Вихревые поля всегда взаимосвязаны в движении или изменении при следующей архитектуре:
   – при изменении значения лишь одной точки пространства потенциала-зерна электрического поля, всегда возникает квант объёмной 4π спираль-сферы[96] зерен – потенциалов магнитного поля, уплотняющаяся к центру, в котором размещено это зерно, и с направлением силы противодействия той, которая изменяет этот изначальный электропотенциал
   – при начале движения или смещения этого электропотенциала-зерна возникает спираль-цилиндр объёмных магнитных потенциалов-зёрен, который своим возникновением противодействует той силе, которая начала перемещать этот электропотенциал
   – при продвижении и изменении зерен-электропотенциалов по спирали, вокруг каждого витка спирали возникает ортогональный виток спирали магнитных потенциалов-зёрен, препятствующий этому продвижению или изменению.
   Это подтверждается следующим. Если сопоставить действие вихрей электрического и магнитного поля в окружающем нас материальном мире, то магнитное поле более проявимо, чем электрическое поле. Чем это вызвано? Во-первых, минимальный магнитный заряд в 137/2 раз больше минимального электрического заряда. Во-вторых, на это, в частности, указывает сопоставление магнитной проницаемости вакуума и электрической проницаемости вакуума в системе единиц Гаусса. Известно, что магнитная проницаемость вакуума, которая характеризует магнитные свойства этой среды, равна 1,257 × 10-6 гн/м, а электрическая проницаемость вакуума, которая в свою очередь характеризует электрические свойства среды, равна 8,85 × 10-12 ф/м. В системе единиц СГС фарада и генри выражаются через единицу длины, а именно: 1ф=9 × 10 9 м, а 1гн=107 м, тогда в безразмерных единицах магнитная проницаемость равна 12,57, а электрическая – 0,08. Их соотношение равно 157. Это значит, что изменяющееся электрическое поле, концентрирующееся в точке зерне-потенциале, формирует магнитное поле объёмными сферой или цилиндром вокруг этой движущейся или изменяющейся точки – центра, и противодействует силе двигающей или изменяющей этот потенциал-зерно.
   Одноимённые стационарные электрические заряды отталкиваются друг от друга, противоположные – притягиваются. У стационарных магнитов этот процесс аналогичен. Стационарные поля гравитации, электричества и магнетизма подчиняются законам Ньютона и Кулона и вызывают радиально-центральное движение материи. Эти поля формируются[97] благодаря стационарной индукции.
   Вихревая индукция – это явление в корне отличается от стационарной индукции по своей физической природе. Самодвижение магнитного монополя вызывает ещё помимо уменьшения его заряда ещё и индукцию электрического монополя, который в свою очередь, индуктирует ещё один магнитный монополь, но уже противоположный первичному – неизбежность инверсии полюса. А что самое главное, свободный микровихрон материально с помощью зёрен-электропотенциалов развёртывает в пространстве историю изменения электрического поля в точке своего рождения. Полярный магнитный монополь замкнутого микровихрона индуктирует ещё и гравитационный монополь. Вихревые поля вызывают вращение или спирально-радиальное движение материи и наоборот – такое движение материи вызывает вихревую индукцию всех трёх полей, противодействующим силам, вызывающих это движение. Поэтому у магнитных вихревых зарядов всё наоборот[98]: одноимённые притягиваются, фокусируются, объединяются или сливаются, а противоположные никогда не соединяются. Электрические монополи индуктируют вообще неродственные ей поля – магнитные монополи. А в замкнутых вихронах происходит ещё и индукция массы (гравитационный монополь). Такая разница между свойствами вихревых и стационарных полей проявляется и в том факте, что в окружающем нас мире обнаруживаются только электрически заряженные частицы и частицы с массой покоя, но не обнаруживаются частицы со статическими магнитными зарядами.
   Кроме того, любое изменение ранее установленной геометрической регулярности электрических потенциалов в пространстве ведет к появлению вторичного магнитного поля, которое своим действием противодействует причине, вызвавшей это первичное изменение, т.е. магнитное поле обладает ещё и протекторными свойствами для геометрической стабилизации электрических потенциалов. Важно при этом отметить, что при определённых условиях системного кручения ¼ длины волны таких потенциалов волновода, происходит обратный процесс – процесс рождения магнитного монополя.
