Решение задачи 1
   На одном кинокадре должно быть тороидальное колечко без проволоки, а на другом - то же колечко, но уже с появившейся на нем проволочной обмоткой.
   Как именно появилась обмотка - это пока не важно. Зато очень важно, как выглядит готовое изделие. Тут надо отчетливо представить себе каждую деталь, а затем упростить полученную схему.
   Кольцо с намоткой можно показать на втором кадре в общем виде. Это неплохо, но можно сделать лучше: дать крупным планом одну часть кольца, зато в разрезе (рис. 7). Так намного яснее - к чему следует стремиться. Ведь тут прямо напрашивается третий кадр: упростим
   изображение, объединим слои изоляции. И четвертый кадр: уберем нижний общий слойизоляции (ферриты сами обладают свойствами изоляторов). А теперь пятый кадр: уберем верхний общий слойизоляции. Раз он общий, его всегда легко нанести.
   У нас остается тороид со спиральным металлическим слоем, h задача коренным образом облегчается: получить металлический спиральный слой намного проще, чем наматывать изолированную проволоку…
   * * *
   Разумеется, нужен опыт, чтобы вот так идти от кадра к кадру. Но это и не обязательно. Шаг 3-2 предусматривает только два рисунка: «Было» и «Стало» (ИКР). Далее (шаг 3-3) на рисунке «Стало» выделяется та часть объекта, которая не может выполнить требуемого действия - и это в определенной мере заменяет дальнейшие рисунки.
   Делая шаги 3-1 и 3-2, изобретатель смело отмеривает желаемое. Шаг 3-3 заставляет задать себе вопрос: а почему, собственно, желаемое невозможно?
   Выясняется, что при попытке получить желаемое (используя для этого уже известные способы), возникает помеха- приходится расплачиваться дополнительным весом или увеличением объема, усложнением эксплуатации или увеличением стоимости машины, уменьшением производительности или недопустимым снижением надежности. Это и есть техническое противоречие, присущее данной задаче.
   Каждая помеха обусловлена определенными причинами. Шаг 3-4 состоит в определении этих причин.
   Причины помехи почти всегда лежат на виду, и найти их нетрудно, лишь в редких случаях эти причины неясны. Однако не следует сразу переходить к экспериментам. Дело в том, что для эффективного решения задачи далеко не всегда нужно детальное проникновение в физико-химическую суть помехи. Допустим, техническое противоречие обусловлено недостаточной прочностью материала. Понятно, что изучение этого материала может дать новые сведения, позволяющие устранить помеху. Но это путь исследовательский, а не изобретательский: здесь делается открытие (пусть небольшое), а не изобретение. Исследовательская же работа требует специального обо-
   рудования и значительного времени. Выгоднее идти изобретательским путем, пока его возможности не исчерпаны. Поэтому при определении непосредственных причин технического противоречия можно и нужно ограничиться самыми общими формулировками.
   Вспомним задачу о магнитной сборке. Идеальный результат состоял в том, чтобы ролики «сами собой» держались на местах. Достижению этого результата мешало то, что ролики сами собой не держались и падали. Причина помехи очевидна: ролики сделаны из металла, цапфа тоже металлическая, а металл на металле сам собой не закрепляется. Большей детализации в определении причин помехи и не требуется.
   Когда причина помехи найдена, можно сделать еще один шаг и определить, при каких условиях исчезнет помеха. Так, в задаче о магнитной сборке помеха исчезнет, когда металл «без ничего» будет держаться на металле. После такого преобразования задачи уже трудно не догадаться о намагничивании.
   Рассмотрим в качестве примера задачу о гоночном автомобиле.
    Решениезадачи 3
   2-3. Дана система из колеса и обтекателя. Сквозь обтекатель не видно положение колеса.
   2-4. а) Обтекатель.
   б) Колесо.
   (К колесу автомашины предъявляется много требований, любое изменение может вступить в конфликт с этими требованиями, К обтекателю предъявляется только одно требование - сохранение определенной формы. Значит, обтекатель - в условиях данной задачи - менять легче.)
   2-5. Обтекатель.
