После 5 недель внутриутробного развития начинается второй период кроветворения, который носит название печеночного. Кроветворение в печени достигает максимума к 5-му месяцу. Кроветворение второго периода преимущественно эритроидное, хотя с 12-й недели в печени циркулирует много клеток – предшественниц не только красного ряда, но и гранулоцитарно-макрофагальных. In vitro (в пробирке) они образуют макрофагальные и нейтрофильные колонии.
   После 20 недель интенсивность эритропоэза в печени снижается. Эритропоэз в печени также происходит внесосудисто. Кроветворные клетки располагаются между клетками печеночной паренхимы, а также в околосинусных пространствах эмбриональной печени.
   На 3-м месяце эмбрионального периода в эритропоэз включается селезенка, но у человека ее роль в пренатальном кроветворении весьма ограничена. Печеночный период эритропозэа определяется как нормобластический. Эритроциты этой генерации большей частью круглые.
   На 4–5-м месяце внутриутробной жизни начинается миелоидный период кроветворения, который постепенно вытесняет гепатолиенальный. К моменту рождения у доношенного плода экстрамедуллярные очаги эритропоэза почти полностью ликвидируются (единичные остаются в печени), а костный мозг развит полностью.
   Медуллярный эритропоэз также совершается экстраваскулярно (вне кровеносных сосудов), в строме костного мозга. Миелоидный эритропоэз плода мало отличается от эритропоэза взрослого. Общими закономерностями эмбрионального эритропоэза являются постепенное уменьшение диаметра и объема эритроцитов и увеличение их числа. Однако даже эритроциты и ретикулоциты новорожденного больше по размерам, чем у взрослого. Эритроциты плода живут меньше, чем эритроциты взрослого человека, – 45–70 дней (в среднем 20–30 дней) вместо 120.
   Кроветворение плода имеет разную органную локализацию: кроветворение в желточном мешке сменяется печеночным, затем кроветворением в селезенке (параллельно печеночному) и наконец костномозговым. В какой-то момент кроветворение происходит в нескольких органах одновременно, и в циркуляции в одно и то же время может оказаться зрелое потомство из разных кроветворных органов.
   Смене кроветворных органов у плода отвечает смена типов продуцируемого красными клетками гемоглобина. Примитивные эритрокариоциты, поступающие из желточного мешка, продуцируют преимущественно эмбриональные гемоглобины. До 37-го дня преобладает продукция гемоглобинов данного типа.
   В печени потомство эритроидных клеток-предшественниц содержит в основном фетальный гемоглобин. До 30 недель внутриутробного периода у человеческого плода в циркуляции преобладает фетальный гемоглобин, хотя с 10 недель начинают появляться эритроциты с гемоглобином взрослого – HbА. HbA до 30 недель составляет лишь 10%. Остальное составляют преимущественно клетки с HbF; еще есть и следы эмбриональных гемоглобинов. После 30 недель содержание клеток с HbA начинает нарастать, что совпадает с развитием костномозгового кроветворения. К моменту рождения фетальный гемоглобин составляет только 49%, остальное приходится на HbА. Таким образом, красные клетки плода одновременно продуцируют несколько типов гемоглобина.
   Кроветворение новорожденных. В течение нескольких дней после рождения у новорожденного наблюдается увеличение количества эритроцитов: число эритроцитов от 4,5 × 1012/л (в среднем к моменту рождения), через 12 ч после рождения повышается до 5,5 × 1012/л, гемоглобин – от 156 г/л до 200 г/л.
   Спустя несколько дней у новорожденного снижается продукция эритропоэтина, что совпадает со снижением уровня эритроцитов и гемоглобина в крови. Такая картина наблюдается в течение первых l – 2 месяцев жизни. Между 60-м и 90-м днем жизни вновь повышается содержание эритропоэтина, нарастает ретикулоцитоз, нормализуется эритропоэз. В течение первого года жизни изменяется антигенная структура эритроцитов: антиген i, преобладающий на эритроцитах новорожденного, сменяется антигеном I. Смена антигенов эритроцита совпадает с исчезновением так называемых фетальных эритроцитов – клеток, содержащих фетальный гемоглобин. К первому году жизни фетальный гемоглобин уже не превышает 1%.
