И тут-то я чуть-чуть не упустил важного открытия, рассудив, что в таком случае можно рассчитать мениск, не вносящий, аберрации, т. е. безаберрационный мениск».
   Внимательно вчитайтесь в эти строки. Изобретателю надо было преодолеть два барьера. Первый барьер - защитное стекло должно быть сделано из дорогого оптического стекла. Выяснилось, что удорожание можно компенсировать: расходы на оптическое стекло окупаются тем, что защитное окно будет выполнять не одну, а несколько функций. Значит, не обязательно прыгать через барьер, можно его обойти…
   Но вот изобретатель подошел ко второму барьеру: потребовалось устранить искажения, создаваемые мениском. Казалось, тут бы и применить только что найденный метод компенсации. Пусть аберрация - еще одно неизбежное зло. Надо компенсировать это зло, извлечь из него какую-то пользу, а не устранять!
   Однако здесь и проявилась слабость метода «проб и ошибок». На первый взгляд кажется, что пробы беспорядочны. Но в этом беспорядке есть своя система: пробы ведутся по линии наименьшего сопротивления. Легче всего пробовать в привычном направлении, и изобретатель, сам того не замечая, идет туда, где дорога более накатана (и где поэтому вряд ли можно найти новое). Возобновляются попытки перепрыгнуть через барьер, хотя буквально за несколько минут перед этим было открыто, что можно не прыгать, а идти в обход…
   «На этих мыслях,- продолжает Максутов,- задержался несколько часов, пока не додумался, что значительно выгодней выбрать такой мениск, который вводит в систему положительную аберрацию, способную компенсировать отрицательную аберрацию сферического зеркала или сферических зеркал.
   В этот Момент и были изобретены менисковые системы».
   Таким образом, второй барьер был преодолен тем же методом компенсации. Мениск искажает световой поток,и изобретатель понял, что с этим не надо бороться. Выгоднее использовать создаваемые мениском искажения для ликвидации других искажений, вызванных погрешностями при изготовлении главного зеркала телескопа - рефлектора.
   Изготовление параболического рефлектора - исключительно сложная и трудоемкая работа. Изобретение Максутова позволило заменить параболические рефлекторы неизмеримо более простыми в изготовлении сферическими зеркалами. Раньше сферические зеркала нельзя было применять из-за того, что они создают очень большие искажения. Теперь появилась возможность компенсировать искажения рефлектора искажениями, создаваемыми мениском. Несвершенный (в оптическом смысле) рефлектор и несовершенный мениск, работая спаренно, давали вполне совершенную оптическую систему!
   Максутов пишет:
   «Работая над теорией менисковых систем и видя их преимущества, невольно вспоминаешь тернистый путь истории оптического приборостроения. Сколько было изломано копий в борьбе сторонников рефлектора и рефрактора! Сколько было затрачено энергии, с одной стороны, на овладение методикой изготовления и исследования точных асферических поверхностей, а с другой - на разрешение проблемы ахроматических стекол! Сколько изготовлено флинтгласа и других трудоемких сортов стекла для тех случаев, в которых их можно было бы и не применять! Наконец, сколько построено дорогих, громоздких и несовершенных телескопов с не менее дорогим и громоздким механическим оборудованием и дорогими помещениями с огромными вращающимися куполами!
   Если бы на заре астрономической оптики был известен элементарно простой принцип менисковых систем, в основном доступный пониманию современников Декарта и Ньютона, то астрономическая оптика могла бы пойти по совершенно иному пути и иметь ахроматическую короткофокусную оптику со сферическими поверхностями, базирующуюся лишь на единственном сорте оптического стекла, безразлично с какими константами» К
   Итак, первостепенное по своему значению изобретение на этот раз запоздало на 250-300 лет!
   Какова же его дальнейшая судьба?
   Построив менисковый телескоп, Максутов использовал найденную идею для конструирования менисковых микроскопов, биноклей и других оптических приборов. Но даже в оптике идея Максутова была применена только к решению задач, как две капли схожих с первоначальной. Если же задача оказывалась несколько иной, ее не решали вообще или решали, заново проделывая весь тот путь, по которому прошел в свое время Максутов.
