Рассмотренные выше процессы происходят во временном интервале, за который произошла зарядка первичного магнитного кванта, за такое же время разрядки этот монополь микровихрона успевает совершить каскад поступательно-вращательных спиралевидных движений с образованием ¼ длины волны фазового пространства фотона и исчезнуть из него. Такое поступательно-вращательное движение магнитного монополя ограничивает поступательную скорость движения микровихрона световым пределом – это девятое свойство вихрона, определяющее одну из основных фундаментальных констант – скорость света. Поэтому движение фотонов резко отличается природой своего самодвижения от движения массовых корпускулярных частиц, т.е. от кинетического типа движения, так как масса покоя фотона равна нулю.
   Экспериментальным подтверждением образования свободных магнитных монополей СВЧ диапазона и их последующего движения с образованием трека электромагнитного кванта является обнаруженное «странное излучение», мощный поток которого освобождается при взрыве титановых фольг[47] в жидкостях, а также следы такого излучения в жидком цирконии, образующиеся в ядерном реакторе М.И.Солина. В этих же работах была произведена и доступная идентификация этого излучения по его взаимодействию с макро– и микро-магнитными полями. По утверждению авторов «странное излучение» – это поток различного рода магнитных монополей. В этих работах приведены микрофотографии следов этого «странного излучения», зарегистрированных с помощью ядерных фотоэмульсий – это объёмные следы электропотенциалов фотона, оставленные свободным биполярным вихроном СВЧ диапазона электромагнитных волн, т.е. аналог такого странного излучения с длиной волны в 20 мкм. Как хорошо известно, вдоль этих электропотенциалов идут сильные вихревые токи, вызывая ионизацию и ядерные структурные изменения в среде распространения, в данном примере, в фотоэмульсии, или в расплавленном цирконии. Характерным качеством этих следов, отличающих их от известных следов различных элементарных частиц в таких детекторах, является строгая периодичность, т.е. длина волны фотонов порядка 20 мкм, что может быть идентифицировано как электромагнитный СВЧ-квант, аналогичный квантам разогревающим еду в микроволновой печи.
   Продуктами колебаний полевого тока магнитных и электрических зарядов в собственном фазовом пространстве вихрона являются вторичные вихревые электрические и магнитные потенциалы, а также их геометрическое распределение (регуляризация или геометризация) на фазовом пространстве трека фотона, длина которого в космосе только в её видимой части достигает 1028 см. На это идёт затрата энергии заряда магнитного монополя. В результате при движении в космосе происходит «красное» смещение в фотоне, т.е. частота автоколебаний уменьшается, длина волны увеличивается. Поэтому и появляется «реликтовое» излучение, изотропно заполняющее пространство Вселенной. В случае движения в невещественном пространстве, этот трек фотонов с фиксированной геометризацией электрических потенциалов «консервируется и замерзает», образуя тонкую и весьма длинную нить волновода-следа этого кванта. Период полураспада этих потенциалов зависит от условий их нахождения и движения в том или ином пространстве, а также формы существования – части шнура волноводов или всей длины трека движения космического фотона (1028 – 1036 см и далее в невещественное пространство). Образовавшийся в невещественном пространстве аморфный и выше определённый электромагнитный трек-пространство фотона, впоследствии сворачивается в сферический клубок и становится ядром вращающейся нейтронной звезды. Это десятое и, пожалуй, вселенское свойство микровихрона – рождение чёрных сферических тел (ЧСТ) в невещественном пространстве за пределами нашей Вселенной, в её «атмосфере».
   И именно здесь уже правомерно может стоять ответ на вопрос – откуда взялось такое огромное количество материи в нашей Вселенной[48]? Отсюда: вся видимая и осязаемая материя – это совокупность геометрически фиксированных в пространстве зерен-электропотенциалов, геометрически построенных вихронами с различной плотностью, и по которым они постоянно движутся.
   Ответ – только один высокочастотный вихрон, проникший в область невещественного пространства, способен произвести одно Солнце, т.е. то нейтральное, гравитационно очень тяжёлое ядро, которое распадаясь и минуя стадии квазаров, нейтронной звезды, тёмных карликов и т.д., вспыхнет фотонным светом звезды, не сразу, сначала взрывами сверхновых, затем постоянно, а выработав всю длину названного трека-волновода запасённых зёрен-потенциалов в производство фотонов и микрочастиц, превратится в твёрдый сферический остаток смеси наработанного им атомно-молекулярного вещества различного химического состава мёртвой планеты типа Луна.
   Все вышеназванные и внешне проявляемые фотоном свойства обусловлены всего лишь внутренними свойствами одного определённого и самодвижущегося вихрона[49] – это переменная частота спиральных волноводов и частота фазовая, величина значений и полярность электропотенциалов, плотность потока их при производстве, два переменных пульсирующих магнитных и электрических монополей, их тип и форма поляризации, ориентация оси пульсирующего переменного магнитного вихря.
