Мы рассмотрели два класса игр: такие, как рулетка или штосс, где вероятностные расчёты не могут помочь в выработке игровой стратегии, ибо любая игра в лучшем случае приводит к проигрышу и выигрышу с равными вероятностями, и где отсутствуют элементы психологической борьбы; и такие, как покер, где вероятностные подсчёты оказывают известную помощь игроку, психологическая борьба играет важную, если не главную, роль.
   Теперь остановимся на играх, результат которых зависит от умения игрока правильно оценивать вероятности тех или иных событий и почти не связан с проникновением в психологию партнёра. Игры такого типа называются не азартными, а коммерческими. Классическим представителем коммерческих игр является преферанс. Эта игра распространена у нас достаточно широко, и я не стану разъяснять её правила.
   Приведём из этой игры несколько типичных задач и покажем, на каких принципах основываются манеры игры хороших игроков. В преферансе каждая масть представлена восемью старшими картами. В подавляющем числе актов игры у «играющего» имеется на руках четыре – реже пять козырей. Смотря только в свои карты, он, «играющий», раздумывает, как разделились между «вистующими» отсутствующие у него козыри. Ведь, чтобы объявить свою игру, надо ему рассчитать, сколько надеется он взять взяток, а это, в свою очередь, зависит от того, как распределились козыри у партнёров. Если у них четыре, то возможны три варианта: четыре на одной руке; разделились на три и один; наконец, – мечта «играющего» – разделились поровну: два и два. Если у «играющего» пять козырей, то у «вистующих» возможностей две: либо три на одной руке, либо два и один.
   Для подсчёта вероятностей надо, как мы знаем, считать число комбинаций.
   Пусть у меня – «играющего» – на руках туз, король, семёрка и восьмёрка козырей. У моих партнёров – Петра Ивановича (П. И.) и Николая Васильевича (Н. В.) – дама, валет, десятка, девятка. Как они разложились – неизвестно. Если мне очень не повезло, то есть все отсутствующие у меня четыре козыря оказались на одной руке, то они могут быть либо у П. И., либо у Н. В. Это два случая. Козыри могут разделиться и так: у П. И. один из четырех, у Н. В. три. Таких случаев, конечно, четыре. Ещё четыре случая имеется, когда один из козырей находится у Н. В., а три у П. И. И шесть вариантов появляется, когда козыри распределяются пополам: дама и валет; дама и десятка; дама и девятка; валет и десятка; валет и девятка; наконец, десятка и девятка. (Множить на 2 не надо, так как, если дама и валет у П. И., то десятка и девятка у Н. В. и так далее.)
   Всего случаев шестнадцать. Следовательно, вероятность наскочить на вариант, когда все козыри на одной руке – 2/16 (1/8). Только очень осторожные игроки и при очень крупной игре считаются с возможностью такой неприятности. А хорошие игроки в нормальной игре ею пренебрегают. Но и рассчитывать на то, что козыри разделились пополам, они тоже не станут, ибо вероятность этого события 6/16 (3/8) все же меньше половины.
   Подавляющее большинство опытных игроков, назначая игру, предполагают, что наиболее вероятный расклад не хуже, чем «три – один». И они правы, так как в 14 случаях из 16 (6 случаев расклада пополам и 8 случаев расклада «три – один») недостающие козыри разложатся благоприятно. Вероятность такой ситуации – 14/16 (7/8). А это близко к единице.
   Если у «играющего» на руках пять козырей, назначение игры в большой степени зависит от его темперамента, ибо вероятность наткнуться на три козыря на одной руке равна 1/4. Действительно, из всех 8 вариантов (2 – по три козыря, 3 – по одному козырю и 3 – по два козыря) вероятность такого события равна 2/8 (1/4).
   И ещё одна задача на подсчёт комбинаций. Для преферансиста интересен расклад не только козырей, но и второй масти. Рассмотрим случай, когда у «играющего» на руках две масти по четыре карты. Одна масть козырная, другую, как говорят, надо разыграть, то есть постараться и на ней взять побольше взяток. И в этом случае решающим является расклад карт, но теперь обеих мастей по рукам «вистующих» партнёров. Как назначить игру? С какими раскладами следует считаться?
