Существуют и ионосферные бури. Ионосферные бури вызываются различными процессами на Солнце, такими как солнечные вспышки, корональные дыры и корональные извержения масс. Бури длятся от нескольких часов до нескольких дней и иногда повторяются с периодом 27,5 дня, равным периоду собственного вращения Солнца.
   Сила бури отмечается индексами А и К, которые указываются в радиовещательных сигналах геофизической тревоги Geoalert, передаваемых станциями WWV и WWVH, принадлежащими Национальному институту стандартов и технологий США (NIST) в г. Боулдер, шт. Колорадо. Радиостанция WWV располагается в окрестностях Форт-Коллинза (Ft. Collins), а радиостанция WWVH – в Кауаи, Гавайи. Обе станции осуществляют непрерывное вещание на частотах 2,5; 5; 10 и 15 МГц; кроме того, WWV вещает и на 20 МГц. Информация обновляется каждые три часа и передается станцией WWV на 18-й минуте каждого часа, а станцией WWVH – на 45-й минуте каждого часа. Ионосферные и магнитные возмущения могут сопровождаться видимой авророй.
   Индекс К представляет собой результат трехчасовых магнитометрологических измерений интенсивности и направления геомагнитного поля и сравнения их с этими же характеристиками в геомагнитно «спокойных» условиях. Измерения индекса К осуществляются во многих местах земного шара и тщательно согласуются с геомагнитными характеристиками места, в котором проводятся измерения. Индексы К станции Боулдер (Boulder) измеряются по шкале от 0 до 9.
   Индекс А дает усредненную меру геомагнитной активности, полученную из ряда физических измерений, долговременную картину геомагнитной активности. Он выводится из индексов К и принимает значения от 0 до 400.
   Многие организации принимают участие в предсказаниях солнечных циклов и в мониторинге солнечной активности. Например, солнечная и гелиосферная обсерватория (SOHO) – это реализованный совместный проект Европейского космического агентства (ESA) и Национального управления по океану и атмосфере (NOAA). Эта космическая станция – наиболее претенциозный проект, позволяющий осуществлять непрерывное наблюдение за Солнцем. Реализация проекта позволяет лучше понять взаимодействие между Солнцем и Землей, включая солнечный ветер.
   Солнечные, геомагнитные и ионосферные данные в Интернет. Огромное число данных о солнечной, геомагнитной и ионосферной активности и об условиях распространения волн можно найти во Всемирной паутине (World Wide Web). Большинство web-сайтов спонсируются хорошо известными академическими, педагогическими и правительственными организациями:
   – Космический центр SEC (Space Environment Center) NOAA, являющийся частью Департамента торговли США, спонсирует обширный и поддерживаемый в хорошем состоянии сайт, который находится по адресу: http://www.sel.noaa.gov/sec.home.htmb.
   – Национальный центр геофизических данных NGDC (National Geophysical DataCenter) NOAA распространяет бюллетень солнечных и геомагнитных индексов и предоставляет превосходный доступ к геофизическим данным и архивной информации на сайте http://www.ngdc.noaa.gov.
   – Информационное агентство по солнечно-земным связям STD (Solar Terrestrial Dispatch), управляемое университетом г. Летбридж (провинция Альберта, Канада), предоставляет обильную информацию о состоянии Солнца и его влиянии на Землю: http://solar.uleth.ca/solar/main.html.
   – служба IPS Radio and Space Service австралийского правительства имеет Австралийский центр прогнозирования состояния космоса (Australian Space Forecast Center), который гордится своей информационной базой on line по солнечно-земным связям, прогнозированию состояния космического пространства и условий распространения радиоволн: http://www.ips.gov.au.
   – страничка Aurora спонсируется Мичиганским технологическим университетом. На ней имеются информация и изображения, относящиеся к Северному полушарию: http://www.geo.mtu.edu/weather/aurora.
   – Web-сайт Kangaroo Tabor Software, спонсируемый Icim Tabor (KU5S), содержит некоторые программы и предназначен тем, кто интересуется прогнозированием текущего и будущего состояния Солнца и условий распространения радиоволн: Он включает такие инструменты, как Active Beacon Wizard++ и WinCAPWizard 2: http://www.taborsoft.com.