   3-1. Обтекатель сам позволяет видеть колесо - без ухудшения аэродинамических качеств.
   Задача простенькая, не выше второго уровня. Но сейчас нас интересует механизм решения - его удобнее рассматривать на таких простых задачах.
   Решение напрашивается уже на шаге 2-3. А шаг 3-1 с предельной точностью выводит на решение. Обтекатель сам пропускает лучи: следовательно, исключены все варианты с зеркалами, светопроводами и т. п. Без ухудшения аэродинамических качеств: следовательно, форму и положение обтекателя менять нельзя, дырки в обтекателе тоже нельзя делать. Остается одно - сделать обтекатель прозрачным. Это позволит совместить несовместимое: будут улучшены аэродинамические качества автомобиля и в то же время гонщик сохранит возможность, как и раньше, наблюдать за колесами.
   Сейчас, когда решение найдено, оно кажется очевидным. Действительно, такое решение могло появиться уже в сороковых годах. Здесь, видимо, сказалась инерция мышления. Когда задача возникла, не было материала для изготовления прозрачных обтекателей: ведь обычное стекло не годится - оно слишком хрупкое. Тогда и привыкли считать, что колесо можно прикрыть лишь металлическим обтекателем, а металл, как известно, непрозрачен. С течением времени условия изменились: появилась прозрачная и прочная пластмасса (органическое стекло), однако «сработала» ^инерция мышления - задача осталась нерешенной. Способствовало этому и то, что задача относилась только к гоночным автомобилям и потому не попадала в поле зрения конструкторов обычных автомобилей. Для обычного автомобиля едва ли нужны прозрачные обтекатели колес (они быстро загрязнятся и перестанут быть прозрачными - тут это решение непригодно). Но вообще сделать машину или часть машины прозрачной - один из сильных приемов решения изобретательских задач.
   * * *
   На рис. 8 показана схема работы по АРИЗ. Используя ИКР как ориентир, изобретатель сразу выходит в район сильных решений. Затем он шаг за шагом исследует техническое противоречие, содержащееся в задаче. Ясное представление о техническом противоречии и его, так сказать, внутренней механике позволяет в ряде случаев уже на этом этапе прийти к идее решения. Однако, как правило, идея - в первоначальном своем виде - еще сыровата. Ее надо «дотянуть», откорректировать, усилить ее преимущества и по возможности убрать недостатки. Это осуществляется в четвертой части АРИЗ.
   Иногда недостатки идеи оказываются слишком серьезными, преимущества - сомнительными, а повторный анализ не дает ничего нового. Тогда следует перейти к пятой части АРИЗ.
   Изобретательских задач - бесчисленное множество. Но содержащиеся в них технические противоречия довольно часто повторяются. А коль скоро существуют типичные противоречия, то должны существовать и типичные приемы их устранения. Действительно, статистическое исследование изобретений обнаруживает четыре десятка наиболее эффективных приемов устранения технических противоречий. Их использование (порознь или в том или ином сочетании) лежит в основе многих изобретений. Разумеется, тут нет и тени принижения творчества: в конце концов вся безграничная вселенная собрана из сотни элементов.
   Рис. 8. По АРИЗ решать задачу начинают с определения идеального конечного результата (ИКР). Это помогает сразу выйти в район сильных решений. Дальнейший поиск облегчается выявлением технического противоречия (ТП) и применением типовых приемов его устранения.
   Составим теперь таблицу. В вертикальную колонку запишем показатели, которые желательно изменить (улучшить, увеличить, уменьшить и т. д.), в горизонтальную строку - показатели, которые недопустимо ухудшатся, если осуществить желаемое изменение обычными (уже известными) способами.
   В приложении 1 приведена таблица, составленная в результате анализа 40 тысяч изобретений. С использования этой таблицы и начинается пятая часть алгоритма.
   Допустим, мы хотим решить задачу о гоночной машине. Можно ли обычными средствами уменьшить по-
   тери энергии, вызываемые несовершенной аэродинамической формой колес? Да, можно: надо спрятать колеса под обтекаемый кузов. Но тогда гонщик не сможет следить за положением колес. Таким образом, мы имеем противоречие типа «потери энергии - условия наблюдения» (или наоборот; «условия наблюдения - потери энергии»).