   Комбинации карт (одна масть чёрная, вторая красная), которые могут очутиться на одних руках «вистующих», рассчитываются следующим образом. Четыре карты, как говорилось выше, распределяются 16 способами. А на каждую комбинацию чёрной масти приходится 16 вариантов распределения красных карт. Всего же вариантов будет (16), то есть 256.
   Какие комбинации могут быть? Ну прежде всего поистине трагическая, когда четыре чёрные и четыре красные на одной руке. Таких будет две: все восемь карт или у П. И., или у Н. В. Их вероятность очень мала 2/256 (1/128), и заядлые преферансисты вспоминают такие проигрыши (а они бывают) как чёрный кошмар и на них не рассчитывают.
   А какова вероятность самого желанного для «играющего» расклада, то есть по две чёрные и две красные карты на каждой руке «вистующих»? Так как для одной масти таких комбинаций шесть, то есть всего (6), то есть 36. Вероятность этого светлого исхода равна 36/256 (1/7). На такой вариант опытные игроки, разумеется, также не рассчитывают. Остаётся среднее.
   Волнующий момент игры в преферанс – приобретение прикупа. Прикуп – это 2 закрытые карты из 32. «Свои» карты – их 10 – преферансисту известны, а 2 карты (прикуп) из 22 он должен «угадать».
   В каждом отдельном случае игрок делает свой расчёт. Всё зависит от того, какие карты у него на руках и на что он рассчитывает, торгуясь за прикуп.
   Положим, он надеется купить пятого козыря к своим четырём. Среди 22 не его карт 4 не его козыря. Значит, вероятность лежащей в прикупе карты быть козырем 4/22, а не быть им – 18/22.
   Две карты лежат рядышком рубашкой кверху. Возможны четыре случая: та, что слева, – нужный ему козырь – раз, та, что справа, тоже козырь – два, обе карты козырные – три, нет в прикупе козырей – четыре. По теореме умножения вероятности этих событий равны: (4/22·18/22); (18/22·4/22); (4/22·4/22); (18/22·18/22), а это даёт 0,148; 0,148; 0,034; 0,670 (в сумме, разумеется, единица).
   Какая карта слева, какая справа, игроку всё равно. Так что шанс у него на удачу равен 0,148 + 0,148 = 0,296, то есть почти 30 процентов. Как, стоит ему рисковать?
   Есть такое выражение – «прикупная карта». Пусть у нашего «героя» на руках по три «сильные» карты трех мастей и одна карта из четвёртой масти, скажем, из пик. Достаточно ему приобрести одну любую (кроме пики), чтобы получилась выигрышная игра. Среди 22 не его карт 7 пиковой масти (у него одна), следовательно, вероятность пики 7/22, вероятность любой из карт других мастей – 15/22. Его погубит лишь один вариант – в прикупе 2 пики: вероятность этого случая (7/22), то есть около 0,1.
   Значит, 90 процентов шансов за то, что его покупка будет удачной и ему есть смысл рисковать.
   Я знал одного человека, который не очень любил трудиться. Если ему удавалось наскрести денег на билет в сторону «туда», он садился в поезд и отбывал на юг, в края неги и загара, имея в кармане несколько рублей. Насколько мне помнится, все эти путешествия кончались одинаково: он возвращался довольный, загорелый и даже потолстевший. Как же он устраивался? Очень просто: он играл в преферанс (а играл он безупречно). Это не значит, что он выигрывал каждую игру. Но любое назначение, любой его ход был оправдан вероятностным подсчётом, который он производил подсознательно, на основе своего богатейшего опыта. Когда его спросили, не боится ли он нарваться на игроков, которые играют не хуже его, он ответил, что садится играть только после того, как понаблюдает за игрой своих будущих жертв.
   Как видите, случайностей карточного расклада он не боялся.
   Из всего сказанного можно сделать вывод, что в таких играх, как преферанс, много важнее правильно назначить игру (то есть в соответствии с теорией вероятностей); правильно выбрать тактику игры; играть столь совершенно, чтобы каждый ход был верным (то есть согласным с теорией вероятностей), нежели быть удачливым в прикупе или в раскладе карт у «вистующих» Значит, выигрыш в преферансе не зависит от случая? Нет, зачем такое крайнее суждение. Зависит. Но только тогда, когда партнёры одинаково хорошо или одинаково плохо играют. Поэтому, если Пётр Иванович и Николай Васильевич встречаются с одними и теми же равными им по умению партнёрами по субботам и проворачивают пару пулек, то результат такой игры за долгий срок обязательно будет нулевым. Случай вступит в свои права и уравняет выигрыши и проигрыши по той же причине, по которой Монте-Карло заканчивает свой рабочий день примерно равными числами «красного» и «чёрного».