   Рассмотренная структура локализованного и свободного фазового микропространства самодвижущегося фотона позволяет связать воедино все наблюдаемые явления взаимодействий фотонов в микро– и макромире, указанные в начале этого раздела, а также объяснить и связать его внутренние и внешние физические свойства. Именно такая структура из геометрически регуляризованных электромагнитных потенциалов, рожденных движущимися вихронами и размещенными на соответствующих волноводах, наблюдается в мезонах и в замкнутых многоуровневых оболочечных (по типу структуры внутренних слоёв луковицы) микропространствах атомных ядер, атомных электронных оболочек и элементарных частиц. Именно такая структура фотона объясняет микроскопическую теорию сверхпроводимости и сверхтекучести, наблюдаемую структуру обычной и шаровой молнии[50], а также фульгурита – следа линейной молнии в песке, в виде расплавлено-застывшего канала: пустотелого цилиндра переменного радиуса.
   Такая структура[51] фотона является ключом открытия тайны массы, заряда, спина, гравитации, инертности, электротока, твёрдости, вязкости и других свойств различных сред, механизма электросопротивления и других фундаментальных явлений природы в микро– и макромире атомно-молекулярных веществ.

2.2 Вихрон

   Из открытой литературы со времён Д. К. Максвелла известно, что «магнитный монополь можно представить, как отдельно взятый полюс длинного и тонкого постоянного магнита. Однако у обычного магнита всегда два полюса, то есть он является диполем[52]. Если разрезать магнит на две части, то у каждой его части по-прежнему будет два полюса. Все известные элементарные частицы, обладающие электромагнитным полем, являются магнитными диполями. Сформулированные Максвелломуравнения классической электродинамикисвязывают электрическое и магнитное поле с движением заряженных частиц. Эти уравнения почти симметричны относительно электричества и магнетизма. Они могут быть сделаны полностью симметричными, если в дополнение к электрическому заряду и токуввести некий магнитный заряд и магнитный ток. Об этом Максвелл указывал ещё в 1873 г. Таким образом можно создать систему уравнений Максвелла с учетом существования магнитных зарядов.
   Существующие классические уравнения отражают тот факт, что обычно магнитные заряды не наблюдаются. Если магнитные заряды существуют, то существование магнитных токов приведёт к поправкам уравнений Максвелла, которые можно наблюдать на макроскопических масштабах.
   После Максвелла (1873 г.), сначала Пьер Кюри (1894 г.), А. Пуанкаре (1896 г.), а затем и Поль Дирак(1931 г) создали квантовую теорию взаимодействия электрического заряда с магнитным зарядом, которая применима при условии знаменитого дираковского квантования. Из него следует, что магнитный заряд частицы должен быть кратен элементарному магнитному заряду.
   В 1974 г. Поляков и т*Хоофт теоретически определили значение искомой массы магнитного монополя величиной в 1016 Гэв.
   Существование магнитного монополя с определённым зарядом объяснило бы наблюдаемую в природе кратность электрических зарядовчастиц заряду электрона. Однако при этом, пришлось бы объяснять, почему в свою очередь магнитные монополи имеют квантованные магнитные заряды.
   Законы классической электродинамики допускают существование частиц с одним магнитным полюсом и дают для них определённые уравнения поля и уравнения движения. Эти законы не содержат никаких запретов, в силу которых магнитные монополи не могли бы существовать.
   В общем случае, по мнению П.Дирака, магнитный монополь, как результат «динамического взаимодействия» не должен иметь традиционной массы покоя.
   «…Магнитный монополь – стабильная частица и не может исчезнуть до тех пор, пока не встретится с другим монополем, имеющим равный по величине и противоположный по знаку магнитный заряд».
   «Если магнитные монополи генерируются высокоэнергичными космическими лучами, непрерывно падающими на Землю, то они должны встречаться повсюду на земной поверхности. Их искали, но не нашли. Остаётся открытым вопрос, связано ли это с тем, что магнитные монополи очень редко рождаются, или же они вовсе не существуют».
 
   Наиболее серьёзных результатов в теории фермионных магнитных монополей, развивая идеи вышеуказанных авторов, достиг Ж. Лошак (Франция, 1987 – 2005).
   Как показано в кратко приведённом обзоре, неуловимый магнитный монополь ищут в состоянии статического существования, в каком существуют электрон и позитрон.