   Форма и размеры эритроцита. Эритроцит человека в норме имеет двояковогнутую, дискоидную форму. Считается, что плоский диск лучше всего адаптирован к транспорту веществ из клетки и внутрь ее и к диффузии газов к центру клетки. В настоящий момент доказано, что двояковогнутая форма обладает незначительными диффузионными преимуществами. Однако объем, соответствующий диску, имеет в 1,7 раза большую поверхность, чем такой же объем, соответствующий сфере, и может умеренно изменяться без растяжения мембраны клетки. Двояковогнутая форма эритроцита, эластичность, деформируемость и сохранение структуры клетки при удалении из нее гемоглобина, когда остается так называемая тень эритроцита, заметно зависят от особенностей его строения, прежде всего скелета клетки.
   Структура плазменной мембраны у эритроцита такая же, как у ядерных клеток, но его цитоскелет отличается от цитоскелета этих клеток. Этот цитоскелет называют еще скелетом мембраны, и по его расположению и по тому, что он придает прочность по большей части мембране, обеспечивается единство ее липидного слоя, в то же время придавая мембране внутреннюю подвижность и гибкость.
   С помощью электрофореза в мембране и цитоскелете эритроцита выделено 8 типов белка. Основным опорным стабилизирующим белком цитоскелета эритроцита является спектрин – специфический белок эритроцита, хотя одна из его важных функций по соединению с актином (водорастворимый глобулярный белок) и актина с мембраной клетки присуща и некоторым белкам других клеток. С изменениями цитоскелета эритроцита связаны некоторые формы гемолитических анемий – наследственные эллиптоцитоз, пиропойкилоцитоз, отдельные варианты наследственного микросфероцитоза. Цитоскелет эритроцита играет важную роль в его способности к деформации. Дисковидный эритроцит может легко пройти фильтр с отверстием 3 мкм.
   За 100–120 дней циркуляции в организме способность эритроцита к деформации снижается. С возрастом снижается стойкость эритроцитов к осмотическому разрушению эритроцитов, к саморазрушению, в меньшей степени – к механической травме. Стареющие сферические эритроциты, как и сфероциты при патологии, имеющие пониженную способность к деформации, не могут проходить через миллипоровые фильтры 3 мкм, задерживаются они и селезенкой. Возможно, снижение деформируемости с возрастом эритроцита и сферуляция клетки связаны с изменением цитоскелета. У старого эритроцита обнаруживается агрегация спектрина и гемоглобина. В деформируемости эритроцита играет роль не только цитоскелет, но и липиды мембраны, в частности соотношение фосфолипидов и холестерина в мембране, которое определяет текучесть мембраны у всех клеток вообще. Это свойство также может иметь отношение к стойкости мембраны эритроцита. Текучесть клеточных мембран меняется при их отмывании.
   Размеры нормального эритроцита человека изменчивы, но можно установить пределы средних колебаний. Их цифровое значение зависит от методов определения (например, измеряется ли диаметр эритроцита в мазке или в плазме). Существуют некоторые колебания, связанные с полом. Эритроциты у новорожденных больше по размеру и объему, чем у взрослых.
   Диаметр нормального эритроцита человека – 7,5–8,3 мкм. Он несколько уменьшается с возрастом клетки. Толщина эритроцита – 2,1 мкм, средний объем – 86,1 мкм3, а площадь поверхности – 145 мкм2.
   После потери нормоцитом ядра он превращается в ретикулоцит. Ретикулоцит пребывает в костном мозге 30–40 ч. Костномозговые ретикулоциты, каково бы ни было их абсолютное количество, образуют небольшой резерв красной крови. Постоянство процента ретикулоцитов крови в норме позволяет судить об интенсивности кроветворения.
   Выход эритроцитов из костного мозга регулируется гуморально, в частности селезенкой и эритропоэтином (гормон, стимулирующий образование эритроцитов в костном мозге). В норме время созревания ретикулоцита в периферической крови составляет 35–45 ч. В случае выхода в кровь резервных ретикулоцитов это время иногда удлиняется, так как поступают ретикулоциты первых стадий созревания. Содержание ретикулоцитов в крови в норме, по данным разных авторов, составляет от 0,8–1,3 до 0,2–2%.