   Что же касается систематического выигрыша в такие игры, как преферанс, то он может быть лишь в том случае, если один игрок играет лучше другого. А «лучше» – это значит, что он сознательно или подсознательно правильно оценивает вероятность расклада карт, вероятность прикупа нужной карты и прочее.
   Ещё одно воспоминание. Тоже порядочно лет назад мы отдыхали с одним из крупнейших физиков нашего века, Львом Давидовичем Ландау. Ландау, или, как мы его звали, Дау, в карты никогда не играл, и чувство азарта ему знакомо не было. Но как-то раз его уговорили принять участие в довольно глупой карточной игре, которая называется «Спекуляция». Банк в этой игре забирает тот, у кого на руках старший козырь. Все партнёры по очереди открывают свои карты. Допустим, открылась дама бубен: бубны козырь. Дама выиграет, если среди оставшихся, подлежащих открытию карт не окажется короля или туза бубен. Владелец дамы имеет право продать даму, а любой из партнёров купить её. Между ними начинается весёлая торговля. Даму покупают, а через две карты открывается король, и промахнувшегося покупателя подымают на смех. Нетрудно видеть, что цена, которую можно предложить за даму, может быть строго вычислена. Известно, сколько карт вышло, сколько остаётся нераскрытыми в колоде, следовательно, можно подсчитать вероятность появления короля и туза. Дау каждый раз проделывал эту работу. А так как считать надо очень быстро, то он был очень сосредоточен и смешно контрастировал с остальными игроками, которые делали из этой игры весёлую забаву. Разумеется, никто из нас не соразмерял цены карты с вероятностью того, что она будет перебита последующими картами. Все играли наобум, кроме Дау. К нашему удивлению, через час игры обнаружилось, что Дау в «солидном» выигрыше. Он был очень доволен.
   При полной осведомлённости, то есть при правильной оценке вероятности события, сумма выигрышей и проигрышей будет стремиться к нулю. Так же как игрок в карты, знаток лошадей на бегах может обыграть других лиц только в том случае, если он оценивает вероятности события правильно, а они ошибаются.
   В связи со сказанным интересно остановиться на заблуждении игроков на ипподроме. Им кажется, что хорошее знание лошадей есть залог успешной игры. Дело, однако, обстоит не так, и игрок, ничего не понимающий в лошадях, за долгий период игры придёт к такому же финансовому результату, что и знаток. А поскольку ипподром снимает существенный процент ставок, то этим результатом будет, конечно, проигрыш.
   Такое положение дел возникает по той причине, что ставки на лошадей, грубо говоря, распределяются пропорционально вероятностям их выигрыша. Но сумма выплаты за выигравшую лошадь обратно пропорциональна вероятности выигрыша. Эта сумма определяется весьма просто: все сделанные ставки складываются и делятся на число билетов, поставленных на выигравшую лошадь.
   Здесь полная аналогия с игрой в рулетку, когда сравнивается стратегия двух игроков, один из которых ставит только на «красное» и «чёрное», а другой только на «номера». У первого вероятность выигрыша равна 1/2, а у второго – 1/36. Первый будет выигрывать часто, но мало; второй редко, но большими суммами. В конечном счёте выигрывает зеро, то есть оба игрока проиграют.
   Из сказанного следует, что вмешательство, даже самое маленькое, случайности уже делает единичное событие, строго говоря, непредсказуемым, а всю область явлений позволяет зачислить по ведомству проблемы вероятности. К этому важному заключению мы ещё вернёмся, когда вместо карт, рулетки и бегов займёмся поведением молекул.

Закон, найденный Бернулли

   Вероятность того, что при случайном броске монета ляжет гербом кверху равняется 1/2. Значит, зная вероятность события, мы можем предсказать, что при стократном бросании монеты герб появится 50 раз? Не обязательно точно 50. Но что-нибудь около этого непременно.