   Обратимся теперь к таблице. В списке характеристик объекта есть «потери энергии» (строка 22), но нет «условий наблюдения». Возьмем вместо этого колонку 33- «удобство эксплуатации». На пересечении горизонтальной строки и вертикальной колонки получаем цифры 35, 32, 1. Это номера рекомендуемых приемов. Какие-то из них могут оказаться ключом к решению задачи.
   Нам еще придется детально познакомиться со всеми приемами. Сейчас отметим лишь, что среди трех приемов, подсказанных таблицей, есть и такой: «Сделать объект прозрачным» (прием 32).
   Если бы мы взяли противоречия типа «удобство работы и контроля - потери энергии» или «потери энергии - потери информации», то и в этих случаях среди рекомендуемых приемов^ было бы - «сделать объект прозрачным».

ИНСТРУМЕНТЫ ИЗОБРЕТАТЕЛЯ

   Давайте детальнее познакомимся с таблицей типовых приемов и самими этими приемами.
   Создание подобных таблиц - работа чрезвычайно трудоемкая. К сожалению, нельзя поступить так: подряд анализировать изобретения, отбирать наиболее часто встречающиеся решения и вписывать их в таблицу. Авторские свидетельства и патенты довольно часто выдаются на весьма тривиальные решения, и составленная на их основе таблица давала бы, как правило, слабые решения даже в том случае, если весь массив анализируемых изобретений содержит только сильные решения. Приемы, которые были оригинальными и сильными 5-10-20 лет назад, могут оказаться слабыми при решении новых задач.
   Поэтому при составлении таблицы для каждой клеточки приходится определять авангардную отрасль техники, в которой данный тип противоречий устраняется наиболее сильными и перспективными приемами. Так, для противоречий типа «вес-продолжительность действия», «вес - скорость», «вес - прочность», «вес - надежность» и т. д. наиболее подходящие приемы содержатся в изобретениях по авиационной технике. Противоречия, связанные с необходимостью повышать точность, эффективнее всего устраняются приемами, присущими изобретениям в области оборудования для физических экспериментов.
   Таблица, построенная на приемах, взятых из таких ведущих отраслей техники, будет помогать находить сильные решения для обычных изобретательских задач. Чтобы таблица годилась и для задач, возникающих в ведущих отраслях, она должна дополнительно вобрать в себя и новейшие приемы, которые еще только входят в изобретательскую практику. Эти приемы чаще встречаются не в тех «благополучных» изобретениях, на которые выданы авторские свидетельства, ав заявках, отклоненных из-за «неосуществимости», «нереальности».
   АРИЗ-65 имел таблицу, составленную на основе анализа пяти тысяч изобретений, относящихся к сорока трем патентным классам. В АРИЗ-71 таблица значительно более подробна. При ее составлении проанализировано свыше сорока тысяч изобретений. Не все клетки таблицы заполнены, тем не менее она охватывает около полутора тысяч типов технических противоречий, указывая для каждого типа вероятные приемы решения.
   Необходимо подчеркнуть, что приемы устранения технических противоречий, рекомендуемые таблицей, сформулированы в общем виде. Они подобны готовому платью: их надо подгонять, учитывая индивидуальные особенности задачи. Если, например, таблица рекомендует прием 1 («Дробление»), это лишь означает, что решение как-то связано с разделением объекта. Таблица отнюдь не избавляет изобретателя от необходимости думать, она лишь направляет мысль по наиболее перспективным путям.
   Совместимо ли использование типовых приемов с творческим характером изобретательского процесса? Да, совместимо! Более того, все современные изобретатели пользуются типовыми приемами, порой и не подозревая об этом.
   Попытки составления списков приемов предпринимались с начала XX века. Но списки эти не были достаточно полными, так как их составляли по случайным наблюдениям и разрозненным материалам. Для правильного составления и периодического обновления списков приемов необходимо систематически исследовать патентную информацию, анализировать десятки тысяч изобретений по большинству патентных классов. Сейчас эта работа ведется регулярно, и каждая модификация АРИЗ снабжает уточненным и дополненным перечнем приемов.