   Такой монополь ищут уже более 80 лет, с тех пор как Поль Дирак наметил его основные свойства:
   – точечный источник радиального магнитного поля
   – в нижнем пределе может достигать планковских пределов длины, т.е. 10-28 см
   – в теории П.Дирака взаимодействий электрического и магнитного зарядов масса покоя магнитного заряда не предсказывалась
   – магнитный монополь является стабильной частицей и не может исчезнуть до тех пор, пока не встретится с другим монополем, имеющим равный по величине и противоположный по знаку магнитный заряд
   любой магнитный заряд квантован[53]
   – минимальный магнитный заряд в 137/2 раз больше заряда электрона в системе СГС, в которой их размерности совпадают
   – магнитный поток от таких зарядов также квантован
   Итак, установлено, что при формировании самодвижущегося фазового пространства фотона, состоящего из волновода электропотенциалов-зёрен, уложенных на поверхности двух соприкасающихся сфер причастна некая пульсирующая магнитным и электрическим полевым током движущаяся вихревая переменная частица с лидирующими магнитными свойствами, производящая зёрна электропотенциалов и укладывающая их в строгом геометрическом порядке в пространстве.
   В отличие от стационарного магнитного монополя Дирака, обнаруженный в зоне индукции полевой магнитный монополь и связанный с ним при формировании фазового объёма фотона динамичный вихрон бозонный магнитный биполь, несколько отличается от своего знаменитого аналога своими уже зарегистрированными десятью свойствами. Вихрон образован следующим образом:
   – в атоме с потенциальным полем[54] электрон переходит с оболочки, на которой он находится в состоянии возбуждения, на основную оболочку
   – во время этого движения электрона его поле начинает изменять потенциальное поле ядра, в результате локальное поле зоны индукции, состоящее из множества зерен-электропотенциалов, вблизи электрона начинает изменяться, т.е. каждое зерно изменяется по-своему до определённого значения электрического потенциала, а вот скорость изменения у всех одинакова – скорость распространения статического электрического поля
   – такое изменение потенциала-зерна рождает магнитный монополь, который своим ростом противодействует[55] этому изменению, чем больше скорость перехода, тем меньше радиус магнитного монополя и больше плотность магнитных зёрен
   – затем процесс движения электрона на основную оболочку прекращается – атом переходит их возбуждённого в основное состояние и этим определяет время квантования микромонополей
   – после этого множество зерен указанного локального поля[56], образовавших такие микромонополи, формируют суммарный локальный вихревой магнитный поток потенциалов; если суммарный[57] магнитный поток потенциалов достигает минимального порога, то образуется минимальный магнитный самодвижущийся вихревой монополь-вихрон в зоне излучения
   – благодаря эффекту Ааронова-Бома введена особая роль электромагнитных потенциалов в физике квантовых явлений
   – минимальный магнитный поток, обнаруженный экспериментально через эффект Я.Ааронова – Д.Бома, составляет величину 2,068 × 10-15 Вб.
   – как только электрон в атоме занял основную оболочку, потенциалы перестали изменяться и магнитный монополь[58] стал источником движения, однополярным самодвижущимся вихроном – вылетел из зоны излучения, в случае квантовой завершённости его структуры
   – далее этот магнитный заряд в режиме самодвижения строит волновод трека движения фотона – микровихрон квантует зёрна-потенциалы геометрически фиксированные в пространстве, при этом заряд монополя уменьшается от максимального до минимального[59]– вихревая индукция электрического монополя
   – одновременно при движении магнитного монополя рождается электрический монополь
   – монополь[60] совершает спиралевидное движение с переменной частотой, обратно пропорциональной её диаметру и скорости изменения первичного потенциала; вращение происходит вокруг переменного электромонополя.
   Создание фазового объёма фотона идёт следующим образом :
   – вначале[61] фазового объёма фотона уменьшающийся по величине максимальный по заряду магнитный монополь, разряжаясь, производит вихревой поток зёрен электропотенциалов, при этом вращаясь по спиралям увеличивающегося диаметра с переменной частотой
   – этот вихревой поток электропотенциалов и есть электрический монополь, который противодействуя первичному магнитному монополю, вызывает увеличивающийся по величине противоположный магнитный монополь
   – в точках 1/8 и 3/8 периода фазового объёма фотона, оба монополя имеют одинаковую величину, но противоположные знаки
   – на ¼ периода[62] первичный монополь полностью исчезает, взамен ему в точке ½ периода появился и начинает разряжаться вторичный монополь той же величины, что и первичный, но противоположный по знаку
   –полный период длины волны фотона – это время в четыре раза большее времени перехода электрона из возбуждённого в основное состояние
   – на следующей полволне фотона, происходит то же самое, что и на первой, только противоположный монополь производит зёрна потенциалов противоположной полярности.
   Так рождается один период длины волны кванта фазового объёма фотона, в котором свободный первичный микровихрон, превращаясь на полволне в зеркальный, опять трансформируется в изначальный.