   Предсказания, использующие знание вероятности события, носят приблизительный характер, если число событий невелико. Однако эти предсказания становятся тем точнее, чем длиннее серия событий.
   Заслуга этого открытия принадлежит Якову Бернулли (1654—1705). Он был замечательным исследователем. Конечно, и Галилей, и Паскаль, и другие мыслители, которые вводили вероятность как дробь, равную отношению благоприятных случаев к общему числу возможных вариантов, превосходно понимали, что на опыте предсказания комбинаторных подсчётов осуществляются приблизительно. Им было ясно, что число бросков, при которых монета ляжет гербом кверху, не равно в точности, а лишь близко к половине от общего числа бросков, а число бросков кубика, приводящих к шестёрке сверху, не равно в точности, а лишь близко к 1/6 от общего числа бросков. Но насколько близко, сказать они не могли. На этот вопрос ответ дал Яков Бернулли. Открытый им закон, который мы называем «законом больших чисел», лежит в основе статистической физики; без этого закона не могут обойтись статистики ни одной области знания.
   Сущность этого закона весьма проста.
   Положим, «честная» монета бросалась тысячу раз, потом ещё тысячу раз, потом ещё… И так много раз. Разумеется, герб редко появится ровно 500 раз. Будут серии, где отношение числа появляющихся гербов к 1000 будет совсем близко к 1/2, и такие серии, где отклонение будет довольно значительным. Каким закономерностям подчиняется это отклонение от теоретической вероятности? И – самое главное – как будет меняться отклонение от вычисленной вероятности с увеличением числа бросков?
   Яков Бернулли строго доказал, что разности отношения удачных бросков к общему числу бросков и теоретического числа вероятности (в нашем примере – отклонения от 1/2) уменьшаются с возрастанием числа бросков, и эти отклонения могут быть сделаны меньше любого малого, наперёд заданного числа.
   Отношение числа удачных бросков к общему числу бросков называют «частотой». Закон больших чисел можно сформулировать и так: по мере увеличения числа опытов «частота» события сближается со значением вероятности.
   Отклонения «частоты» от вероятности при большом числе бросков, измеряемом тысячами, становятся совсем незначительными. О результатах своих немудрёных опытов по бросанию монеты поведали миру математики XVIII века. В одном таком опыте герб выпал 2028 раз при общем числе бросков 4000; когда число бросков достигло 12 000, то оказалось, что герб появился 6019 раз; наконец, при числе бросков 24 000 герб выпал 12 012. Частоты при этом изменялись так: 0,507; 0,5016 и 0,5005.
   Однако надо ясно представлять себе, что это сближение «частоты» с вероятностью есть лишь общая тенденция. Может случиться, что отклонения от вероятности для меньшего числа опытов окажутся такими же или даже меньшими, как и отклонения при большом числе опытов. Вообще же эти отклонения от предельных законов вероятности носят также статистический характер.

Часть вторая
Дела житейские

Вероятность, которой можно и должно пренебречь

   Любители парадоксов часто пытаются убедить читателя в противоречиях, которые якобы часто встречаются в проблемах вероятности.
   Парадоксы возникают обычно в том случае, если игрой слов пытаются подменить практическую постановку вопроса. Вот пример.
   Капитан пожарной команды собирается провести учения. Разумеется, тревога должна быть неожиданной, и он решает выбрать день учений броском игральной кости: единица – понедельник, двойка – вторник… шестёрка – суббота (воскресенье у пожарной команды выходной). Казалось бы, всё ясно, и день тревоги будет выбран в соответствии с законами случая. Однако предположим, что проходит понедельник, вторник… наконец, пятница, а тревоги нет. Значит, наверняка она будет в субботу. А такого положения допустить нельзя, ведь случайность изгнана. Значит, выбор дней тревоги с элементом случая надо ограничить пятницей. Но, владея сим методом рассуждения и не дождавшись тревоги в четверг, пожарники будут твёрдо знать, что её объявят в пятницу. И тогда дни учений надо ограничить четвергом. Но, не дождавшись тревоги в среду, пожарники будут твёрдо знать, что произойдёт в четверг. Также отпадает и среда, и вторник…
   Рассуждение это бессмысленно и вовсе не потому, что в понятии вероятности есть противоречия, а потому что полностью лишена содержания сама постановка вопроса. Ясно, что в понедельник утром пожарники могут ожидать проверки в любой из 6 дней, а во вторник в любой из 5, а в среду в любой из 4 и т.д. Парадокс, как всегда, результат игры слов и отрыва слов от действий.