   Важнейшими направлениями исследований являются эволюция биосферы, энерго– и массообмен, методология системных исследований в соответствии с международной геосферно-биосферной программой (Кондратьев К. Я., Покровский О. М., 1989; Кондратьев К. Я., 1990; 1992; 1993). К числу активно воздействующих на биосферу Земли можно отнести ее оболочки – ионосферу и атмосферу, в которых происходят преобразования внешних космических факторов с образованием комплекса вторичных эффектов: магнитных полей и токов, инфразвуков и акустических колебаний, потоков элементарных частиц (Васильев К. Н., 1969; Алексеева Л. М., 1977; Владимирский Б. М. с соавт., 1994).
   К числу активно воздействующих на биосферу Земли можно отнести ее оболочки – ионосферу и атмосферу, в которых происходят преобразования внешних космических факторов с образованием комплекса вторичных эффектов: магнитных полей и токов, инфразвуков и акустических колебаний, потоков элементарных частиц (Голицин Г. С., 1961; Goe G. B., 1971; Beer T., 1972; Госсард Э. Э., Хук У. Х., 1978; Бирагов С. Б., 1979; Глушковский Б. И. с соавт., 1979; Потапов Б. П., 1979). Поглощение и преобразование излучений Солнца происходит в основном в ионосфере и нейтральной атмосфере Земли. Поверхности Земли достигают ультрафиолетовые лучи, видимый свет, инфракрасное излучение, участок радиоспектра (с длиной волны 1 мм – 30 м). Солнечное радиоизлучение в диапазоне 10–30 000 МГц свободно достигает поверхности Земли, так как в этом диапазоне существует радиочастотное окно прозрачности ионосферы (Владимирский Б. М., 1977; 1980).
   Влияние ионосферы на биосферу изучено в настоящее время совершенно недостаточно. Здесь имеются лишь единичные работы. Например, для реакции Белоусова – Жаботинского получены самые высокие корреляции f0F2 – критической частоты ионосферного слоя F2 и КЛ. Агглютинация бактерий сильно коррелирует с критической частотой f0F2 слоя F2 ионосферы. Исследования показали, что здесь играют большую роль ГМП в диапазоне короткопериодических колебаний, полярность межпланетного МП (Опалинская А. М., Агулова Л. П., 1984). Имеется всегда комбинированное многофакторное воздействие различных естественных ЭМП на биосферу (Ерущенков А. И., 1977; Ерущенков А. И. с соавт., 1977а; 1977б; Ишкова Л. М. с соавт., 1989). Например, показана связь атмосферных процессов с параметрами ЭМП атмосферы (Чекин В. Я., 1962; 1963; Оль А. И., 1971), c содержанием аэроионов (Климат и здоровье…, 1988), инфразвуковыми колебаниями в атмосфере (Ерущенков А. И. с соавт., 1977а; 1977б; Махотин Л. Г., 1984).
   Ионосфера – область верхней атмосферы, где количество ионов и электронов достаточно для того, чтобы существенно влить на распределение радиоволн. Ионосфера включает в себя озоносферу, не имеет резко выраженной верхней границы и постепенно переходит в гелиосферу, где основными компонентами являются нейтральный и ионизированный гелий, а затем в протоносферу, которая в основном состоит из ионизированного водорода. Границы этих областей четко не определены (Ришбет Г., Гарриот О. К., 1975).
   Степень ионизации ионосферы, электронная концентрация зависит от энергии ионизирующего излучения Солнца, коэффициента поглощения газом излучений и исходной плотности атмосферного газа. Процесс ионизации ведет к появлению максимума на кривой зависимости электронной концентрации от высоты. Cостав атмосферы сложен, различные составляющие по-разному ионизируются различными участками солнечного спектра, и, значит, в ионосфере образуется несколько максимумов на кривой концентрации ионов, особенно в дневное время. Эти максимумы и отождествляют с положением отдельных «слоев», или «областей» ионосферы. В порядке возрастания эти слои называются D, E, F1, F2. Высота, толщина и степень ионизации ионосферных слоев существенно зависят от местного времени суток, сезона, уровня солнечной активности и координат (Галкин А. И. с соавт., 1971).