   Вот история одного из таких изобретений. Обратите внимание - ход рассуждений и полученное решение поразительно напоминают историю изобретения менискового телескопа.
   «Идея возникла случайно. Знал я одного человека - он тоже подводник-любитель, много лет носил очки. А под водой?… Я посоветовал ему сделать маску из плексигласа и выфрезеровать на ней линзы, соответствующие стеклам очков. Идея была заманчива, но это доступно не каждому.
   И вдруг оказалось, что решение проблемы находится в… воде. Если сделать плоскопараллельное стекло маски выпуклым, то граница двух сред - воды и воздуха - будет для наблюдателя вогнутой, рассеивающей лучи света, как вогнутые стекла очков. У спортсмена, о котором я упомянул, стекла очков имели минус 2-3 диоптрии. Как показали наши опыты, это эквивалентно стеклу маски с радиусом выпуклости в 15-10 см. Вот тут-то я и понял- дело совсем не в очках. Ведь под водой удаленные предметы видятся искаженно: крупнее и ближе. Но если сделать радиус выпуклости маски 20-25 см, увеличение, передаваемое водой, исчезнет, подводный мир предстанет перед нами в натуральную величину и куда более четко» !.
   Подобно Максутову, изобретатель начал с мысли о том, что нужно убрать лишнюю «крепежную систему» и прикрепить линзы на иллюминаторе маски. Затем пришла догадка: проще вообще обойтись без очков, сделав иллюминаторы выпуклыми, то есть превратить их в мениск. Но мениск «по совместительству» можно использовать, чтобы устранить искажения, которые неизбежны при наблюдении через плоский иллюминатор маски. Так сформулировалась новая техническая идея. Значение ее очень велико, потому что производительность труда водолаза во многом зависит от условий видимости.
   Самое ценное в изобретении Максутова - идея допустить недопустимое и потом это компенсировать. Можно смело утверждать, что среди многих не решенных современной техникой задач есть и такие, которые удалось бы решить «методом компенсации». Однако метод этот мало кому известен. Сотни раз описаны менисковые телескопы, но нет ни одной работы, в котброй бы говорилось: вот удачная тактика решения самых различных изобретательских задач, используйте ее не только в оптике, но и в других отраслях техники…
   * * *
 
   До сих пор мы говорили об изобретателях, решавших задачи в одиночку. Может быть, в крупных коллективах дело обстоит иначе? Может быть, там существует более эффективная технология творчества?
   Послушаем, что рассказывает генеральный авиационный конструктор Олег Константинович Антонов:
   «Когда конструировали «Антея», особенно сложным был вопрос о схеме оперения. Простой высокий киль с горизонтальным оперением наверху при всей ясности и заманчивости этой схемы, рекохмендованной аэродинамиками, сделать было невозможно - высокое вертикальное оперение скрутило бы, как бумажный пакет, фюзеляж самолета, имевший огромный вырез для грузового люка шириной 4,4 метра и длиною 17 метров.
   Разделить вертикальное оперение и повесить «шайбы» по концам стабилизатора тоже было нельзя, так как это резко снижало критическую скорость флаттера оперения.
   Время шло, а схема оперения не была найдена» .
   Современное авиационное КБ - коллектив, планомерно работающий по общей программе. Генеральный конструктор думает о задаче не в одиночку. Каждым узлом самолета занимается группа талантливых конструкторов, располагающих самой свежей информацией обо всем, что относится к их специальности. Но если останавливается одна такая группа, это сбивает ритм работы всего коллектива. Нетрудно представить себе, что стоит за простой фразой: «Время шло, а схема оперения не была найдена».
   «…Как-то раз, проснувшись ночью,- продолжает О. Антонов,- я стал, по привычке, думать о главном, о том, что больше всего заботило и беспокоило. Если половинки «шайбы» оперения, размещенные на горизонтальном оперении, вызывают своей массой флаттер, то надо расположить «шайбы» так, чтобы их масса из отрицательного фактора стала положительным… Значит, надо сильно выдвинуть их и разместить впереди оси жесткости горизонтального оперения…
   Как просто!