   Обращаясь к математику, прошу его написать подряд десять случайных цифр. Он, хитро улыбаясь, пишет подряд десять единиц, а я изображаю на своём лице недоумение. Математик снисходительно поясняет: «Я десять раз подряд бросил монету. Она десять раз упала цифрой кверху. Я обозначил единицей выпадение цифры, и вот вам результат моего опыта. Вы ведь не станете отрицать, что это явление случайное, и также ясно представляете себе, что подобное событие (то есть выпадение цифры 10 раз подряд) вполне возможно – его вероятность около одной тысячной? А с такой вероятностью следует считаться».
   Все правильно. Только не следует делать из этого вывод, что в понятии «вероятность» заключены какие-то противоречия и неясности.
   Прежде всего отдавайте, пожалуйста, себе ясный отчёт, о чём идёт речь – о вероятности серии событий (вероятность выпадения монеты десять раз кряду гербом кверху) или о вероятности одного случайного события.
   О сериях событий разговор будет позже. А сейчас поговорим об одном событии. Мы ждём этого события.
   Сейчас оно произойдёт. Каков будет результат? Знаете вы это наперёд?
   – Я держу в руках камень. Сейчас разожму руки. Что будет?
   – Смешной вопрос. Ответ очевиден заранее: камень упадёт на землю.
   – А теперь я подброшу вверх монету. Какой стороной она упадёт на пол?
   – Смешной вопрос. Ответ никому заранее неизвестен.
   События, исход которых предсказать нельзя, мы называем случайными. Падение камня на землю – событие с достоверным результатом. Падение монеты на пол гербом вверх или вниз – событие со случайным исходом.
   Предсказать случайное событие мы не можем (эта фраза есть тавтология – «верёвка есть вервие простое»), но можем знать заранее его вероятность.
   – Какова вероятность, что эта монета упадёт гербом кверху?
   – Дайте сюда монету. Так. Она, кажется, правильная, и если центр тяжести её не смещён, то я не вижу причин, по которой герб был бы лучше цифры. Значит, вероятность, про которую вы спрашиваете, равна одной второй. Соображения симметрии приводят меня к такому заключению.
   – Да, а если монета неправильная?
   – Тогда величина вероятности для этой монеты может быть установлена только на опыте. Надо произвести много бросков и установить эмпирическое (опытное) значение вероятности.
   – Значит, к значению вероятности приходят двумя путями?
   – Так точно. Либо симметрия события позволяет нам сделать предсказание вероятности его исхода, либо длительный опыт приводит нас к заключению о величине вероятности. Конечно, к соображениям симметрии надо относиться с осторожностью. Можно, скажем, поторопиться и сделать заключение, что появление у молодых родителей мальчика или девочки вполне эквивалентно выпаду герба или цифры у правильной монеты. Но, оказывается, дело обстоит не так, и вероятность появления на свет мальчика примерно на один процент выше. Длительное наблюдение позволяет установить такое значение вероятности и пользоваться им для предсказания грядущих событий. «Вот в этом и порочный круг, – может заявить любитель парадоксов. – Я определяю вероятность опытным путём, то есть анализом прошлого, и применяю её к будущему. А откуда я знаю, что со временем эта вероятность не претерпит изменения?»
   Но так можно сказать о любом событии. Откуда я знаю, что завтра взойдёт солнце; откуда я знаю, что мой сосед по дому смертен; откуда я знаю, что на клёне не вырастут яблоки? Возражать против научного метода, исходя из подобных построений формальной логики, совершенно бессмысленно. Человек не может жить, не приняв без доказательства целый ряд посылок, в том числе и уверенность, что действия законов природы в будущем неизменны.