   В творческой мастерской изобретателя приемы играют роль набора инструментов, и, чтобы пользоваться ими, нужны определенные навыки. В простейшем случае изобретатель, просматривая перечень приемов, ищет подсказку по аналогии. Зто способ медленный и не очень эффективный. Иначе обстоит дело, когда решение задачи ведется по АРИЗ: таблица применения приемов указывает наиболее подходящее решение для данной задачи. На первых этапах освоения АРИЗ изобретатель применяет приемы подряд, на более поздних - по таблице. Однако во всех случаях надо знать типовые приемы и уметь их использовать.
   Перечень типовых приемов - это своего рода настольный справочник изобретателя, но справочник особого рода: изобретатель должен рассматривать его как основу, которую необходимо самостоятельно пополнять по новым техническим и патентным публикациям,
   * * *
   Рассмотрим типовые приемы устранения технических противоречий.
    1. Принцип дробления
   а) Разделить объект на независимые части.
   б) Выполнить объект разборным.
   в) Увеличить степень дробления (измельчения) объекта,
   Примеры. Патент США № 2859791. Пневматическая шина, состоящая из двенадцати независимых секций1.
   Разделение шины осуществляется, чтобы повысить надежность. Но это далеко не единственный повод для использования столь сильного приема. Дробление - одна из ведущих тенденций в развитии современной техники.
   Еще несколько примеров.
   Авторское свидетельство № 168195. Ковш одноковшового экскаватора со сплошной полукруглой режущей кромкой, отличающийся тем, что для обеспечении быстрой и удобной замены сплошной режущей кромки последняя выполнена из отдельных съемных секций.
   Авторское свидетельство № 184219. Способ непрерывного разрушения горных пород зарядами ВВ, отличающийся тем, что с целью получения мелких фракций непрерывное разрушение поверхностного слоя производят микрозарядами.
   2. Принцип вынесения
   Отделить от объекта «мешающую» часть («мешающее» свойство) или, наоборот, выделить единственно нужную часть (нужное свойство).
 
   1 Здесь, как и в других примерах, я стремился к максимальной наглядности. Пусть читателя не смущает, что некоторые принципы проиллюстрированы «мелкими» или «смешными» идеями. Важна суть.
   Рис. 9. Принцип вынесения: раньше горноспасатель носил на спине ранец с холодильным устройством; теперь оно помещено в отдельном контейнере.
   Примеры. Авторское свидетельство № 153533. Устройство для защиты от рентгеновских лучей, отличающееся тем, что с целью защиты от ионизирующего излучения головы, плечевого пояса, позвоночника, спинного мозга и гонад пациента при флюорографии, например, грудной клетки оно снабжено защитными барьерами и вертикальным, соответствующим позвоночнику стержнем, изготовленным из материала, не пропускающего рентгеновские лучи.
   Целесообразность этой идеи очевидна.
   Изобретение выделяет наиболее вредную часть потока и блокирует ее. Заявка подана в 1962 году, между тем это простое и нужное изобретение могло быть сделано значительно раньше. Мы привыкаем рассматривать многие объекты как набор традиционных и неотъемлемых друг от друга частей. В набор вертолета, например, входят и баки с горючим. Действительно обычный вертолет вынужден возить горючее. Однако в тех случаях, когда вертолет курсирует по определенному маршруту, горючее можно оставить на земле. На электровертолете бензиновый двигатель заменен электромотором, а баков вообще нет.
   В авторском свидетельстве № 257301 «бак» есть, но он отделен от человека (рис. 9).
   Еще один пример. Столкновение самолетов с птицами вызывают иногда тяжелые катастрофы. В США запатентованы самые различные способы отпугивания птиц от аэродромов (механические чучела, распыление нафталина и т. д.). Наилучшим оказалось громкое воспроизведение крика перепуганных птиц, записанного на магнитофонную ленту.
   Отделить птичий крик от птиц - решение, конечно, необычное, но характерное для принципа вынесения.
   3. Принцип местного качества
   а) Перейти от однородной структуры объекта (или внешней среды, внешнего воздействия) к неоднородной.
   б) Разные части объекта должны иметь разные функции.
