Конструкция рентгеновских трубок может быть разной в зависимости от условий применения и предъявляемых требований. Рентгеновские трубки различаются по типу конструкции, способу получения пучка электронов, его фокусировки, вакуумированию, охлаждению анода, размерам и форме фокуса (области излучения на поверхности анода) и др. Наиболее широко применяются отпаянные рентгеновские трубки с термоэмиссионным катодом, водяным охлаждением анода, электростатической фокусировкой электронов. Термоэмиссионный катод рентгеновской трубки обычно представляет собой спираль или прямую вольфрамовую нить, накаливаемую электрическим током. Рабочий участок анода – металлическая зеркальная поверхность – расположен перпендикулярно или под некоторым углом к электронному пучку. Для получения сплошного тормозного спектра рентгеновского излучения высоких энергий и интенсивностей служат аноды из Au, W; в структурном анализе используются рентгеновские труб– ки из Ti, Cr, Fe, Co, Ni, Cu, Mo, Ag. Наиболее распространены рентгеновские трубки с неподвижным либо вращающимся водоохлаждаемым анодом мощностью в несколько киловатт. Материалы анодов (и их длина волны) – Cu (1,33 нм), Al (0,834 нм), Mo (0,54 нм), Pd (0,434 нм).
   Основные характеристики рентгеновской трубки: предельно допустимое ускоряющее напряжение (1-500 кВ), электронный ток (0,01-1 А), удельная мощность, рассеиваемая анодом (10–104 Вт/мм2), общая потребляемая мощность (от 0,002 Вт до 60 кВт). Кпд рентгеновской трубки составляет 0,1–3%.
   Недостаток рентгеновских трубок – низкая производительность, обусловленная малым коэффициентом преобразования энергии электронного пучка в мягкое рентгеновское излучение (10-5). Более производительными являются установки, в которых точечными источниками излучения являются плазма, возбуждаемая лазерным излучением, или сильноточный разряд в газе.
   В принципе облучение в медицине направлено на исцеление больного. Однако нередко дозы оказываются неоправданно высокими: их можно было бы существенно уменьшить без снижения эффективности, причем польза от такого уменьшения была бы весьма существенна, поскольку дозы, получаемые от облучения в медицинских целях, составляют значительную часть суммарной дозы облучения от техногенных источников.
   В последние годы дозы, получаемые населением от медицинского обследования и терапии, начали довольно заметно снижаться. Связано это с внедрением в рентгеновские аппараты трубок, работающих в импульсном режиме. В этом случае, например при частоте импульсов 2 в секунду, получаемая пациентом доза облучения составляет пятую часть от обычной неимпульсной рентгеноскопии: снижение лучевой нагрузки составляет 80 %.
   Для полноценной работы рентгенодиагностического кабинета необходимо определенное оборудование.
   Устройства для генерирования рентгеновского излучения, которые включают рентгеновский излучатель (защитный кожух с рентгеновской трубкой) и рентгеновское питающее устройство, представляющее собой совокупность электрических устройств, служащих для питания рентгеновской трубки электрической энергией.
   Устройства для генерирования рентгеновского излучения стационарных аппаратов, состоящие из рентгеновского излучателя, высоковольтного генератора и пульта управления. В других типах аппаратов высоковольтный генератор и рентгеновская трубка конструктивно объединены в моноблоке и заключены в общий защитный кожух. Диапазон анодных напряжений, применяемых в рентгенологии, составляет 15-150 кВ (маммография – 15–50 кВ, остальные виды исследования – 35-150 кВ).
   Устройства для формирования рентгеновского излучения подразделяются на три подгруппы: устройства для улучшения качества излучения (отсеивающие растры и решетки, различные фильтры, в том числе для выравнивания плотности почернения снимка); многочисленные устройства для поддержания и перемещения растров, фильтров и иное – устройства для рентгенографии и устройства, формирующие геометрию излучения (диафрагмы, тубусы), рентгеновское излучение во времени (реле экспозиции и фотоэкспонометры, средства стабилизации яркости).