   Ещё одна линия атаки на законы вероятности – это стирание грани между маловероятным и невозможным. Несомненно, рассуждая формально, можно сказать, что и самые дикие события осуществимы. Легко рассчитать вероятность того, что воздух из комнаты, где вы сейчас трудитесь, выйдет во мгновение ока через открытое окно и работа останется недоделанной. Можно рассчитать вероятность того, что кот Васька отстукает на машинке, тыча в клавиши куда попало лапой, «Сказку о царе Салтане». Нетрудно подсчитать вероятность появления одного лишь красного цвета в рулетке Монте-Карло в течение целого «рабочего дня» и красочно изобразить ужас и растерянность дирекции этого богоугодного заведения… Все это можно; и действительно, вероятности будут отличны от нуля. Но отнести эти события на таком формальном основании к возможным – значит играть словами.
   События достаточно маловероятные не происходят. Этим законом мы можем и должны руководствоваться и в науке, и в житейской практике.
   Какие вероятности практически равны нулю, можно всегда оценить. И эта оценка, разумеется, будет разной, смотря о чём идёт речь. Если о событии, касающемся одного конкретного человека, скажем меня или вас, – это одно, если о событии, случившемся с абстрактным землянином, – другое. И наконец, совсем иные оценки возникнут, когда от случайностей в мире людей мы перейдём к беспорядку в мире атомов.
   Итак, прежде всего, как я оцениваю вероятности событий, которые касаются меня лично или вас, читатель? Точнее, какие вероятности событий мы с вами считаем, не раздумывая, нереалистическими и не принимаем во внимание?
   На этот вопрос отвечают обычно так: событие, вероятность которого равна примерно одной миллионной считается практически несбыточным. Откуда мы взяли это число?
   Количество дней, которое отпущено природой нам, грешным, равно примерно 25—30 тысячам. Следовательно, число простых жизненных фактов, которые мы повторно совершаем в своей жизни, измеряется миллионами. Значит, считаться с вероятностью одной миллионной – это вроде бы придавать значение каждому жесту, совершенному за время жизни.
   Подойдём к этой же величине другим путём. Обычно человека, который не выходит из дому из-за боязни попасть в автомобильную катастрофу, считают не вполне нормальным. Чему же равна грустная вероятность погибнуть в какой-либо день своей жизни под колёсами автомобиля, скажем, итальянцу, в стране которого проживает 50 миллионов человек, а прощается с жизнью из-за успехов автомобилизма около 10 тысяч человек за год, то есть 25 человек в день? Оказывается, каждый итальянец, выходящий на улицу, имеет один шанс против 500 тысяч попасть сегодня под колеса. Мы видим, что итальянцы не считаются с вероятностями порядка одной миллионной.
   Также поступают и жители других государств. Кстати, процент гибнущих в путевых катастрофах удивительно одинаков по всем странам Европы и Америки.
   А вот ещё довод. В игорном доме в Монте-Карло ведётся запись всех выходящих номеров. За время существования этого богоугодного заведения ни разу не зафиксирована серия, состоящая более чем из 22 одноцветных номеров кряду. Появление такой одноцветной серии имеет вероятность порядка десятимиллионных долей единицы. Значит, играя тысячу игр в день всю свою жизнь, вы можете не встретиться с таким поразительным случаем.
   Такая же примерно величина вероятности крупнейшего выигрыша и у держателей лотерейных билетов, то есть около одной миллионной. Хотя крупный выигрыш при этом и возможен, разумный человек не строит своих планов в расчёте на него, как не страшится гибели в автомобильной катастрофе.
   Мы вели разговор о вероятности как о руководстве к действию применительно к одному конкретному лицу, скажем, к моей личной судьбе. И другое дело, когда мы оцениваем вероятность происшествия применительно к абстрактным жителям.
   Положим, я директор страховой компании. На вероятность своей гибели в автомобильной катастрофе я не обращаю внимания, но оценка вероятности такой смерти для некоего абстрактного гражданина моей страны меня волнует и лежит в основе моей деятельности, поскольку в стране проживает несколько миллионов человек.
   Какую же вероятность должно иметь событие, чтобы мы откинули его как невозможное, когда речь идёт об абстрактном жителе Земли?
   Эмиль Борель, французский математик, много сделавший для развития теории вероятностей, предлагает в качестве такой вероятности 10, то есть одну миллионную от одной миллиардной. Это число представляется весьма разумным. А получается оно просто от уменьшения индивидуальной вероятности в число раз, равное населению земного шара.