   Другой весьма существенной особенностью двух взаимосвязанных вихревых полей является рождение и отрыв от источника квантования и движение со скоростью света. Таким же свойством обладают свободные фотоны де Бройля, которые квантуются движущимися микрочастицами и отрываются от них, в частности, от электронов в коллайдерах. В мишени коллайдера образуется очень плотная плазма из таких дебройлевских вихронов не только с очень широким спектром энергий 1 -100 Гэв (в области которой и образуются центральной фокусировкой замкнутые оболочечные структуры адронов, вложенные друг в друга как матрёшки), но и с таким набором[99] внутренних свойств ядерных вихронов, которые способны сформировать и структуры античастиц[100]. Отсюда получается вывод, что в этой мишени, в области-объёме, где образуется своеобразная ядерно-мезонная «плазма», имеется набор таких вихронов, которые являются зеркальным отражением уже рассмотренных. Такие вихроны, например, способны уже строить «домик» и для антипротонов.
   Вихрон – это магнитный пульсирующий заряд, т.е. колебания магнитного полевого тока заряда от одного к другому через посредство тока электрического монополя по оси спирали электропотенциалов с позиционной сменой знака заряда[101] и превращением предыдущего монополя в противоположный. При высокой концентрации движение вихронов понуждает их к взаимному слиянию – фокусировке и концентрическому объединению в оболочечные структуры типа нейтронов или антинейтронов. Это означает, что микроскопические магнитные потоки квантованы. Одинаковые по знаку монополи[102] способны объединяться с соседними с помощью своих полей как по вертикали, так и по горизонтали, а с противоположными не соединяются никогда. Это – девятнадцатое свойство вихронов и тоже весьма существенное, так как противоречит предсказаниям теории П.Дирака о том, что монополь может исчезнуть только в том случае, если встретит противоположный и соединится с ним.
   Реально, один магнитный монополь может исчезнуть, лишь превратившись в противоположный, пройдя через промежуточный этап диполя или биполя – этот процесс замечен в природе магнитных полей Земли и Солнца. Пусть это будет двадцатым свойством магнитных монополей – инверсия полюсов.
   При исследовании рассмотренных процессов взаимодействий противоположных вихронов установлено, что минимальное расстояние ¼ длины волны, на которое могут приблизиться виртуальные центры взаимодействующих противоположных и изменяющихся магнитных монополей, всегда было соединено только спиралью индукции зёрен-электропотенциалов[103] и током изменяющегося электрического монополя. Это подтверждается и экспериментально[104]фото– и видеосъёмками флоккул Солнца со спутника СОХО, США. Из этих видеооматериалов следует, что область оси между двумя магнитными монополями не содержит силовых линий, там видны лишь одни вихревые электрические токи, т.е. видна лишь движущаяся и возбуждённая материя, а вихревые поля магнитные (на видеосъёмке магнитные силовые линии видны благодаря невидимым спиралям движения вокруг них электронов) и электрические остаются невидимыми. Такой магнитный макровихрон[105] – биполь можно обнаружить только на Солнце, так как его два противоположных монополя захвачены-«вморожены» в электрическую ионизированную атомную плазму и будут находится в ней пока не израсходуют всю свою энергию магнитных зарядов на вихревые токи и ядерные превращения протонов в более тяжёлые ядра, например, ядра гелия, лития, кальция или железа.
   При этом следует различать слияние одинаковых вихревых магнитных монополей от отталкивания одинаковых полюсов стационарных магнитов и притягивания разных полюсов статических магнитных полей. Для полей стационарных источников[106] действуют другие законы их формирования. Они не применимы для свободных вихревых полей в силу различной физической природы индукции потенциалов.
