
   Разумеется, практически игроки не вычисляют значение вероятности выигрыша и руководствуются лишь опытом. Но если опыт большой, то одно сводится к другому: игрок подсознательно решает сложную задачу, определяя вероятность того, что на руках партнёров находятся комбинации более высокие, чем у него. Кроме того, в первом туре торговли он учитывает, насколько «прикупной» является карта.
   Но не будем останавливаться на доприкупной ситуации. Подсчёт шансов на выигрыш здесь слишком затруднителен, и, главное, на этой стадии игры рисковый или осторожный характер партнёров являются неизвестными величинами, которые мешают решить уравнение.
   Пропускаем две страницы романа. Двое игроков выходят из игры, считая свои шансы на выигрыш ничтожными. Остаются трое. Первый тур торговли завершён, то есть ни один из оставшихся трех игроков не желает рисковать большей суммой до прикупа.
   «Прикуп состоялся в гробовой тишине, прерываемой только тихими голосами играющих. В котле набралось уже тридцать четыре тысячи, а до конца игры ещё было далеко… Харниш отбросил восьмёрки и, оставив себе только трех дам, прикупил две карты…
   – Тебе? – спросил Кернс Макдональда.
   – С меня хватит, – последовал ответ.
   – А ты подумай, может, всё-таки дать карточку?
   – Спасибо, не нуждаюсь.
   Сам Кернс взял себе две карты, но не стал смотреть их. Карты Харниша тоже по-прежнему лежали на столе рубашкой вверх.
   – Никогда не надо лезть вперёд, когда у партнёра готовая карта на руках, – медленно проговорил он, глядя на трактирщика. – Я – пас. За тобой слово, Мак.
   Макдональд тщательно пересчитал свои карты, чтобы лишний раз удостовериться, что их пять, записал сумму на клочке бумаги, положил его в котёл и сказал:
   – Пять тысяч.
   Кернс под огнём сотни глаз посмотрел свой прикуп, пересчитал три остальные карты, чтобы все видели, что всех карт у него пять, и взялся за карандаш.
   – Отвечаю, Мак, – сказал он, – и набавлю только тысчонку, не то Харниш испугается.
   Все взоры опять обратились на Харниша. Он тоже посмотрел прикуп и пересчитал карты.
   – Отвечаю шесть тысяч и набавляю пять…»
   Итак, один из партнёров остался при своей карте. Ясно, что у него комбинация из четырех или пяти карт, и притом сильная, то есть никак не ниже «цвета». Очевидно также, что у обоих партнёров, поменявших две карты, на руках каре. Действительно, если бы к своей тройке они не купили бы такую же четвёртую карту, то бросили бы свои карты, спасовали.
   Каждый из игроков подсознательно, на основе опыта, может оценить вероятность того, что у партнёров на руках более крупная карта, чем у него, и соответственно вести торговлю, учитывая, кроме того (вот здесь-то расчёты нам не помогут), характер партнёров.
   После нескольких туров торговли никто из игроков не желает рисковать большими суммами, и наступает кульминационный момент игры.
   «Ни один из игроков не потянулся за котлом, ни один не объявил своей карты. Все трое одновременно молча положили карты на стол; зрители бесшумно обступили их ещё теснее, вытягивая шеи, чтобы лучше видеть. Харниш открыл четырех дам и туза; Макдональд – четырех валетов и туза; Кернс – четырех королей и тройку. Он наклонился вперёд и, весь дрожа, обеими руками сгрёб котёл и потащил его к себе».
   Игра окончена, и мы можем перейти к математическим комментариям. Можно не сомневаться, что герои Джека Лондона теории вероятностей не знали и не производили в уме математических подсчётов для выработки своей игровой политики. Но действовали они в полном согласии с теорией.
   Обратите внимание на одну интересную деталь игры. Два игрока меняли две карты из пяти. С очень большой уверенностью можно предполагать, что они прикупали к трём одинаковым, рассчитывая набрать каре. Так как после прикупа они смело повышали ставки, то прикуп наверняка был счастливым. Итак, Макдональд знал, что он вступает в битву с двумя каре. Кажется, что его противники попали в более сложную ситуацию. Макдональд карт не менял. Значит, на руках у него либо каре, либо самая старшая комбинация – королевский флеш. Но динамика набавления ставок показывает, что Харниш и Кернс не допускали мысли о том, что у Макдональда на руках королевский флеш. То есть, используя словарь этой книги, считали, что вероятность королевского флеша слишком мала.
   Что же, пожалуй, они были правы. Игра, видимо, шла в 52 карты, флеши могут начинаться с двойки, тройки и т.д., до десятки. Значит, их может быть в каждом цвету 9, а всего 36. А сколько каре даёт комбинация карт? Могут быть каре двоек, каре троек и т.д., каре тузов: всего 13 каре. Но каре – это четыре карты, а у каждого игрока на руках их пять. При этом пятая может быть любой из остающихся 48. Таким образом, общее число комбинаций из пяти карт, которые приводят к каре, равняется 624, что примерно в 17 раз больше числа возможных флешей.
   Итак, наверное, каждый из трех партнёров вёл игру, считая, что у противников на руках та же комбинация, что у него самого, а именно каре. Но у кого какое? Неужто при решении этого вопроса, столь важного для наших трех игроков, можно заменить отгадывание наобум какими-то логическими рассуждениями и использовать теорию вероятностей? Оказывается, можно. И успешные подходы к задачам такого типа, требующим не только подсчёта числа возможных комбинаций, но и учёта психологии участвующих в игре, разрабатываются в так называемой «теории игр».
   По поводу тактики игры трех лондоновских героев можно лишь заметить следующее: каждый из них полагал, что у противников одно из самых старших каре, так как трудно было бы допустить, что с тремя шестёрками или тройками на руках кто-либо отважился бы вести столь смелый бой, начавшийся ещё до прикупа. Разумеется, в наилучшем положении был Кернс (у него было четыре короля и тройка), который знал, что его могут побить только четыре туза (если не говорить о флешах). Он знал, что лишь один из партнёров может быть сильнее его, и поэтому мог играть с вероятностью выигрыша 1/2. В таком же положении был Харниш (у него было четыре дамы и туз), который знал, что его могут побить лишь четыре короля (ведь один из тузов был его пятой картой, и он, таким образом, мог быть уверен, что каре тузов вне игры). Больше всего рисковал Макдональд (у него четыре валета и туз) – ему было известно, что его карта бьётся двумя комбинациями. Я бы оценил вероятность выигрыша Макдональда в 1/4.
   Но, повторим ещё раз, ограничиваться подсчётом возможных комбинаций, играя в покер, это значит почти наверняка остаться в проигрыше. Успех в данной игре зависит не столько от карт, сколько от наблюдательности и волевых качеств. В отличие от штосса в покер можно играть и хорошо, и плохо.
   Вернёмся опять к нашим подсчётам и обсудим ещё вероятности прикупа. И здесь оценки вероятностей разных комбинаций чрезвычайно уместны и, разумеется, используются опытными игроками. Положим, надо решить, что лучше: имея на руках три дамы, валета и восьмёрку, как это было у Харниша, погнаться за четвёртой дамой или сбросить восьмёрку в расчёте получить ещё одного валета. В первом случае вероятность равна сумме 1/47 + 1/46, во втором – 3/47. Таким образом, второй вариант лишь в полтора раза лучше первого. Поскольку первый вариант приводит к более богатой комбинации, то правильное решение – скинуть две карты и «искать» даму.