   Отсюда можно определить минимально возможный и не поляризованный свободный вихрон в пространстве, как самодвижущийся элементарный магнитно-электрический[63] полевой микрообъём с пульсирующими в нём вихревыми магнитными и электрическими токами, в котором поочередно меняются магнитные монополи[64] на противоположные, один из которых производит геометризованные зёрна-потенциалы, индуктируя электрический монополь, а второй противоположный ему появляется благодаря этой вихревой индукции.
   Численно в системе СИ[65]элементарный микровихрон можно охарактеризовать постоянной Планка, т.е. произведением минимального электрического заряда на магнитный. Эта величина является фундаментальной константой, а поэтому такой вихрон фундаментальный полевой квант движения, пульсирующий свободный магнитный биполь[66]в свободном пространстве. Это одиннадцатое свойство вихрона – фундаментальное свойство этого конкретного кванта, создающего конкретный спин микрочастицы и характеризующего физический смысл постоянной Планка.
   Вихрон может находиться в форме свободно существующих квантованных магнитных вихрей с массой покоя равной нулю. А так как он, в силу своей динамично-вихревой структуре в свободном пространстве, всегда связан с созданием потенциалов[67] электрических вихрей (электрических монополей), то квантование П.Дирака однозначно указывает на причастность этих свободных и взаимно-ортогональных вихрей с минимальным размером до 10-28 см в создании микрочастиц с целыми и полуцелыми спинами. Таким образом, микровихрон – это спинообразующее «сердце» элементарных частиц, созданных им.
   Собственно полевую форму вихрона зарегистрировать технически невозможно в связи с отсутствием соответствующих по быстродействию детекторов[68]. Поэтому, в настоящее время, регистрируют лишь элементарные частицы, им построенные, и в фазовом объёме которых они движутся.
   Некоторые внешние и внутренние свойства[69] свободных вихронов уже рассмотрены в предыдущем разделе в следующей причинно-следственной связи:
   – параметры[70], отражающие конкретные внутренние свойства вихронов, рождают[71] очень конкретную элементарную частицу
   – эта частица проявляет, при взаимодействии с полями материи окружающей среды, очень характерные только ей присущие физические свойства, называемые здесь внешними.
   – на основании этих свойств она идентифицируется как, например, фотон или электрон[72], и имеет целый или полуцелый спин.
   Рождение свободного вихрона происходит на границе (1/8 – 1/6 длины волны) зоны индукции с зоной излучения около стационарного источника, вокруг которого меняется электрическое поле.
   Размеры микровихрона в четыре раза меньше длины волны фазового пространства оптического фотона или радиоволны, или гамма-кванта. Минимальные размеры его магнитного монополя могут достигать планковских значений длины, а максимальные могут иметь размеры, оценённые Поляковым и т٭Хоофтом.
   Свойства разных микровихронов образовывать те или иные микрочастицы, прежде всего, зависят от времени и скорости изменения[73] полей, породивших эти вихроны. Внешние свойства вихронов также зависят от длины волны, как свойства радиоволн отличаются от свойств фотонов, рентгеновских лучей и гамма-квантов. Так, например, при энергии гамма-излучения (фотонов) выше пороговой в 1022 Кэв электромонополь свободного микровихрона захватывается (позиция 3) полем атомного ядра, а при этом происходит его деление на два самостоятельных, но замкнутых и поляризованных вихрона, в фазовом объёме которых движутся магнитные монополи[74] с противоположными знаками. При определенных условиях такой вихрон может проявлять способность образовывать резонансно замкнутые стабильные и нестабильные микропространства, т.е. замкнутые волноводы электронов и позитронов (позиция 4), или двух противоположных мюонов.
   Механизм этого явления следующий. Находясь в движении в фазовом объёме (от 1/8 до 3/8 периода) фотона, остаток первичного магнитного монополя, через посредство электрического монополя, уже возбудил равный ему и противоположный. И, в этот момент, отрицательный электрический монополь захватывается сильным полем атомного ядра[75], а положительный выталкивается назад в фазовый объём микровихрона – происходит разрыв и деление микровихрона. Электрический и магнитный монополи поляризуются в этом поле, а их свободно-поступательное движение меняется на замкнуто-колебательное, образуя каноническую форму замкнутой оболочки микрочастиц со спином ћ/2. В результате, два противоположных и поляризованных монополя создают замкнутые объёмы самых лёгких и электрически заряженных стабильных микрочастиц. Это двенадцатое свойство свободного порогового электронного микровихрона – захват и деление на два самостоятельных полярных и противоположных вихрона, способных создавать замкнутый фазовый объём однополярной электрически заряженной микрочастицы. Этот процесс возможен лишь в связи с тем, что движение изменившихся и поляризованных монополей в этих замкнутых объёмах происходит без индукции встречного монополя, но с самоиндукцией самого себя через посредство поляризованного электромонополя. Таким образом, магнитный монополь может существовать не только в зоне индукции, но и в замкнутом объёме электрона и других заряженных однополярно элементарных частицах.