   Я тут же протянул руку к ночному столику, нащупал карандаш и записную книжку и в полной темноте набросал найденную схему. Почувствовав большое облегчение, я тут же крепко заснул».
   Обратите внимание: сначала Антонов, как и Максутов, безуспешно пытался убрать вредный фактор. У Максутова вредным фактором была аберрация, у Антонова - масса. А решение оказалось одинаковым: надо не убирать вредный фактор, а сделать его полезным.
   Быть может, сегодня в каком-нибудь КБ снова пытаются устранить какой-то вредный фактор. Снова бьются о стенку. А рядом - открытая дверь…
 
   * * *
 
   Теперь нетрудно ответить на вопрос, поставленный в начале главы. Методика изобретательства нужна:
   чтобы изобретательские задачи не «простаивали» и вовремя попадали в поле зрения изобретателей;
   чтобы решение изобретательских задач осуществлялось с возможно более высоким коэффициентом полезного действия;
   чтобы однажды найденные приемы использовались и при решении других технических задач, избавляя изобретателей от необходимости каждый раз заново вести трудные и долгие поиски.

УРОВНИ ТВОРЧЕСТВА

   Изобретательство - древнейшее занятие человека. Собственно, с изобретения первых орудий труда и начался процесс очеловечивания наших далеких предков. С тех пор были сделаны миллионы изобретений. Но вот что удивительно: изобретательские задачи становились все более сложными, а методы их решения почти не совершенствовались. Как правило, изобретатели шли к цели путем «проб и ошибок».
   «Изобретатель не знает ни благоразумия, ни предусмотрительности, ни их младшей сестры - медлительности,- пишет французский исследователь Шарль Ни-коль.- Он не исследует и не занимается софизмами. Он сразу бросается на неисследованную область и этим самым актом побеждает ее. Проблема, окутанная туманом, которую обычный слабый свет не мог обнаружить, вдруг как бы озаряется светом молнии. И тогда рождается новое творение. Такой акт ничем не обязан ни логике, ни разуму» К
   Вот что говорит современный американский изобретатель Дж. Рабинов: «Было бы очень удобно, если бы изобретения были результатом логического и упорядоченного процесса. К сожалению, обычно это не так. Они представляются продуктом того, что психологи называют «интуицией» - неожиданной вспышки вдохновения, механизм которого лежит в глубинах человеческого разума» 2.
   Как и Николь, Рабинов не считает творческий процесс логическим. Однако в том, что говорит Рабинов, есть и свои оттенки. С точки зрения Николя, изобретатель прекрасно обходится без «благоразумия»: бросился на задачу «- и победил. Рабинов рисует картину менее радужную и более близкую к действительности: бросился… и долго перебирал всевозможные варианты. И уж только потом победил.
   Подобных высказываний можно привести множество, и все они - плод идеалистического мышления.
   Выдающийся советский изобретатель Г. Бабат сравнивал творческую работу с восхождением на крутую гору: «Бредешь, отыскивая воображаемую тропинку, по-4 падаешь в тупик, приходишь к обрыву, снова возвращаешься. И когда наконец после стольких мучений доберешься до вершины и посмотришь вниз, то видишь, что шел глупо, бестолково, в то время как ровная широкая дорога была тйк близка и по ней легко было взойти, если бы раньше ее знал» *.
   Г. Бабат очень точно подметил характернейшую особенность творческого процесса: за «бестолковость» поисков приходится расплачиваться огромной затратой сил и времени. Не удивительно, что уже давно возникла мысль о необходимости как-то упорядочить поиски, найти правила выхода на «ровную и широкую дорогу», создать науку о решении творческих задач - эвристику.
   Слово «эвристика» впервые появилось в трудах греческого математика Паппа Александрийского, жившего во второй половине III века нашей эры. Впоследствии о необходимости изучения творческого мышления говорили многие выдающиеся ученые, в том числе Лейбниц и Декарт. Постепенно накопилось множество наблюдений, свидетельствующих, что какие-то эвристические правила действительно существуют. Укреплялась уверенность в принципиальной познаваемости творческих процессов, но изобретатели продолжали (и сегодня еще продолжают) работать методом «проб и ошибок».