   Движение заряженных частиц в ионосфере под действием электромагнитных сил в геомагнитном поле индуцирует ток в части ионосферы, которую называют «динамообластью» (до 140 км). Токи в ионосфере – источник наблюдаемых геомагнитных вариаций, а из области Е они индуцируют токи в области F. Область D (50–85 км) – самая нижняя область ионосферы, с низкой концентрацией электронов. Здесь наблюдаются высокая частота соударений и сильное затухание электромагнитных волн, изучается распространение сверхнизкочастотных колебаний типа атмосфериков (10 КГц) в волноводе «Земля – ионосфера». Максимум электронной концентрации в слое D находится вблизи 80 км, которая зависит от СА. Суммарная величина концентрации ионов для области D имеет 27-дневную периодичность, характеризующая вариации СА и хорошо коррелирует с вариациями ОЧСП (Ришбет Г., Гарриот О. К., 1975).
   Область Е ионосферы (85 – 140 км) образуется под действием мягкого рентгеновского излучения Солнца, и в этой области основными ионами являются молекулярный кислород и окись азота. Электронная концентрация в области Е в полдень составляет около 105 на см3 для периода минимума солнечной активности и примерно на 50 % больше в период максимума. Концентрация изменяется со временем суток, сезоном и широтой и зависит от уровня солнечной активности. Электронная концентрация в слое Е имеет максимум около полудня. Этот слой существует обычно днем, но часто остается остаточная ионизация – ночной слой Е. Внутри области Е в тонком слое (несколько км) на высоте около 100 км часто наблюдается повышенная по сравнению с вышележащими областями электронная концентрация. Это явление называется спорадическим слоем E (ES). Сезонные вариации частоты появления ES и его интенсивности малы, но сезонные флуктуации проявляются четко. Максимум частоты проявления ES в средних широтах наблюдается летом в дневное время. Слой ES, особенно в высоких широтах, тесно связан с вторжением в земную атмосферу потоков частиц высоких энергий, с полярными сияниями и геомагнитными нарушениями. Существуют данные, показывающие тесную связь ES с ветровым режимом в Е-области ионосферы и турбулентностью (Галкин А. И. с соавт., 1971; Владимирский Б. М., 1982). В ионосфере существует целый спектр неоднородностей электронной плотности – от десятков метров до сотен километров (Казимировский Э. С., 1990).
   Корпускулярный слой E – толстый слой E с критической частотой, значительно большей, чем частота нормального слоя Е. По традиции он называется ночным слоем Е, так как критическая частота нормального слоя Е в ночные часы бывает ниже наименьшей частоты регистрирующей аппаратуры. Часто бывает, что разница частот корпускулярного слоя и нормального Е больше, чем между f0E и f0E2. В ночные часы, когда f0E нормального слоя Е не превышает 300–500 Кгц, f0E корпускулярного слоя E выше 1 Мгц и доходит до 5 Мгц. После появления корпускулярного слоя Е наблюдается ES с запаздыванием (Руководство URSI…, 1977).
   Область F1 ионосферы является промежуточной между областями E и F2, располагается на высотах 160–200 км. Максимум электронной концентрации при этом находится на высоте h ≈ 170–200 км. Слой F1 появляется чаще всего летом, днем и в период минимума солнечной активности. В ночное время слой F1 не появляется совсем. Электронная концентрация в максимуме слоя меняется с сезоном и географическим положением. Наблюдаются и сезонные вариации этой величины. На условия появления слоя F1 влияет нестационарный характер процессов, протекающих в ионосфере и связанных с динамическими процессами в нейтральной среде (Галкин А. И. с соавт., 1971).
   Область F2 ионосферы – самая обширная и сложная область, лежащая выше 200 км. Основными ионами в этой области являются атомарный азот и кислород c сильным преобладанием кислорода (O+). Электронная концентрация в максимуме F2 меняется сложным образом. В нем есть отклонения, которые принято называть «аномалиями слоя F2». Хорошо известна суточная аномалия, когда концентрация электронов в максимуме слоя в полдень имеет четкий минимум. Суточная вариация максимальной концентрации электронов имеет либо один максимум, сильно сдвинутый относительно полудня, либо 2 максимума. Выделяют географическую аномалию, проявляющуюся в том, что вблизи магнитного экватора имеет место минимум полуденной концентрации в ее широтном ходе, в то время как вследствие вертикальности падения солнечной радиации должен бы наблюдаться максимум. Сезонная аномалия проявляется в том, что везде, особенно вблизи широты 50°, значение концентрации электронов в полдень особенно велико местной зимой. Существует так называемая декабрьская аномалия – в зоне широт 50° северной широты – 35° южной широты. Она аномально велика в ноябре, декабре, январе. Декабрьская аномалия усиливает сезонную аномалию в северном полушарии. Зимняя аномалия слоя F2 наиболее выражена в период максимума солнечной активности (Казимировский Э. С., 1990; Смирнов Р. В., Кононович Э. В., 1994). Выявлена ключевая роль кольцевого тока в динамике земной магнитосферы, солнечно-земных и магнито-ионосферных связях. Во многих динамических магнитосферных процессах значительную роль наряду с протонами играют ионы гелия и кислорода. Источники ионов различны: частицы – в основном солнечного происхождения, а ионы кислорода – ионосферные (Ковтюк А. С. с соавт., 1995). Резкой границы между атмосферой и ионосферой нет, их слои перекрывают друг друга, а процессы, происходящие в них, взаимообусловлены (Полак Л. С., 1960; Погодин И. Е., 1994).