   При исследовании методом электронной микроскопии ретикулоцит имеет вид клетки неправильной формы с остатками органелл. Маленькие митохондрии и центриоли сконцентрированы в той области клетки, где на стадии нормоцита отделялось ядро. Рибосомы рассеяны по цитоплазме. При созревании митохондрии уменьшаются в числе и размерах, полирибосомы превращаются в монорибосомы. По мере того как ретикулоцит самопереваривает органеллы, в нем появляются вакуоли.

Обмен железа

   Железо является одним из основных по значению микроэлементов организма. Почти все железо входит в состав различных белков. Из них наиболее важен гемоглобин, функция которого – перенос кислорода от легких к тканям. Гемоглобин состоит из небелковой части – гема, и белковой части – глобина. В молекуле гема железо связано с протопорфирином. Гем не только входит в состав гемоглобина, он содержится в миоглобине, цитохромах, входит в состав каталазы, лактопероксидазы. Основной белок, содержащий железо и не имеющий гемовой группы, – ферритин. Он содержит железо запасов. Железо входит и в состав производного ферритина – гемосидерина. Не содержит группы гема белок трансферрин, переносящий железо. Железо в негемовой форме есть в ряде ферментов (аконитазе, ксантиноксидазе). Основное количество железа в организме (57,6%) входит в состав гемоглобина и содержится в эритроцитах.
   Значительное количество железа есть в мышцах (27,6%). Большая часть этого железа входит в состав ферритина (68,1% железа мышц), остальная часть включена в миоглобин (21,9%). В печени откладывается 7,8% железа организма. Железо печени в основном входит в состав ферритина и гемосидерина.
   Трансферрин – белок плазмы крови, относящийся к глобулинам. Он имеет 2 активных участка, каждый из которых может связать по одному атому железа в трехвалентной форме. Основной синтез трансферрина у людей происходит в печени. За сутки производится 12–24 мг трансферрина на 1 кг массы, т. е. 5–9% всего количества этого белка.
   Содержание железа в организме зависит в основном от его всасывания. Выделение железа из организма – процесс, недостаточно регулируемый. Существует сложный механизм, препятствующий всасыванию избыточного количества железа. Хотя теоретически весь кишечник, включая толстую кишку, способен всасывать железо, основное количество железа всасывается в двенадцатиперстной кишке, а также в начальной части тощей кишки. Чем больше дефицит железа, тем дальше в тощую кишку распространяется зона его всасывания. Процесс всасывания железа у человека включает в себя проникновение железа в слизистую оболочку из просвета кишки, проникновение железа из слизистой оболочки в плазму, заполнение запасов железа в слизистой оболочке и влияние этих запасов на всасывание. Железо проникает в слизистую оболочку из просвета кишки всегда быстрее, чем поступает из слизистой оболочки в плазму. Хотя обе величины зависят от потребностей организма в железе, проникновение железа в слизистую оболочку кишки меньше зависит от содержания железа в организме, чем проникновение железа из слизистой оболочки в плазму. При повышенной потребности организма в железе скорость его поступления в плазму из слизистой оболочки приближается к скорости проникновения в слизистую оболочку кишки. Железо при этом в кишке практически не откладывается. Прохождение железа через слизистую оболочку занимает несколько часов. В этот период кишка невосприимчива к дальнейшему всасыванию железа. Через некоторое время железо вновь всасывается с такой же интенсивностью. При уменьшении потребности организма в железе замедляется его проникновение в кишку, еще больше уменьшается поступление железа из слизистой оболочки в плазму. Большая часть железа, которое не всасывается, откладывается в кишке в виде ферритина.
   Всасывание железа, входящего в состав гема, происходит значительно более интенсивно, чем всасывание неорганического пищевого железа. В слизистой оболочке кишки имеется фермент гемоксигеназа, необходимый для распада молекулы гема на билирубин, окись углерода и ионизированное железо. При нормальном содержании железа в организме значительная его часть проходит через слизистую оболочку кишки в ток крови, а определенная часть задерживается в стенке кишки. При сидеропении в слизистой оболочке задерживается значительно меньшая часть, основная часть железа оказывается в плазме. При избытке железа в организме основная часть железа, проникшего в слизистую оболочку, в ней и задерживается. Впоследствии эпителиальная клетка, наполненная железом, движется от основания к концу ворсинки, затем слущивается и выводится с калом вместе с невсосавшимся железом.