   Почему же эвристика за семнадцать веков ее существования не создала эффективных методов решения изо* бретательских задач?
   Прежде всего потому, что эвристика с самого начала ставила слишком общую цель: найти универсальные правила, позволяющие решать любые творческие задачи во всех отраслях человеческой деятельности. Античная философия всегда стремилась к отысканию немногих «изначальных» элементов, пригодных для объяснения широкого круга явлений. Вспомним хотя бы учение Аристотеля, согласно которому вещество построено из пяти элементов: огня, воздуха, воды, земли и эфира. В таком же примерно духе мыслилось и выявление «всеобщих элементов» творчества.
   Разумеется, всем видам творчества присущи некоторые общие признаки. Но, ограничиваясь рассмотрением только этих универсальных (и в значительной мере внешних) признаков, трудно продвинуться дальше самых первоначальных представлений.
   Примечательны в этом отношении работы П. Энгель-мейера. Использовав богатый фактический материал, этот талантливый русский исследователь предложил следующую схему творческого процесса.
   Первый акт - акт интуиции и желания. Происхождение замысла.
   Второй акт - акт знания и рассуждения. Выработка схемы или плана.
   Третий акт - акт умения. Конструктивное выполнение изобретения.
   В принципе все верно: каждый творческий процесс включает замысел (постановку задачи), нахождение новой идеи (решение задачи) и разработку этой идеи (конструктивное ее воплощение). Но схема настолько неконкретна, что практически ничего не дает изобретателю.
   Справедливости ради, надо отметить, что П. Энгель-мейер, как и многие другие исследователи, не задавался целью создать практически работоспособную систему решения изобретательских задач. Вплоть до недавнего времени считалось, что производство изобретений вполне удовлетворяет спрос. Какая, в сущности, разница, сколько попыток сделал изобретатель, если в конце концов задача успешно решена?
   «Индустрия изобретений» работала прадедовскими методами, но с заданием справлялась. Стоит ли удивляться, что разработка эвристики шла довольно вяло?
   Положение осложнялось еще и тем, что проблему пытались решать с позиций узкой специализации. Историки техники, как правило, полностью игнорировали психологические особенности творческого процесса. А психологи, в свою очередь, не учитывали объективные закономерности исторического развития науки и техники, их интересовали главным образом индивидуальные творческие особенности выдающихся ученых и изобретателей. Так, в 1926 году американские психологи С. Кокс и Л. Термен опубликовали работу под примечательным названием «О ранних умственных чертах 300 гениев». Впоследствии Л. Термен и М. Идеи на протяжении 25-30 лет изучали судьбу 1000 наиболее одаренных учащихся и написали трехтомное «Исследование гениальности».
   Сами изобретатели долгое время также не стремились «прояснить» творческий процесс. Изобретателей было немного, ореол исключительности явно импонировал большинству из них. В двадцатых годах американский психолог Росман провел анкетный опрос изобретателей. Был, в частности, задан и такой вопрос: «Считаете ли Вы, что изобретательские способности прирожденные или изобретательству можно учиться?» Семьдесят процентов изобретателей ответили: «Научиться изобретать нельзя. Чтобы стать изобретателем, нужно иметь природные дарования». При этом никто из отвечавших на анкету Росмана не мог толком объяснить, в чем же они состоят, эти природные дарования.
   Вскоре после этого опроса (в 1931 году) появилась книга Росмана «Психология изобретателя». В ней гово* рилось: «Мы в настоящее время практически ничего не знаем о психологическом процессе, создающем изобретение. Мы не знаем ни условий, благоприятных для создания изобретения, ни особенностей и характерных черт изобретателя».
   Собрав множество интересных фактов, Росман не выявил сути изобретательского творчества. Выводы Росмана скромны: он ограничился приближенной схемой творческого процесса. Выглядит эта схема так:
   1. Усмотрение потребности или трудности.