   В ионосфере находятся высокоэнергетические частицы – электроны и протоны, направляемые силовыми линиями геомагнитного поля. Они гигантскими тысячекилометровыми струями вторгаются в атмосферу, вызывая полярные сияния. Ионосферные слои способны смещаться друг относительно друга с очень большими скоростями до нескольких сот метров в секунду, что сопровождается в силу сильной ионизации мощными электрическими токами и низкочастотными колебаниями в атмосфере. Возмущения в ионосфере могут генерировать инфразвук. Шумовые бури часто возникают в связи с возникновением солнечных пятен, которые функционируют в течение минут, часов или суток (Казимировский Э. С., 1990). Ионосферный волновод существует между поверхностью Земли и ионосферой и имеет собственные частоты с основной полосой 7–8 Гц, амплитуда колебаний в которой возрастает во время магнитных бурь в несколько раз (Плясова-Бакунина Г. А., Матвеева Э. Т., 1969).
   Наиболее регулярно действующим источником ультранизко-частотного излучения около земной поверхности является молния. Молния распространяется по волноводу «Земля – ионосфера». Максимум энергии в этой части сигнала лежит в области частот 60 – 200 Гц (Галкин А. И. с соавт., 1971).
   На процессы магнитосферы оказывают влияние и параметры межпланетного МП. Выявлена корреляция состояния ионосферы с межпланетным МП. Перемена его знака ведет к изменениям электрических токов и полей магнитосферы Земли. Солнечные вспышки вызывают дополнительные ионосферные токи с частотой около 0,04 – 5 Гц на 3 – 4-е сутки с последующим развитием магнитных бурь и 1000-кратными флуктуациями напряженности электрического поля на частоте в области 1 Гц, так же как и в случае изменений СА. Эти процессы всегда сопровождаются инфразвуковой бурей на частотах 0,01 – 0,05 Гц с максимумом эффектов в ночные и утренние часы (Мирошниченко Л. И., 1981). Эти обстоятельства и факторы могут иметь существенное биотропное действие.
   В Руководстве URSI (1977) даются определения наиболее важных терминов. Предельной частотой слоя называют наивысшую частоту, на которой получается отражение от слоя при вертикальном зондировании. Экранирующей частотой слоя – самую низкую частоту, на которой слой начинает становиться прозрачным, отождествляется с появлением отражений от слоя, расположенного более высоко. Критической частотой слоя называется наивысшая частота, на которой слой не только отражает волну, но и пропускает ее. Минимальная действующая высота – высота, на которой след отражений от ионосферы на ионограмме горизонтален. Максимально применимая частота (МПЧ). На ее основе определяют действующую высоту максимальной электронной концентрации слоя. За стандартное расстояние принято расстояние в 3000 км. Например, М(3000)F2 – обозначает коэффициент, на который надо умножить частоту слоя F2f0F2, чтобы получить МПЧ(3000)F2 – максимальную частоту, отражающуюся от слоя F2 с расстояния 3000 км. Для удобства масштаб величин записывается увеличенным в 100 раз (Ионосфера…, 1982).