   Этот физиологический механизм всасывания действует при обычных содержащихся в нормальной пище концентрациях железа. Если концентрация железа превышает в десятки и сотни раз физиологическую, то всасывание ионного двухвалентного железа во много раз возрастает. Это следует учитывать при лечении больных солями двухвалентного железа. Трехвалентное железо практически не всасывается ни в физиологических концентрациях, ни в избыточных. Всасывание пищевого железа строго лимитировано: за сутки всасывается не более 2–2,5 мг.
   Железо содержится во многих продуктах как растительного, так и животного происхождения. Высока концентрация железа в мясе, печени, почках, много железа содержат бобы сои, петрушка, горох, шпинат, сушеные абрикосы, чернослив, изюм. Значительное количество железа содержится в рисе, хлебе, яблоках. Однако имеет значение не количество железа в продукте, а его всасывание из данного продукта. Из продуктов растительного происхождения железо всасывается очень ограниченно, в значительно большей степени – из большинства животных продуктов. Железо, входящее в состав белков, содержащих гем, всасывается значительно лучше, чем из ферритина и гемосидерина, а железо из печени всасывается значительно меньше, чем из мяса. Поэтому хуже всасывается железо из рыбы, так как в ней железо присутствует в основном в виде гемосидерина и ферритина, а в телятине до 90% железа содержится в виде гема.
   На всасывание железа влияет ряд факторов. Частота сочетания железодефицитной анемии с ахилией (отсутствие соляной кислоты и фермента пепсина в желудочном соке) еще в XX в. дала основание предполагать, что железо всасывается лишь при нормальной желудочной секреции и ахилия является одним из основных факторов, приводящих к развитию железодефицитной анемии. Однако исследования показали, что нормальная желудочная секреция влияет на всасывание некоторых форм железа, однако это не главный фактор в регуляции его всасывания. Хлористоводородная кислота влияет лишь на всасывание трехвалентного железа. Желудочная секреция не влияет на всасывание железа, входящего в состав гема.
   В норме всасывание гемоглобинового железа у здоровых женщин в среднем составляет 16,9 ± 1,6%, у мужчин – 13,6 ± 1%. При железодефицитной анемии всасывание железа резко повышено и не различается у лиц с нормальной и пониженной секрецией. Нормальным оказалось всасывание железа у лиц, перенесших удаление части желудка. У лиц с атрофическим гастритом без анемии всасывание гемоглобинового железа не отличалось от всасывания железа у здоровых лиц. Доказано, что оксалаты, фитаты, фосфаты входят в комплекс с железом и снижают его всасывание, а ряд веществ усиливает всасывание железа. К ним относятся аскорбиновая, янтарная, пировиноградная кислоты, фруктоза, сорбит. Всасывание железа усиливается под влиянием алкоголя.
   Недостаток кислорода, снижение запасов железа в организме, активизация кроветворения усиливают всасывание железа. Влияют на всасывание железа насыщение трансферрина, концентрация железа плазмы, скорость оборота железа, уровень эритропоэтина.
   После всасывания железо связывается с трансферрином, который переносит железо к эритрокариоцитам костного мозга. Кроме того, трансферрин переносит железо от клеток, где хранятся его запасы, к эритрокариоцитам, а также от фагоцитирующих макрофагов, где железо распадается, к клеткам костного мозга и к местам, где сохраняются запасы железа. Одна молекула трансферрина присоединяет 2 атома железа.
   На мембране эритрокариоцита и мембране ретикулоцитов наблюдаются специфические участки для обратимого присоединения трансферрина. Связывание железа с трансферрином и его освобождение – это активные процессы, которые подавляются ингибиторами ферментов. К поверхности ретикулоцита могут присоединяться 25 000–50 000 молекул трансферрина, нагруженных железом. Меченый по железу трансферрин легко присоединяется к ретикулоцитам, но не присоединяется к лейкоцитам, тромбоцитам и зрелым эритроцитам.