   2. Анализ этой потребности или трудности.
   3. Просмотр доступной информации.
   4. Формулировка всех объективных решений.
   5. Критический анализ этих решений.
   6. Рождение новой идеи.
   7. Экспериментирование для подтверждения правильности новой идеи.
   В свое время Юлий Цезарь, завоевав Вифинию, сообщил об этом в Рим тремя словами: «Пришел, увидел, победил». Представьте себе, что, основываясь на этом историческом факте, кто-то изложил бы принципы военного искусства так: «Первая фаза - пришел. Вторая - увидел. Третья - победил…» А ведь нечто подобное этому и представляет собой схема Росмана: она перечисляет в хронологическом порядке основные этапы работы над изобретением, и только. При этом в один ряд поставлены совершенно различные процессы, например просмотр информации и рождение идеи изобретения. Получить информацию можно в библиотеке, тут все просто. Но как сделать, чтобы идея «родилась», и притом здоровой и сильной?… Росман не смог ответить на этот вопрос, технология изобретательства осталась нераскрытой.
   В 1934 году был опубликован первый том книги советского психолога П. Якобсона «Процесс творческой работы изобретателя». Критически рассмотрев выводы Росмана, П. Якобсон предложил свою схему творческого процесса. По этой схеме работа над изобретением также состоит из семи стадий:
   1. Период интеллектуально-творческой готовности.
   2. Усмотрение потребности.
   3. Зарождение идеи-задачи.
   4. Поиски решения.
   5. Получение принципа изобретения.
   6. Превращение принципа в схему.
   7. Техническое оформление и развертывание изобретения.
   Как легко заметить, эта схема во многом похожа на предложенную Росманом. Но в книге П. Якобсона отчетливее выражена мысль о необходимости вскрыть законы технического творчества и создать научно обоснованную методику решения изобретательских задач. Предполагалось, что во втором томе П. Якобсон изложит суть этой методики. Однако второй том так и не был написан, хотя П. Якобсон продолжал в дальнейшем публиковать другие работы в области психологии.
   К середине тридцатых годов на полках патентных библиотек скопились описания миллионов изобретений. Изобретательство в нашей стране приобретало все более массовый характер. Становилось очевидным: нужна научная методология творчества. Однако в силу целого ря-
   да причин и неблагоприятных обстоятельств в течение последующих двадцати лет новые работы по технологии изобретательства почти не публиковались. А старые теории, расплывчатые и практически неработоспособные, уже не годились. Тем более они непригодны теперь, в период бурного развития научно-технической революции, когда, как сказано в отчетном докладе Центрального Комитета КПСС XXIV съезду партии, «наиболее слабыми являются звенья, связанные с практической реализацией достижений науки, с их внедрением в массовое производство». А ведь достижения науки входят в производство именно через изобретения.
 
   * * *
 
   В 1944 году американский математик Д. Пойа писал об эвристике: «…так называлась не совсем четко очерченная область исследования, относимая то к логике, то к философии, то к психологии. Она часто охарактеризовы-валась в общих чертах, редко излагалась детально и, по существу, предана забвению в настоящее время» .
   История эвристики вообще состоит из недолгих приливов, разделенных куда более продолжительными отливами. Каждый прилив обогащал эвристику новыми надеждами и новой терминологией. Однако вскоре оказывалось, что надежды не спешат оправдываться, а за новыми терминами стоят старые и крайне расплывчатые идеи. Тогда начинался отлив.
   Возникновение кибернетики на первых порах усилило очередной отлив эвристики. В электронной вычислительной технике господствовал принцип последовательного перебора вариантов. Популярная и внешне убедительная аналогия между работой вычислительной машины и работой мозга укрепила мнение, что изобретательские задачи должны обязательно решаться путем «проб и ошибок».
   Электронные вычислительные машины совершенствовались, и к концу 50-х годов стало ясно, что сплошной перебор вариантов - даже при колоссальном быстродействии - не годится для решения творческих задач. Пришлось вспомнить об эвристике. Возникла идея эвристического программирования: пусть машины не перебирают подряд все варианты, а по определенным правилам отбирают относительно небольшое количество вариантов, достаточное для решения.