   В число характеристик, рекомендуемых URSI для определения на ионосферных станциях, входят следующие ИП: f0F2, M(3000)F2, f0ES, fmin. Существует международная договоренность по определению этих параметров (Руководство URSI …, 1977). f0F2 – критическая частота обыкновенной волны, отраженной от самого высокого отслоения в области F (представляется в МГц, увеличена в 10 раз). f0ES – предельная частота обыкновенной волны, соответствующей наибольшей частоте, при которой наблюдается основной непрерывный след отражений от слоя ES (представляется в МГц, увеличена в 10 раз). fmin – наименьшая частота, при которой на ионограмме наблюдаются следы отражений от ионосферы (представляется в МГц, увеличена в 10 раз). h'F – минимально действующая высота следа отражений обыкновенной волны от взятой в целом области F (представляется в км). Перечисленные ионосферные параметры на моменты проведения физиологических исследований были получены в Санкт-Петербургском филиале ИЗМИ РАН (пос. Войеково).
   В реальной природе имеет место комбинированное воздействие природных факторов, которые не строго периодичны (Richner H., Greber W., 1978). Поэтому, вероятно, на организм оказывают влияние именно эти первичные, фундаментальные физические факторы. В нашей работе изучались 5 вышеуказанных ИП. Для демонстрации сопряженности их с глобальными показателями космоса на рис. 1.3 представлена сглаженная динамика ППСР3000 и ГИКЛ за 1977–1988 гг. (Космические данные …, 1977–1988) в моменты изучения крови у больных с психическими расстройствами без выраженной соматической патологии. Таким образом, изучая корреляционные связи параметров ионосферы в динамике с биологическими показателями можно судить по крайней мере о характере соотношений космических и солнечных излучений, находящихся в противофазе. В табличном материале обозначение ИП означает все 5 исследованных ионосферных параметров: f0F2, M(3000)F2, f0Es, fmin, h'F.
 
   Рис. 1.3. 12-летняя динамика (с 1977 по 1988 г.) двух ионосферных показателей: критической частоты f0F2 слоя F2 и коэффициента М(3000)F2 ионосферы, а также плотности потока солнечного радиоизлучения на частоте 3000 Мгц (ППСР3000) и глобальной интенсивности космических излучений (ГИКЛ) – в моменты исследования гематологических признаков циркулирующей крови. Наглядно представлены 11-летние тренды космических и ионосферных параметров наряду с квазипериодическими нерегулярными флуктуациями
 
   В силу недостаточной изученности влияния ионосферы на биосферу существует необходимость обоснования выбранных ионосферных параметров для изучения корреляционных связей с медико-биологическими и психологическими показателями, исследованными в настоящей работе. Для этого приводятся основные закономерности поведения физических параметров, сопряженных с ионосферными процессами.
   Так, в авроральной (возмущенной) ионосфере могут образовываться слабые крупномасштабные неоднородности (Гельберг М. Г., 1980). D. H. Rind (1978) приводит результаты исследования нижней термосферы по 10-летним непрерывным наблюдениям инфразвуковых естественных шумов, что говорит о постоянном их наличии в атмосфере и зависимости их появления от множества факторов, в том числе от нагревания стратосферы (Rind D. H., Donn W. L., 1978), внутренних гравитационных волн при грозовых разрядах в атмосфере (Григорьев Г. И., Докучаев В. П., 1981). Вариации ветров и инфразвуков могут быть результатом планетарных гравитационных волн, СА, геомагнитных эффектов. В атмосфере иногда возникают бронтиды – естественные шумы взрывного характера (Gold T., Soter S., 1979). Установлено наличие инфразвуковых колебаний в слое F2 и слое F в целом ионосферы, которые связаны с сильными грозами (Raju D. G. et al., 1981; Rao B. M. et al., 1981). Кроме того, низкоширотный инфразвук связан с геомагнитной активностью (Srivastava B. J. et al., 1982) и может производить геомагнитные вариации во время землетрясений (Альперович Л. С. с соавт., 1978). Электронный поток ионосферы и полярных сияний тоже генерирует инфразуковые волны (Suzuki Y., 1979), которым приписывают акустико-гравитационно-резонансные механизмы развития в атмосфере под авроральной ионосферой (Алексеева Л. М., Гетлинг А. В., 1978) и даже вокруг всей земной сферы (Григорьев Г. И., Докучаев В. П., 1978; Безрученко Л. И., Залялютдинов А. Р., 1979). Скорость смещения области F ионосферы достигает 10–40 м/с, при этом вертикальное движение области F – параметр действующей высоты h'F приводит к ее деформационным изменениям и хаотическому движению ионосферы (Васьков А. М., Димант Я. С., 1989; Киселев В. Ф. с соавт., 1989).
