Итак, молниеотвод должен быть проводящим и непроводящим. По правилу третьему берем для построения конфликтующей пары «непроводящий молниеотвод», который обеспечивает свободное прохождение радиоволн, нормальную работу антенны. Что такое «непроводящий молниеотвод»? Деревянный, стеклянный, водяной столб. Еще проще: убрали металлический столб, остался воздух или пустота - все равно.
   Историки науки уже полвека с восторгом пересказывают легенду о том, как однажды Поль Дирак, решая шуточную задачу о дележе некоторого неизвестного числа рыб, получил в ответе отрицательное число. В самом деле, как может компания рыбаков разделить улов, скажем, в минус две рыбы (или, лучше того, улов, составляющий мнимое число рыб)... Все отбрасывали такое решение, а Дирак не отбросил, ведь математически это совершенно верное решение. Быть может, спрашивают историки науки, такой образ мыслей и помог Дираку предсказать существование позитрона - «положительного электрона», «положительного отрицательного заряда...»
   При работе по АРИЗ отрицательные, мнимые, а то и вовсе «нерыбные рыбы» возникают обязательно.
   Отсутствующий молниеотвод хорошо пропускает радиоволны, но не ловит молнию. Поскольку молниеотводу уже приписано одно свойство (быть отсутствующим), из двух пар составлена одна конфликтующая пара и получено техническое противоречие в канонической форме. Выявлены конфликтующие элементы, есть ТП - и вторая часть АРИЗ завершается построением модели задачи.
   Перейдя от технической системы, описанной в условиях задачи к модели, мы сузили число рассматриваемых элементов. Теперь, на шаге 3.1, предстоит продолжить отбор: из двух конфликтующих элементов надо выбрать один - тот, который можно менять,
   «Можно менять», «нельзя менять» - довольно расплывчатые определения. Позже мы перейдем к более точным. А пока достаточно простых правил, приведенных в тексте АРИЗ, которые в подавляющем большинстве случаев позволяют без затруднений выбрать нужный элемент.
   Следующий шаг - составление ИКР. Как и на предыдущих шагах, здесь действуют четкие правила, заставляющие усугубить парадоксальность модели задачи: то, что требует модель, должно быть достигнуто не иначе как «само собой». АРИЗ не оставляет права мыслить несмело... И снова продолжается сужение поискового поля: теперь (шаг 3.3) выделяется часть элемента, выбранного на шаге 3.1. Именно к этой части предстоит «привязывать» физическое противоречие, которое будет сформулировано на шагах 3.4 и 3.5.
   На первый взгляд может показаться, что шаги слишком детализируют ход решения. В самом деле, почему бы не объединить, например, шаги 3.4 и 3.5? Раньше так и было. Но со временем выяснилось, что при слишком резком переходе от ИКР к ФП часто возникают ошибки.
   Если к одной части элемента технической системы предъявлены взаимопротивоположные требования, появляется необходимость прежде всего проверить, нельзя ли простыми преобразованиями «развести» эти требования. Такая проверка и осуществляется на шаге 4.1. Проверяя, можно или нельзя разделить противоречивые свойства, следует все время помнить об ИКР: разделение должно быть осуществлено «само» или «почти само». Ионизировать столб воздуха нетрудно; можно, например, использовать радиоактивное излучение. Но ионизированный воздух - проводник, который, как и металл, поглощает радиоволны. Проще уж поднимать и опускать металлические столбы, во всяком случае, это безопаснее для окружающих. Все дело в том, чтобы свободные заряды возникали в нужный момент «сами собой» и «сами собой» исчезали, «поймав» молнию.
   Простейшие преобразования, предусмотренные шагом 4.1, часто лишь намечают путь решения в самых общих чертах. Надо сделать так, чтобы в нужный момент каким-то образом сами по себе возникали заряды, каким именно образом - пока неочевидно.
   Следующий шаг - использование таблицы типовых моделей задач и вепольных преобразований (приложение 2).
   Как уже говорилось, классификация моделей задач основана на следующих признаках:
   - сколько элементов содержит модель задачи;
   - какие это элементы - вещества или поля;
   - как они взаимосвязаны;
   - какие ограничения налагают условия задачи на изменение имеющихся элементов и введение новых;
   - относится ли задача к изменению объекта (нужно ввести «поле на входе») или к измерению и обнаружению (нужно получить «поле на выходе»).