   Различные по частоте, типу полярности и степени поляризации ядерные вихроны, заключённые в те или иные оболочки микрочастиц (элементарные частицы, атомные ядра), двигаясь в них внутри на сближение, фокусируются сначала внешними электрическими полями соответствующих волноводов, а затем происходит захват и взаимодействие магнитных монополей, в результате которого изменяются параметры взаимодействующих вихронов и соответственно меняются сами частицы, содержащие несколько ядерных вихронов. Это и есть механизм слабых взаимодействий.
   Нечто аналогичное происходит снаружи при взаимодействиях свободных вихронов с атомными и ядерными. Так, например, происходит взаимодействие фотона с атомными электронами или атомными ядрами той или иной среды – комптон-эффект, фотоэффект, пар образование и т.д. Очень полно экспериментально исследованы взаимодействия свободных вихронов, образующих гамма-кванты с различной энергией, с веществом, атомами и ядрами[107]. Аналог атомным комптон– и фотоэффекту имеет место и в фотоядерных реакциях с фоторождением мезонов. Наиболее интересные результаты, в этом направлении, получены в последние годы при облучении ядер пучками мезонов. И в настоящее время в таких экспериментальных работах уже серьёзно прорабатывается вопрос о вхождении в модель ядра структур типа нейтральных и заряженных π-мезонов. Как и структура атомных оболочек образована из связанных вихронов-электронов, так и структура ядра состоит из биполярных оболочек, вложенных друг в друга замкнутых вихронов типа одноболочечной структуры нейтральных π-мезонов.
   Первые исследования свойств фотонов начинались с изучения волновых свойств в оптическом и радио диапазонах. Достаточно полно изучены и взаимодействия замкнутых вихронов, образующих электроны, позитроны, мюоны и мезоны, протоны, нейтроны и другие элементарные частицы, с атомно-молекулярным веществом и его атомными ядрами.
   Первым экспериментальным подтверждением воздействия свободных резонансных вихронов[108] на период полураспада радионуклидов является облучение «странным излучением» уранового раствора. Излучаемый при мощном электровзрыве фольги поток «странных частиц» взаимодействует с магнитным полем ядра железа и тем самым изменяет его эффективное значение на ядрах железа Fe-57 на величину в 400 Э, что определяет его магнитную структуру. При взрыве медной мишени электронным пучком с энергией до 500 Кэв и скоростью нарастания 30 наносекунд в качестве продуктов получается почти полная таблица химических элементов Менделеева, а также ещё тяжелые и сверхтяжёлые ядра. При взрыве титановых фольг в жидкости попутно поток «странного излучения» изменяет изотопно-ядерный состав первоначально участвующих атомов. Авторы определяют это взаимодействие как магнитоядерное, а при определённых условиях, это излучение ещё способно влиять на распад стабильных изотопов и изменять период полураспада некоторых радиоактивных ядер, т.е. влиять на константу скорости слабых взаимодействий. Можно считать это достоверно установленным фактом. Однако микроскопического объяснения наблюдаемым ядерным превращениям ни одна из этих научных групп не приводит. А М.И. Солин поясняет, что соответствующая теория ещё не скоро будет создана.
   С точки зрения уже названных свойств вихронов в этих процессах происходит последовательная распаковка внешних оболочек ядра резонансными магнитными монополями, т.е. теми резонансными частотами в объёме сферы и вблизи его центра этого заряда, которые взаимодействуют сначала с атомными электронами, а затем с внешними оболочками ядер. Определим это свойство – распаковка внешних оболочек атомных ядер резонансными магнитными монополями макровихронов коллективной конденсированной плазмы как двадцать первое.