   Атмосферный газ имеет естественную вертикальную стратификацию, поэтому любое возмущение или движение, имеющее порядок высоты атмосферы вызывает в ней внутренние волны. Атмосфера рассматривается в качестве нелинейно-дисперсионного фильтра. Возмущения большой амплитуды имеют свойство быть слабо затухающими, а многомодовые малой амплитуды – сильно рассеиваются (Корнеев Н. А. с соавт., 1985; Мусатенко С. И., 1985).
   Cуществуют определенные временные соотношения всплесков ГМП и ионосферы (Арошидзе Г. М., 1971; Курганов Р. А., Кацевман М. М., 1989), в частности слоя ES (Гусев В. Д. с соавт., 1989). Флуктуации плотности ионосферной плазмы нестационарны (Лаугалис Р. В., Швирта Д. И., 1987). Во время аномальных возмущений отражающая поверхность слоя ES имеет форму фокусирующей линзы. Механизм ее возникновения заключается в образовании горизонтального градиента вертикального сдвига этого слоя (изменения, в том числе действующей высоты h'F) (Насыров А. М., Стрекалов В. А., 1989; Овезгельдыев О. Г. с соавт., 1989а). Спорадический слой ES в годы минимума СА существенно изменяется (Солуян С. И., Хохлов Р. В., 1975; Березин И. В. с соавт., 1989). При гирочастотном нагреве ионосферы существует эффект антикорреляции электромагнитных излучений, возбуждаемых на частотах выше и ниже частоты волны накачки с эффектом самофокусировки ионосферных неоднородностей (Бойко Г. Н., Фролов В. Л., 1989; Голян С. Ф. с соавт., 1989), в том числе при прохождении СВЧ-излучений Солнца (Балашов В. И. с соавт., 1989).
   Особенности взаимодействия плазмы ионосферы и СВЧ-излучений в том, что частоты СВЧ значительно больше характерных частот плазмы ионосферы. Этот фактор определяет особенности нагрева, рассеяния и преобразования в продольные волны. Исследованы процессы прохождения СВЧ-излучений через характерные зоны D, E, включая ES, F1 и F2 в средних широтах до высот слоя F2, где плазменная частота уменьшается. Показано, что все упомянутые слои ионосферы имеют свои определенные характеристики взаимодействия с СВЧ-излучениями. Это означает, что до Земли доходят существенно модифицированные СВЧ-излучения Солнца (Баранец А. Н. с соавт., 1989; Белей В. С. с соавт., 1989; Бубнов В. А., Устинович В. Т., 1989; Кауфман Р. Н., 1989).
   Флуктуации СА, межпланетного МП модулируют спектр КЛ, достигающий земной поверхности (Гончарова Е. Е. с соавт., 1989). Изменения акустических шумов атмосферы очень низкой частоты (< 1 Гц) – инфразвуковых колебаний естественного происхождения связаны с СА, особенно тесная связь инфразвуков при полярных сияниях. Поэтому они являются передатчиком СА на биосферу, поскольку акустические волны биологически активны на естественных частотах порядка 0,01 Гц с амплитудой в районе 10 дин/см2. Такие воздействия имеют место при короткопериодичных колебаниях ГМП, сопровождающиеся атмосфериками на частотах 104 Гц. В спектре естественных инфразвуков атмосферы они занимают полосу от 16 Гц (слышимые) до 0,003 Гц (ниже этой частоты преобладают внутренние гравитационные волны. Они всегда присутствуют в атмосфере на частотах ниже 1 Гц, слабо затухают, могут распространяться за тысячи километров от источника (землетрясения, штормы). Обычный акустический фон имеет амплитуду около 1 дин/см2, что значительно меньше локальных флуктуаций при наличии ветра (Владимирский Б. М., 1974).
   Данные о результатах анализа наблюдений о движениях газа на различных высотах атмосферы Земли говорят о существовании акустико-гравитационных волн в большом интервале высот – от поверхности Земли до верхней границы ионосферы, – сопровождающихся существенной вариацией электронной концентрации (до 2 порядков) (Григорьев Г. И., Докучаев В. П., 1978) с передачей флуктуаций ионосферного давления в толщу атмосферы (Алексеева Л. М., 1978). В авроральной ионосфере обнаружена генерация акустических волн (Raju D. G. et al., 1981).