   Основываясь на этих признаках, можно составить подробный классификатор. Но многие задачи второго типа (даны два элемента) легко переводятся в задачи первого типа, особенно если нет ограничений на замену элементов. «Поле плохо взаимодействует с веществом; нужно обеспечить хорошее взаимодействие; поле можно заменять и изменять». Отбросим «плохое» поле и получим модель задачи первого типа (дан один элемент). Точно так же многие задачи третьего типа легко переводятся в задачи второго или первого типа. Поэтому в таблицу, приведенную в конце книги, включены только те модели, перевод которых в более простые классы невозможен или затруднителен.
   В модели задачи 24 два элемента (два вещества): изделие и инструмент. По условиям задачи изделие обязательно должно подвергаться обработке шлифовальным инструментом, поэтому нельзя перевести эту задачу в класс 1. Модель задачи 25 включает три элемента: два поля и вещество. Опять-таки ни один из этих элементов убрать нельзя - исчезнет конфликт, разрушится модель задачи, поэтому задача относится к классу 16.
   Для задачи 24 таблица дает в сущности готовое физическое решение: инструмент надо развернуть в феполь, т. е. веполь с ферромагнитным порошком и магнитным полем, разделив вещество круга на два вещества (одно - ферромагнитный порошок), связанных между собой магнитным полем. Для задачи 25 таблица еще не дает окончательного ответа. Впрочем, здесь многое зависит от умения применять элементарные физические знания. Именно применять, а не знать: физика тут требуется школьная, общеобразовательная. Заряды должны то появляться, то исчезать. Куда они могут исчезать? Уйти куда-нибудь? Но ведь они должны вновь появиться. Физика предельно проста: заряды остаются на месте, но нейтрализуются соединяясь, а потом разъединяются. Нейтральные молекулы воздуха разделяются на ионы и электроны, затем эти частицы соединяются в нейтральные молекулы.
   Задачи 24, 25 в течение многих лет «обыгрывались» на семинарах и в школах изобретательского творчества. В задаче 24 осложнений с физикой никогда не возникало, после некоторой практики в вепольном анализе она решалась сразу, «в один ход». Инструмент представляет собой невепольную систему, но по условиям задачи эту систему можно менять, развивать; значит, выгодно перейти к феполю. С задачей 25 обычно возникали затруднения. Идея ионизации-рекомбинации для физика достаточно очевидна, но именно здесь образуется психологический барьер: ионизация в нашем представлении связана прежде всего с излучениями. Появляется идея использовать то или иное техническое устройство, генерирующее излучение... и решение заходит в тупик, поскольку нет возможности просто и надежно определять, когда именно следует включать это устройство.
   Как ни парадоксально, причина затруднений в том, что те кто решают задачи (вопреки АРИЗ), невольно пытаются облегчить себе работу. Ионизацию можно осуществить обычным способом - с помощью излучения (таков голос «здравого смысла»). Требование ИКР звучит иначе: ионизация должна происходить сама собой. Мало того, ионизация обязательно должна быть «даровой» и происходящей, как по волшебству, точно в заданный момент времени. «Здравый смысл» шарахается от такого утяжеления задачи. Диалектика же в том, что утяжеление условий задачи оборачивается за каким-то рубежом облегчением ее решения. Вдумаемся еще раз в формулировку ИКР (теперь ее можно уточнить): «При зарождении молнии, когда она только-только «назревает», нейтральные молекулы должны сами разделиться на ионы и электроны.» Если убрать слово «должны», мы получим готовый ответ: в качестве ионизатора используется сама молния (и порождающее ее грозовое облако).
   ИКР можно уподобить веревке, держась за которую альпинист совершает подъем по крутому склону. Веревка не тянет вверх, но она дает опору и не позволяет скатиться вниз. Достаточное выпустить веревку из рук - падение неизбежно...