   в) Каждая часть объекта должна находиться в условиях, наиболее соответствующих ее работе.
   Примеры. Авторское свидетельство № 256708. Способ подавления пыли в горных выработках, отличающийся тем, что с целью предотвращения распространения тумана по выработкам и сноса его с источника пыле-образования вентиляционным потоком подавление пыли производят одновременно тонкодиспергированной и гру-бодисперсной водой, причем вокруг конуса тонкодиспергированной воды создают пленку из грубодисперсной воды.
   Авторское свидетельство № 280328. Способ сушки зерна риса, отличающийся тем, что с целью уменьшения образования трещиноватых зерен рис перед сушкой разделяют по крупности на фракции, которые сушат раздельно с дифференцированными режимами.
   Принцип местного качества отчетливо отражается в историческом развитии многих машин: они постепенно дробились и для каждой части создавались наиболее благоприятные местные условия.
   Первоначально паровой двигатель представлял собой цилиндр, выполнявший одновременно функции парового котла и конденсатора. Вода заливалась непосредственно в цилиндр. Огонь обогревал цилиндр, вода закипала, пар поднимал поршень, после чего жаровню с огнем убирали, а цилиндр поливали холодной водой. Пар конденсировался, и поршень под действием атмосферного давления шел вниз.
   Позднее изобретатели догадались отделить паровой котел от цилиндра двигателя. Это позволило существенно сократить расход топлива.
   Однако отработанный пар по-прежнему конденсировался в самом цилиндре, что вызывало огромные тепловые потери. Нужно было сделать следующий шаг - отделить от цилиндра конденсатор. Эту идею выдвинул и осуществил Джемс Уатт. Вот что он рассказывает:
   «После того как я всячески обдумывал вопрос, я пришел к твердому заключению: для того чтобы иметь совершенную паровую машину, необходимо, чтобы цилиндр всегда был так же горяч, как и входящий в него пар. Однако конденсация пара для образования вакуума должна происходить при температуре не выше 30 градусов…
   Это было возле Глазго, я вышел на прогулку около полудня. Был прекрасный день.»i проходил мимо старой прачечной, думая о машине, и подошел к дому Герда, когда мне пришла в голову мысль, что пар ведь упругое тело и легко устремляется в пустоту. Если установить связь между цилиндром и резервуаром с разреженным воздухом, то пар устремится туда и цилиндр не надо будет охлаждать. Я не дошел еще до Гофхауза, как все дело было кончено в моем уме!»
   4. Принцип асимметрии
   Перейти от симметричной формы объекта к асимметричной. Машины рождаются симметричными. Это их традиционная форма. Поэтому многие задачи, трудные по отношению к симметричным объектам, легко решаются нарушением симметрии.
   Примеры. Тиски со смещенными губами. В отличие от обычных, они позволяют зажимать в вертикальном положении длинные заготовки.
   Фары автомобиля должны работать в разных условиях: правая должна светить ярко и далеко, а левая - так, чтобы не слепить водителей встречных машин. Требования разные, а устанавливались фары всегда одинаково. Лишь несколько лет назад возникла идея несимметричной установки фар: левая освещает дорогу на расстоянии до 25 метров, а правая - значительно дальше.
   Патент США № 3435875. Асимметричная пневматическая шина имеет одну боковину повышенной прочности и сопротивляемости ударам о бордюрный камень тротуара.
   Рис. 10. Принцип асимметрии: электроды в дуговой печи сдвинуты в сторону, у загрузочного окна образовалось свободное пространство, что позволяет загружать шихту непрерывно.
 
   Рис. 11. Принцип объединения: раньше приходилось останавливать роторный экскаватор, чтобы разогреть мерзлый грунт; теперь форсунки установлены непосредственно на роторе.
 
   Авторское свидетельство № 242325. Дуговая электропечь для плавки чугуна с боковой загрузкой твердой шихты, отдичающаяся тем, что с целью создания непрерывности процесса плавления ее подина выполнена асимметрично вогнутой, расширенной к загрузочному окну (рис. 10).
   5. Принцип объединения
   а) Соединить однородные или предназначенные для смежных операций объекты,
   б) Объединить во времени однородные или смежные операции.