   В случае тепловых энергий, вихроны движущихся электронов при рекомбинации с ионами образуют также вложенные дебройлевские атомные замкнутые волноводы-оболочки, но уже размером длины волны на пять десятичных порядков больше – т.е. оболочки атомов со средним размером 10-8 см. В силу большой распространённости таких вихронов назовём их атомными. Однако возможно это лишь в условиях, которые имеют место на поверхности Земли. В условиях мантии, глубоко в недрах нашей планеты, где давления достигают 4 млн. атмосфер, температура и плотность соответственно 5000 °C и 12 000 кг/м3, как показывают геологические исследования механизма возникновения и движения плюмов[109]к поверхности Земли от границы ядра с мантией, а также происхождение некоторых пород и минералов, находящихся в приповерхностной континентальной коре, вихроны образуют иные микрочастицы и с иными свойствами. Да и сами известные нам процессы радиоактивного излучения и распада становятся другими в связи с отсутствием свободного пространства в мантии для создания тех или иных микрочастиц. При этом обычные химические реакции заменяются очень похожими[110], но ядерными и ядернохимическими превращениями, по типу мюонного катализа с образованием мюонных атомов или мезоатомов. Более того, известно, что такие явления низкоэнергетической трансформации[111] ядер химических элементов не имеют в настоящий момент в открытой литературе убедительных объяснений в рамках САП.
   С точки зрения реального представления, для объяснения движения этих плюмов, а также ядерных превращений при образовании месторождения молибдена, урана в гранитах, необходимо применять не протон-нейтронную модель ядра, а оболочечную на основе биполярных ядерных замкнутых вихронов.
   К другим свойствам вихрона относятся его бесконечное время жизни и ограничение скорости прямолинейного распространения пределом скорости света, обусловленное его собственным движением по спирали. Именно поэтому скорость света не зависит от скорости движения источника излучения.
   Ядерные и атомные вихроны имеют вид движения по замкнутым волноводам в корне отличный от движения оптических микровихронов по волноводам фотонов и очень дискретный спектр конкретных резонансных частот, при которых возможно образование и стабильно долгая жизнь атомов, ядер химических элементов и электронов, т.е. стабильных микрочастиц. Макровихроны СВЧ диапазона технически созданных мощных электромагнитных волн в отличии от высокочастотных оптических и других жестких квантов при прохождении через вещество имеют в своём фазовом объёме очень большое количество атомов и молекул, а поэтому способны их возбудить или даже ионизировать, а также частично распаковать внешние оболочки некоторых атомных ядер.
   Частота обращений монополя по спиралям, образующих фазовый объём фотона или замкнутой микрочастицы зависит от диаметра сферы и скорости изменения поля, в котором зародился этот монополь. Частота смены полярности монополя на противоположный определяет половину длину волны кванта или диаметр микрочастицы. Его энергия численно равна постоянной Планка, делённой на 2π и время формирования кванта электромагнитного поля или время его излучения. Косвенно, его внешние свойства проявляются во всех элементарных частицах в виде спина, массы, зарядов, а также в характерных ядерных взаимодействиях и т.д. Размер и масса микрочастиц напрямую связана с тем сколько в ней вихронов и значением их энергии. Все известные взаимодействия микрочастиц обусловлены свойствами вихронов и тех фазовых объёмов, которые они построили и в которых сами живут. При различных взаимодействиях они ведут себя весьма пластично, объединяясь с другими вихронами по вертикали и горизонтали, путём захватных и фокусирующих внешних магнитных полей с образованием концентрически вложенных друг в друга замкнутых волноводов, образованных разными по энергии резонансными вихронами. Они легко изменяют форму волноводов из замкнутых в свободные (пример аннигиляции микрочастиц, позиция 5) в соответствии с изменившимися условиями окружающих электрических и магнитных полей. И при этом также легко меняют свои внутренние параметры такие, как тип полярности, направление оси вращения, тип поляризации и частоту колебаний.
   Стабильность микрочастицы, или её распад, период полураспада элементарных частиц[112] определяется соответствием формы и параметров их волноводов, образованных вихроном, величине запирающего стационарного электрического поля и средней кривизне окружающих полей. Так, например, известный низкоэнергетический бета-распад в связанное состояние электрона в атоме на свободную оболочку сокращает период полураспада. А если свободны все электронные оболочки[113], как в случае рения Re-187, период полураспада сокращается до 33 лет вместо 4,3 × 1010 лет для нейтрального атома. Вихрон в новых условиях окружающих полей, в том числе сильных гравитационных, всегда строит новый соответствующий волновод, изменяясь и вылетая из старого – обоснование механизма слабых взаимодействий.