   Разумеется, не у всех задач могут оказаться решения, основанные на элементарной физике. Поэтому в АРИЗ-77 используется таблица применения физических эффектов и явлений (приложение 3), составленная на основе анализа примерно 12 тыс. сильных изобретений, так сказать, с физическим уклоном. Некоторые физические эффекты, входящие в эту таблицу, могут оказаться незнакомыми или плохо знакомыми. Тогда, получив подсказку таблицы, следует обратиться к «Указателю физических эффектов». Работа над таким «Указателем» была начата в 1968 г. Общественной лабораторией методики изобретательства при Центральном Совете ВОИР. С 1971 г. «Указатель» используется на занятиях в общественных школах, изобретательского творчества и на изобретательских семинарах. В «Указателе» по каждому эффекту приведены краткое описание, сведения об изобретательском применении, примеры изобретений, основанных на данном эффекте, и список литературы. Особенно важны примеры изобретений - они позволяют сразу оценить возможности того или иного эффекта и степень сложности реализации.
   В некоторых задачах простой (в физическом смысле) ответ оказывается настолько необычным, что эта необычность мешает заметить его и принять. В этих случаях помогает таблица типовых приемов; она приведена в [13]. При составлении этой таблицы из очень большого массива патентной информации было отобрано свыше 40 тыс. патентов и авторских свидетельств, относящихся к изобретениям не ниже третьего уровня. Анализ этих изобретений позволил выделить наиболее часто встречающиеся приемы и приемы, встречающиеся редко, но всегда дающие очень сильные решения. Эти два вида приемов и вошли в таблицу. О самих приемах будет подробно рассказано в следующих главах. Здесь же приведем только один пример.
   Задача 26
   При гидратации олефинов используют в качестве катализатора фосфорнокислотный катализатор (двуокись кремния, пропитанную ортофосфорной кислотой). Чтобы катализатор был селективен (специализирован, давал одну нужную реакцию и не давал побочных реакций), его необходимо при изготовлении нагревать. Но опыты показали, что при нагревании (даже кратковременном) выше 250° С в катализаторе появляются растворимые силикофосфаты, они вымываются и катализатор теряет активность. Как быть?
   Читателя, если он далек от химии, не должна смущать химическая специфика этой задачи. Понять суть задачи нетрудно. Имеется некое вещество, ускоряющее нужную реакцию. К сожалению, оно ускоряет и ненужные реакции, что ведет к потере сырья. Чтобы вещество ускоряло только нужную реакцию, его надо сильно нагреть. Но тогда вещество вообще исчезает, распадается.
   Задача 26 рассматривалась уже после составления таблицы - для ее проверки. Техническое противоречие: температура прокаливания (строка 17 в таблице) и потери вещества (колонка 23). Приемы: 21, 36, 29, 31. Или температура - потери времени (колонка 25). Приемы: 35, 28, 21, 18. Повторяется прием 21 -принцип проскока: вести процесс на большой скорости. Нагревать - но быстро, сильно. Действительно, по патенту США № 3330313 предлагается «проскочить» опасный интервал температур и вести прокаливание при температуре 700-1100°С. Катализатор теряет активность уже при 350°, поэтому идея «нагреем его еще больше» долгое время никому не приходила в голову. Нагреваем на 350° - теряется активность, на 500° - совсем плохо... и все. Кто мог подумать, что с 700° снова начинается безопасная зона? Нужен был всего один опыт: прокалить катализатор до 1000°. Но это казалось нелепым, ненужным...
   Таблица типовых приемов, воплощающая опыт нескольких поколений изобретателей, не придерживается «здравого смысла». В ней заложена присущая творчеству «дикость» мышления.
   Приведены шесть задач, на которых можно потренироваться в применении АРИЗ. Нужно сделать записи решения этих задач с шага 2.2 по шаг 4.2. Оценивать полученные решения пока следует не по конечному ответу, а только по точности выполнения шагов. Если вы а) не нарушили девять правил, относящихся к шагам 2.2, 3.1, 3.2 и 3.4; б) устранили физическое противоречие и в) при этом не ввели громоздких устройств, механизмов, машин и, следовательно, не слишком отошли от ИКР, то все в порядке, тренировку можно считать успешной.
   По привычке у вас будут возникать различные варианты ответов. («А если сделать так?..») Запишите эти ответы на отдельном листе (потом его можно выбросить) и вернитесь к анализу задачи. Итак, все внимание - на точное выполнение шагов. Спокойно идите туда, куда направляете вас логика анализа.