   Примеры. Авторское свидетельство № 235547. Рабочее оборудование роторного экскаватора, включающее ротор и стрелу, отличающееся тем, что с целью уменьшения усилия резания оно выполнено с устройством для разогрева мерзлого грунта, имеющим форсунки, смонтированные, например, на секторах по обоим торцам ротора (рис. 11).
   Авторское свидетельство № 134155. Спасательное водолазное устройство для вывода на поверхность людей, оказавшихся в воздушных мешках отсеков затонувших судов, с применением шлем-масок, отличающееся тем, что с целью повышения эффективности спасательных операций, производимых водолазом, оно выполнено в виде одной или двух шлем-масок, снабженных шлангами и арматурой для присоединения к штуцерному крану, вмонтированному в водолазный скафандр, от которого производится регулирование подачи воздуха в шлем-маски (рис. 12).
   Рис. 12. Еще одно применение принципа объединения.
 
   6. Принцип универсальности
   Объект выполняет несколько разных функций, благодаря чему отпадает необходимость в других объектах.
   Примеры. В Японии рассматривается возможность постройки танкера, оборудованного нефтеперегонной установкой. Смысл проекта - совмещение во времени процессов транспортировки и переработки нефти.
   Авторское свидетельство № 160100. Способ траспор-тирования материала, например табачных листьев, к сушильным установкам с помощью водяного потока в гидротранспортере, отличающийся тем, что с целью одновременного осуществления промывки табачных листьев и фиксации их цвета используют воду, нагретую до 80-85°С.
   Авторское свидетельство № 264466. Элемент памяти на тонкой цилиндрической пленке, нанесенной на диэлектрическую подложку, отличающийся тем, что с целью упрощения элемента сама пленка служит шиной записи-считывания.
    7. Принцип«матрешки»
   а) Один объект размещен внутри другого объекта, который, в свою очередь, находится внутри третьего и т. д.
   б) Один объект проходит сквозь полость в другом объекте.
   Примеры. Авторское свидетельство № 186781. Ультразвуковой концентратор упругих колебаний, состоящий из скрепленных между собой полуволновых отрезков, отличающийся тем, что с целью уменьшения длины концентратора и увеличения его устойчивости полуволновые отрезки выполнены в виде полых конусов, вставленных один в другой (рис. 13).
   Авторское свидетельство № 110596. Способ хранения и транспортировки разнородных по вязкости нефтепродуктов в корпусе плавучей емкости, отличающийся тем, что хранение их с целью уменьшения потерь тепла высоковязких нефтепродуктов производят в отсеках емкости, расположенных внутри отсеков, заполненных невязкими сортами нефтепродуктов.
   Авторское свидетельство № 272705. Устройство для внесения удобрений в почву, включающее бункер и право- илевосторонние дозирующие шнеки, отличающееся тем, что с целью регулирования рабочей ширины захвата каждый дозирующий шнек выполнен из двух ввинченных одна в другую секций (рис. 14).
    8. Принцип антивеса
   а) Компенсировать вес объекта соединением с другими объектами, обладающими подъемной силой.
   Рис. 13. Принцип «матрешки»: компактный ультразвуковой концентратор; / и 2 - полые конусы.
   1 Пусть читателя не смущают «несерьезные» названия некоторых приемов. Принцип «матрешки» можно назвать вполне серьезно принципом интегрирующей концентрации. Однако простые и образные названия значительно быстрее и лучше запоминаются.
   б) Компенсировать вес объекта взаимодействием со средой (за счет аэро-, гидродинамических н других сил). Примеры. Авторское свидетельство № 187700. Способ спуска в скважину и извлечения из нее стреляющей и взрывной аппа-Рис. 14. Еще одна «матрешка»: РаТуры, отличающий-ширину дозирующего шиека регу- с я тем, что с целью уде-лируют, ввинчивая одну секцию в шевления И упрощения другую. «прострелочных и взрывных работ спуск стреляющей и взрывной аппаратуры, производят свободно под действием собственного веса, а подъем к устью скважины -с помощью встроенного в корпус реактивного двигателя.