   После того как трансферрин «разгружает» железо на поверхности эритрокариоцитов, оно проникает внутрь клетки. Трансферрин в большинстве случаев способен возвращаться в плазму, но некоторые его молекулы проникают внутрь эритрокариоцита и связываются с молекулой носителя. Железо проникает в митохондрии, где происходит синтез гема из протопорфирина и железа. Образование ферритина происходит в эритрокариоците из белка апоферритина, синтезируемого в клетке, и железа, проникшего в клетку.
   Наиболее вероятно, что синтез ферритина в эритрокариоците нужен для удаления из клетки избыточного железа, не вошедшего в гемоглобин. Этот ферритин собирается в лизосомах, а затем удаляется из клетки как в костном мозге, так и в циркуляции после удаления из клетки ядра. В удалении гранул железа из циркулирующей клетки участвует, по-видимому, селезенка, так как в эритроцитах людей после удаления селезенки обнаруживаются гранулы железа, а в норме выявить их в зрелых эритроцитах не удается.
   Основным белком, используемым для сохранения избытка железа в организме, является ферритин. Ферритин – это водорастворимый комплекс гидроокиси трехвалентного железа и белка – апоферритина. Гидроокись железа соединена с остатком фосфорной кислоты. Молекула ферритина напоминает по форме грецкий орех: скорлупа ореха – это белок апоферритин, а внутри находятся в различном количестве атомы железа, почти вплотную прилегающие один к другому. Ферритин может вместить до 4500 атомов железа, практически 1 молекула содержит около 3000 атомов. Молекулярная масса ферритина зависит от числа атомов железа, а этот показатель может колебаться. В среднем молекулярная масса ферритина близка к 460 000. Ферритин в норме имеется в плазме и практически почти во всех клетках организма, но больше всего – в печени и мышцах.
   Гемосидерин – белок, содержащий железо, обнаруживаемый в фагоцитирующих макрофагах и их производных, в макрофагах костного мозга и селезенки, в купферовских клетках печени. Гемосидерин – это частично денатурированный и депротеинизированный ферритин. Иммунологически гемосидерин полностью идентичен ферритину. Молекула ферритина содержит 20% железа, а в гемосидерине железа больше – 25–30%. В отличие от ферритина гемосидерин нерастворим в воде.
   Как гемосидерин, так и ферритин используются в качестве белков запаса, однако скорость мобилизации гемосидерина значительно более медленная, чем ферритина. Железо запасов может быть как в паренхиматозных клетках, так и в фагоцитирующих макрофагах. В норме основную часть железа, связанного с трансферрином, организм использует для кроветворения. Фагоцитирующие макрофаги, получившие железо при разрушении в них эритроцитов, в основном передают это железо трансферрину, который вновь использует его для кроветворения. Паренхиматозные клетки тоже содержат железо, но в основном в запасах, и лишь малая часть его передается трансферрину и используется для эритропоэза. Паренхиматозные клетки в свою очередь получают железо из трансферрина.
   В отличие от железа макрофагов железо, находящееся в паренхиматозных клетках, расходуется медленно. Аскорбиновая кислота увеличивает освобождение железа из макрофагов, но не влияет на его освобождение из паренхиматозных клеток. Освобождение железа из паренхиматозных клеток увеличивается при кровотечениях и уменьшается при массивных гемотрансфузиях. При кровотечениях уменьшается захват эритроцитов макрофагами, следовательно, освобождение железа макрофагами в такой ситуации имеет меньшее значение.
   Понятие «лабильный пул железа» появилось при изучении кинетики железа. Оно покидает плазму и входит в интерстициальное пространство тканей. Там железо может связываться с клеточными мембранами. Его часть возвращается в плазму, и этот процесс приводит к отклонению линии клиренса железа, что выявляется в 1-й или во 2-й день после введения радиоактивного железа. Изменение в наклоне линии зависит от количества так называемого лабильного пула. Рассчитано, что в норме лабильный пул содержит 80–90 мг железа.
   Тканевое железо – это 6–8 мг железа, входящего в состав цитохромов и других ферментов всех тканей организма.