   Задача 27
   Часто возникает необходимость измерить наклон строительных конструкций, частей крупных станков и т. д. Для этого используют наклономер, рабочая часть которого представляет собой маятник со стрелкой на конце. Точность такого наклономера зависит от его длины: чем длиннее маятник, тем больше линейное отклонение стрелки при одном и том же наклоне. Однако наклономер длиной несколько метров неудобен, громоздок (маятник обязательно должен находиться в жестком корпусе, сборно-разборные конструкции недопустимы). Неприемлемы и конструкции с зеркалами и оптическим лучом. Наклономер должен остаться простым, но сочетать точность и компактность.
   Задача 28
   Цех изготавливает металлические полые конусы. Размеры конусов разные, это не имеет значения для задачи. Но для определенности примем: высота 1000 мм, диаметр нижнего основания 700 мм, диаметр верхнего основания 400 мм, толщина стенок 30 мм. После изготовления нужно проверить размеры и форму внутренней поверхности конуса. Для этого внутрь конуса поочередно вставляют шаблоны (для каждого проверяемого сечения имеется свой шаблон). Когда шаблон установлен, можно заметить (наблюдая на просвет) отклонения от заданной формы и размеров.
   Чем больше шаблонов, тем точнее проверка. Но каждый замер требует много времени и труда. Поэтому чем меньше шаблонов, тем быстрее и проще проверка. Как быть?
   Задача 29
   Для съемки мультфильма изготавливают ряд рисунков, изображающих фазы движения сжимаемого объекта. Каждый метр пленки - это 52 рисунка, а фильм длиной 300 м (10 мин экранного времени) - это 15 тыс. кадров. Таким образом, нужно изготовить свыше 15 тыс. рисунков и уложить их с большой точностью, чтобы снятое изображение не дрожало и не прыгало.
   Необходимо резко, в сотни раз, повысить эффективность этой тяжелой работы. Как это сделать?
   Для простоты будем считать, что речь идет о фильмах с контурным изображением (изображение образовано только линиями).
   Задача 30
   Крыша парника представляет собой застекленную (или обтянутую пленкой) металлическую раму. При повышении внешней температуры (скажем, с 15 до 25°) надо поднимать одну сторону рамы, чтобы парник проветривался. А когда температура падает, крышу надо опускать. Угол подъема, допустим, 30°.
   Поднимать и опускать рамы приходится вручную, а парников много, да и температура меняется несколько раз за день. Задача состоит в том, чтобы автоматизировать поднимание - опускание рамы. Ставить на каждом парнике электропривод с температурным датчиком в данном случае недопустимо сложно и дорого. Решение должно быть более простое.
   Задача 31
   В прочный, герметически закрываемый металлический сосуд кладут 30-40 кубиков (разные сплавы) и заполняют сосуд агрессивной жидкостью. Идут испытания, цель которых - выяснить, как действует агрессивная жидкость на поверхность кубиков в условиях высоких температур, а иногда и высоких давлений. К сожалению, агрессивная жидкость действует и на стенки самой камеры. Поэтому стенки приходится делать из дорогостоящего благородного металла. Как обойти это затруднение?
   Задача 32
   В реакторе находится смесь растворов кислот; режим работы (температура, давление, концентрация кислот) постоянно меняется. Нужно определить момент начала кипения. Непосредственное наблюдение невозможно. Теоретически вычислить температуру кипения тоже нельзя из-за непостоянства режима. Как быть?

МОДЕЛИРОВАНИЕ С ПОМОЩЬЮ «МАЛЕНЬКИХ ЧЕЛОВЕЧКОВ»

СТРУКТУРА ТАЛАНТЛИВОГО МЫШЛЕНИЯ

ДИАЛЕКТИКА АНАЛИЗА

ЭКСПЕРИМЕНТ ДУНКЕРА

ДВА ИНТЕРЕСНЫХ ПРИМЕРА

ЗАДАЧИ

   С каждой новой модификацией детерминированность шагов АРИЗ возрастает. Усиливается и информационное обеспечение. Тем не менее АРИЗ не отменяет необходимости думать, он лишь управляет процессом мышления, предохраняя от ошибок и заставляя совершать необычные («талантливые») мыслительные операции.