   Таким образом, свободные биполярные вихроны образуют стабильные фотоны электромагнитных квантов со спином равным единице. Вихроны фотонов с энергией выше 1022 Кэв способны захватываться полем атомного ядра и делится на два полярных замкнутых и противоположных вихрона, которые рождают стабильные электрон и позитрон со спином 1/2. Более высокочастотные фотоны в поле ядра создают замкнутые однополярные вихроны, но производящие уже нестабильные мюоны со спином ½. При аннигиляции противоположных частиц, в частности, протонов и антипротонов[114], появляются короткоживущие нейтральные и заряженные мезоны с целочисленным спином, созданные уже ядерными биполярными и однополярными вихронами. Несколько разных по частоте резонансно-замкнутых ядерных биполярных вихронов проявляют способность к концентрическому слиянию с образованием вложенных в друг друга биполярных оболочек нейтронов и антинейтронов, протонов и антипротонов и других ядер известных химических элементов. Разнообразие вихронов такое же, каково разнообразие форм атомно-молекулярного вещества.

2.3 Электрон – позитрон

   Скажи мне, что такое электрон,
   и я объясню тебе всё остальное.
В.Томсон

   Электрон как замкнутое, а поэтому инертное и стабильное микропространство, обладает структурой, внутренними и внешними физическими свойствами. Его комптоновская длина[115] волны составляет величину 2,4 × 10-10 см. Дебройлевская[116] длина волны электрона (т.е. размер сферической области, в которой электрон, будучи связан электрическим полем ядра, уже перестаёт существовать со свойствами свободного электрона) в нормальных условиях рекомбинационного теплового равновесия составляет величину 10-7 – 10-8 см, а в условиях вакуума космоса в областях с температурой близкой к абсолютному нулю приближается к 10-3 – 10-4 см. Таким образом, высоковозбуждённые состояния атомов, имеющие на поверхности Земли очень короткое время жизни, в глубинах космоса практически стабильны.
   У электрона самая минимальная масса[117] инертного покоя (511 Кэв), эффективный размер фазового объёма волноводов составляет величину 1,2 × 10-10 см. Его стабильное по возрасту жизни микропространство имеет полуцелый спин и отрицательный (позитрон – положительный) заряд 1,6 × 10-19 Кл, а также собственный магнитный момент, равный магнетону Бора.
   Электроны рождаются в природе, с одной стороны, при образовании заряженных ядер химических элементов, путём распада нейтральных ядер, и в процессах бета-распада ядер атомов химических элементов, при распаде нейтрона, а с другой стороны при взаимодействии фотонов с атомно-молекулярным веществом в различных агрегатных состояниях – фотоэффект[118] и пар – образование. Свойства структуры электрона, кроме названных явлений, могут также дополнить распады короткоживущих элементарных частиц, таких как мюон, а также весьма загадочные явления бета– распада кобальта-60, нейтрона и некоторых других частиц. В этих превращениях ориентированные по спину внешним магнитным полем распадающиеся ядра излучают в одну сторону больше электронов, чем в другую. Это же явление наблюдается и у античастиц. Эксперименты, выполненные в этом направлении с 1956 по1964 мировым научным сообществом, показали о наличие у электронов, позитронов и других микрочастиц сложной лево и право вращательной структуры.
   Дополнительная информация по структуре электрона может быть получена из ответа на вопрос о его электрическом заряде и массе покоя. Достоверно установлено, что электрические заряды существуют в двух видах – положительные и отрицательные. При этом разноимённые заряды притягиваются, а одноимённые отталкиваются. В квантовой электродинамике понятия знака заряда не существует, а позитрон описывается как электрон, движущийся обратно во времени.
   В электростатическом поле экспериментально установлено наличие закономерного распределения положительных эквипотенциальных поверхностей (т.е. положительных электрических потенциалов), убывающих по величине с увеличением расстояния от точечного положительного заряда, и отрицательных вокруг заряда с обратным знаком. Если в пространстве установлены два точечных заряда с противоположными знаками, то между ними существуют электрически нейтральная область, т.е. плоскость с нулевым электрическим потенциалом. Эти потенциалы индуктируются вокруг зарядов и в пустоте вакуума.