   В 1957 году американские исследователи А. Ньюэлл, Дж. Шоу и Г. Саймон опубликовали эвристическую программу под названием «Общий решатель проблем». Терминология была новая, с кибернетическим акцентом, а идея старая: создать универсальные правила решения творческих задач. Однако «решатель проблем» оказался весьма специализированным: он был пригоден в основном для доказательства теорем математической логики. А. Ньюэлл попытался использовать «Общий решатель» для игры в шахматы - ничего не получилось. Об изобретательских задачах и говорить не приходится: они заведомо были не под силу «Общему решателю».
   Впоследствии А. Ньюэлл, Дж. Шоу и Г. Саймон создали специальную шахматную программу. Но при этом пришлось отказаться от традиционных для эвристики поисков универсальных правил. Исследователи обратились к изучению объективных закономерностей шахматной игры. Имеется хорошо разработанная шахматная теория - она и была положена в основу программы.
   Казалось бы, найден верный путь: создавая эвристические программы, надо основываться на объективных закономерностях, действующих в данной области. Однако современная эвристика без особого энтузиазма осваивается с этой мыслью. Дело в том, что в шахматах была готовая теория, были учебники с правилами, обобщениями, советами, были многочисленные анализы сыгранных партий. Не будь всего этого, пришлось бы проделать в тысячи раз более сложную работу: сначала создать теорию, а уж потом, опираясь на эту теорию,разработать эвристическую программу игры. Именно поэтому сегодняшняя эвристика ничего не может предложить изобретателям.
 
   * * *
   Разделяя творческий процесс на отдельные стадии, Росман и другие исследователи не учитывали, что каждая стадия может проходить на качественно отличающихся уровнях.
   Это типично для исследований, посвященных изобре-
   тательскому творчеству. Изобретения рассматриваются «вообще», хотя на самом деле они представляют собой множество весьма отличающихся друг от друга объектов.
   Сравним два конкретных изобретения:
   Авторское свидетельство № 166584
   Приспособление для открывания бутылок, выполненное в виде укрепленного на рукоятке захвата, отличающееся тем, что с целью открывания бутылок, укупоренных полиэтиленовыми пробками, захват выполнен в виде скобы подковообразной формы с загнутым внутрь ее по всему периметру бортиком с фаской.
   Авторское свидетельства № 123209
   Способ усиления электромагнитных излучений (ультрафиолетового, видимого, инфракрасного и радиодиапазонов волн), отличающийся тем, что усиливаемое излучение пропускают через среду, в которой с помощью вспомогательного излучения или другим путем создают избыточную, по сравнению с равновесной, концентрацию атомов, других частиц или их систем на верхних энергетических уровнях, соответствующих возбужденным состояниям.
   Безусловно, в обоих случаях творческий процесс должен проходить через одни и те же стадии (в каждом деле есть начало, середина и конец). Но существует очевидная качественная разница между «усмотрением потребности» в механизации извлечения полиэтиленовых пробок и «усмотрением потребности» в создании индуцированного излучателя (лазера). Столь же очевидная качественная разница должна быть и в механизме «рождения новой идеи» в двух этих изобретениях.
   Я опросил подряд 29 человек в возрасте от 12 до 46 лет - все они за 2-5 минут находили идею механизма для открывания пластмассовых пробок. Привожу запись решения задачи моим сыном (12 лет):
   «Экспериментатор, Нужно придумать открывалку для пластмассовых пробок. Штопор не годится. Острая штуковина, которой открывают металлические пробки, тоже не годится. Для пластмассовых пробок нужна какая-то другая открывалка.
   Испытуемый. Мама открывает ножом.
   Экспериментатор. Ножом неудобно. Нужна специальная открывалка.
   Испытуемый. Можно ножницами.
   Экспериментатор. А почему ножницами лучше?
   Испытуемый. Ну, нож захватывает пробку только с одной стороны, а ножницы - с двух сторон.