   Существуют очень подробные наставления по управлению самолетами и не менее подробные наставления по хирургическим операциям. Можно выучить эти наставления, но этого мало, чтобы стать пилотом или хирургом. Кроме знания наставлений, нужна практика, нужны выработанные на практике навыки. Поэтому в общественных школах изобретательского творчества планируется на основе АРИЗ примерно 100 учеб. часов занятий в аудитории и 200 ч. на выполнение домашних заданий.
   На первых порах нередки очень грубые ошибки, обусловленные самым элементарным неумением организованно мыслить. Например, как решают задачу 31? Четыре человека из пяти в начале обучения указывают в качестве конфликтующей пары агрессивную жидкость и стенки камеры. Изделия (кубики сплавов), для обработки которых существует техническая система «сосуд - жидкость - кубики», не попадают в конфликтующую пару и, следовательно, в модель задачи. В результате скромная задача об обработке кубиков заменяется намного более сложной проблемой сохранения любой агрессивной жидкости (притом горячей) в сосуде из обыкновенного металла. Такая задача, разумеется, достойна всяческого внимания, на нее не жалко потратить и годы. Решение подобных задач обычно требует изменения всей надсистемы, в которую входит рассматриваемая система. Детализация, проверка и внедрение новых идей требуют в этих случаях огромной по объему работы. Прежде чем посвятить этому годы (а может быть, и всю жизнь), целесообразно потратить пять минут на решение более простой, но тоже нужной задачи: как все-таки быть с кубиками?..
   Если в качестве конфликтующей пары взяты «кубик-жидкость», камера не попадает в модель задачи. На первый взгляд, это утяжеляет условия: раз дело не в стенках камеры, они могут быть любые (их даже может вообще не быть!); придется искать решение, при котором хранение агрессивной жидкости вообще не зависит от стенок сосуда... Как обычно, мнимое утяжеление фактически означает упрощение задачи. В самом деле, в чем конфликт теперь, когда осталась пара «кубик-жидкость», а «камера» оказалась «вне игры»? В агрессивном действии жидкости? Но ведь в этой паре жидкость обязана быть агрессивной - это ее полезное (и только полезное!) качество... Конфликт теперь в том, что жидкость не будет держаться (без камеры) у кубика. Она просто-напросто разольется, выльется, утечет. Как сделать, чтобы жидкость, не разлилась, а надежно держалась у кубика? Налить ее внутрь кубика - ответ единственный и достаточно очевидный. Гравитационное поле действует на жидкость, но это действие не передается на кубик и поэтому жидкость и кубик не взаимодействуют (механически). Простейшая задача на постройку веполя: пусть гравитационное поле действует на жидкость, а та передаст это действие кубику. Заменить кубики «стаканами» (полыми кубиками) - первая идея, которая приходит в голову, если в модели задачи взяты кубик и жидкость, а не жидкость и камера. Стенка есть (стенка кубика) и стенки нет (стенки камеры) - отличное устранение физического противоречия. Такое решение заведомо не надо проверять - оно абсолютно ясно и надежно, здесь не нужна конструкторская разработка, нет проблемы внедрения. А чтобы получить это решение, нужно всего-навсего выполнить прямое и простое предписание АРИЗ: в конфликтующей паре должны быть изделие и непосредственно действующий на него элемент системы. Или (как в задаче о молниеотводе) можно рассмотреть конфликт между двумя парами: «кубик-жидкость» и «жидкость-камера». ИКР: отсутствующая жидкость сама не действует на камеру, сохраняя способность действовать на образец. Здесь путь к решению еще короче, ибо с самого начала принято, что жидкость отсутствует. Сразу возникает четкое противоречие: жидкость есть (для кубика) и жидкости нет (для камеры). По условиям задачи разделить конфликтующие свойства во времени нельзя (жидкость должна непрерывно действовать на образец), остается одна возможность: разделить конфликтующие свойства в пространстве - жидкость есть там, где кубик, и жидкости нет там, где камера.