   Мужчины за сутки теряют около 1 мг железа. Потери железа у неменструирующих женщин соответствуют этим цифрам. Потери железа у менструирующих женщин намного превышают потери железа у мужчин. Они слагаются из потерь, свойственных мужчинам, и потерь, свойственных только женщинам: потери железа во время менструальных кровотечений, во время беременности, родов и лактации.
   По данным различных исследований, потери железа у здоровых женщин колеблются от 2 до 79 мг за одну менструацию. В среднем они теряют за время менструации 30 мл крови, что соответствует 15 мг железа, однако у 11% здоровых женщин количество теряемой крови превышает 80 мл (40 мг железа). Такую кровопотерю гинекологи считают нормальной. У рожавших женщин кровопотеря несколько больше, чем у нерожавших. Таким образом, при расчете потери железа на 1 день месяца следует учитывать, что при нормальных менструациях женщины теряют в день от 0,5 до 1,2 мг железа.
   Во время беременности потеря железа составляет не менее 700–800 мг, а потребности в железе во время беременности большие, они составляют 800–1200 мг.

Глава 7. Система гемостаза

   Система гемостаза – биологическая система, благодаря которой обеспечивается, с одной стороны, сохранение жидкого состояния крови, а с другой – предупреждение и остановка кровотечений путем поддержания структурной целостности стенок кровеносных сосудов и достаточно быстрого тромбирования последних при повреждениях. Важность данной системы для сохранения жизнеспособности организма определяется тем, что она препятствует убыли крови из циркуляторного русла и тем самым способствует обеспечению нормального кровоснабжения органов, сохранению необходимого объема циркулирующей крови.
   Гемостаз реализуется в основном тремя взаимодействующими между собой функционально-структурными компонентами – стенками кровеносных сосудов (в первую очередь их интимой), клетками крови и плазменными ферментными системами – свертывающей, фибринолитической (плазминовой), калликреин-кининовой. Система подчинена сложной нейрогуморальной регуляции, в ней четко функционируют механизмы положительной и отрицательной обратной связи, вследствие чего клеточный гемостаз и свертывание крови вначале подвергаются самоактивации, дальнейшая регуляция связана с нарастанием антитромботического потенциала крови. Вышеперечисленные механизмы создают необходимые условия для самоограничения процесса свертывания, в связи с чем локальная активация системы в местах тромбообразования не трансформируется при правильном функционировании указанных механизмов во всеобщее свертывание крови систему гемостаза.
   В осуществлении гемостаза немаловажное значение имеет не только собственно свертывающая система крови. Наряду с ней также реагируют и сами сосуды (спазм, открытие шунтов выше места повреждения) и клетки крови – тромбоциты и отчасти эритроциты. Также следует выделить, что тромбоцитам, а не именно свертыванию крови принадлежит ведущая роль в первичной остановке кровотечений из микрососудов (диаметром до 100 мкм), наиболее ранимых и чаще всего являющихся источником геморрагии. Время кровотечения из мельчайших сосудов кожи, определяемое по Дьюку или другими способами, всегда удлинено при тромбоцитопениях и тяжелых дисфункциях кровяных пластинок и остается нормальным при гемофилиях и многих других нарушениях свертываемости крови.
   Вследствие этих причин сосудисто-тромбоцитарная реакция на потерю крови часто обозначается как начальный, или первичный, гемостаз, а свертывание крови – как вторичная гемостатическая реакция, хотя оба эти механизма включаются не строго последовательно друг за другом, а на значительном отрезке времени функционируют одновременно и сопряженно.
   Клеточный гемостаз в эволюционном отношении является более ранним и в определенной степени родоначальным механизмом. Так, у реликтовых низших беспозвоночных остановка кровотечений обеспечивается только клетками гемолимфы, и в плазме этих животных еще нет факторов свертывания. У более высокоорганизованных животных (омаров) в плазме уже появляется аналог фибриногена, но еще нет тромбина, и примитивное свертывание при удалении клеток крови идет под влиянием трансглутаминазы. И лишь у позвоночных свертывающая система плазмы получает высокое развитие и значительную автономию, хотя и у них выход из клеток активаторов свертывания играет важную роль в осуществлении гемостаза.