   Текст АРИЗ-77 включает девять простых правил, но научиться выполнять эти правила, увы, не так просто. Сначала правила не замечают, «пропускают», потом их начинают неверно применять и лишь постепенно, где-то на второй сотне задач вырабатывается умение уверенно работать с АРИЗ. Любое обучение трудно, но обучение организованности мышления при решении творческих задач трудно вдвойне. Если дать задачу на вычисление объема конуса, человек может неверно записать формулу, неверно перемножить числа, но никогда не скажет, даже не заглянув на цифры: «Объем конуса? А что если он равен 5 см3 или 3 м3? В какой цвет окрашен конус? А может быть, дело совсем не в конусе? Давайте лучше вычислим вес какой-нибудь полусферы...» При решении изобретательских задач такие «пируэты» называются «поиском решения» и никого не смущают...
   Есть много тонких механизмов решения, которые сегодня еще нельзя сформулировать в виде простых правил. Они пока не включены в текст АРИЗ, но их можно «встроить» по усмотрению преподавателя, когда обучающиеся привыкнут вести анализ, не обрывая его где-то в середине извечным: «А что если сделать так?..»
   Как мы уже говорили, Гордон, создавая синектику, дополнил мозговой штурм четырьмя видами аналогий, в том числе эмпатией - личной аналогией. Сущность этого приема заключается в том, что человек, решающий задачу, «входит» в образ совершенствуемого объекта и старается осуществить требуемое задачей действие. Если при этом удается найти какой-то подход, какую-то новую идею, решение «переводится» на технический язык. «Суть эмпатии,- говорит Дж. Диксон, - состоит в том, чтобы «стать» деталью и посмотреть с ее позиции и с ее точки зрения, что можно сделать» [9, с. 45]. Далее Дж. Диксон указывает, что этот метод очень полезен для получения новых идей.
   Практика применения эмпатии при решении учебных и производственных задач показывает, что эмпатия действительно иногда бывает полезна. Но иногда она бывает и очень вредна. Почему?
   Отождествляя себя с той или иной машиной (или ее частью) и рассматривая ее возможные изменения, изобретатель невольно отбирает те, которые приемлемы для человека, и отбрасывает неприемлемые для человеческого организма, например разрезание, дробление, растворение в кислоте и т. д.
   Неделимость человеческого организма мешает успешно применять эмпатию при решении многих задач, подобных, например, задачам 23-25.
   Недостатки эмпатии устранены в моделировании с помощью маленьких человечков (ММЧ) - методе, который применяется в АРИЗ. Суть его состоит в том, чтобы представить объект в виде множества («толпы») маленьких человечков. Такая модель сохраняет достоинства эмпатии (наглядность, простота) и не имеет присущих ей недостатков.
   В истории науки известны случаи, когда стихийно применялось нечто похожее на ММЧ. Два таких случая особенно интересны. Первый - открытие Кекуле структурной формулы бензола.
   «Однажды вечером будучи в Лондоне, - рассказывает Кекуле, - я сидел в омнибусе и раздумывал о том, каким образом можно изобразить молекулу бензола С6 Н6 в виде структурной формулы, отвечающей свойствам бензола. В это время я увидел клетку с обезьянами, которые ловили друг друга, то схватываясь между собой, то опять расцепляясь, и один раз схватились таким образом. что составили кольцо. Каждая одной задней рукой держалась за клетку, а следующая держалась за другую ее заднюю руку обеими передними, хвостами же они весело размахивали по воздуху. Таким образом, пять обезьян, схватившись, образовали круг, и у меня сразу же блеснула в голове мысль: вот изображение бензола. Так возникла вышеприведенная формула, она нам объясняет прочность бензольного кольца» (цит. по [7. т. 2, с.80-81]).
   Второй случай еще более известен. Это мысленный эксперимент Максвелла при разработке им динамической теории газов. В этом мысленном опыте были два сосуда с газами при одинаковой температуре. Максвелла интересовал вопрос, как сделать, чтобы в одном сосуде оказались быстрые молекулы, а в другом медленные. Поскольку температура газов одинакова. сами по себе молекулы не разделятся: в каждом сосуде в любой момент времени будет определенное число быстрых и медленных молекул. Максвелл мысленно соединил сосуды трубкой с дверцей, которую открывали и закрывали «демоны» - фантастические существа примерно молекулярных размеров. Демоны пропускали из одного сосуда в другой быстрые частицы и закрывали дверцу перед маленькими частицами.