   Рентгенодиагностические штативные устройства служат для поддержания, приведения в рабочее положение и перемещения излучателя, больного и приемника излучения совместно или отдельно. В зависимости от характера исследования и области применения подразделяются на штативы общего назначения (поворотный стол-штатив, штатив для снимков, стол для снимков) и специальные штативы, предназначенные для исследований отдельных органов и систем организма и осуществления сложных видов исследований, а также для проведения исследований на дому, в палате, операционной, в полевых условиях и для профилактического контроля. Типы штативных устройств, используемые в реконструкционной вычислительной томографии, включают стол для размещения больного и так называемое сканирующее устройство – гентри, несущее на себе излучатель и систему малогабаритных детекторов рентгеновского излучения. Конструктивно рентгенодиагностический штатив выполняется в виде самостоятельного изделия, образующего вместе с рентгеновским питающим устройством и излучателем рабочее место (томограф, урологический стол и т. д.), либо в виде приставки к штативу общего или специального назначения (томографическая приставка).
   Средства визуализации рентгеновского изображения по физическому принципу работы подразделяются на четыре подгруппы: устройства для приема и преобразования изображения (средства рентгенооптического преобразования – экраны, усилители рентгеновского изображения, цифровые детекторы и детекторы вычислительных томографов); материалы – носители рентгеновского изображения (рентгеновская пленка, флюорографическая пленка); устройства для регистрации рентгеновского изображения (кассеты для крупноформатной пленки, для серийной рентгенографии, кино– и фотокамеры, флюорографические камеры); устройства для передачи, записи и воспроизведения изображения (телевизионные системы, видеомониторы, а также экранные устройства – дисплеи вычислительных томографов и комплексов для цифровой рентгенографии).
   Вспомогательные приборы, устройства, инструменты и материалы, необходимые для подготовки и проведения рентгенологических исследований: устройства для формирования условий исследования (опоры, фиксаторы, держатели, служащие для фиксации и поддержания пациента или его органов в определенном положении, и компрессионные устройства); средства и устройства для контрастирования (контрастные вещества и приборы для их изготовления и введения – катетеры, зонды, инъекторы, стенты, графты и др.); средства биоуправления, служащие для получения дополнительной информации при рентгеновском исследовании (биофазосинхро-низаторы, фазорентгенокардиографы, электрокимографы); инструментарий для интервенционной (внутрисосудистой) рентгенологии.
   Средства обработки рентгеновского изображения подразделяются на три подгруппы.
   1. Устройства для обработки носителей информации (все фотолабораторное оборудование – устройства для транспортировки, проявления и сушки рентгеновской, флюорографической, кино-и фотопленки, проявочные машины и автоматы, а также вспомогательное оборудование – зажимы, рамки, часы, термометры и т. д.).
   2. Принадлежности для преобразования изображения (АРМ рентгенолога и рентгенолаборанта), вычислительные устройства для улучшения изображения.
   3. Оборудование для просмотра рентгеновского изображения (негатоскопы, флюороскопы, проекционная аппаратура), а также черно-белые полутоновые и цветные дисплеи в цифровой флюорографии и вычислительной томографии. Информационно-архивное оборудование включает оборудование для хранения и поиска информации, средства для микрофильмирования и копирования, средства цифровых архивов.
   Средства радиационной защиты делятся на средства коллективной защиты (защитные ограждения, защитные двери, окна, барьеры, стационарные ширмы, кабины) и индивидуальной защиты (фартуки, юбки, перчатки, очки и др.). Степень радиационной опасности контролируют дозиметрическими приборами для измерения мощности дозы на рабочих местах персонала и в смежных помещениях, индивидуальных доз, получаемых персоналом, и доз облучения пациентов.
   Общетехническое и транспортное оборудование обеспечивает необходимые условия работы отделения. К нему относятся средства самозащиты, связи, сигнализации и оргтехники, а также средства транспортировки в отделении и больнице для больных (каталки со съемными деками, специальные каталки, кресла-столы) и для материалов (тележки для транспортировки пленки, кассет и др.).
   Средства контроля включают многочисленные тест-объекты, фантомы, приборы для измерения выходных характеристик рентгеновских аппаратов и параметров рентгеновских изображений, в том числе встроенные в аппарат средства. Большинство из средств контроля используется инженерно-техническим персоналом, применяющим рентгеновскую аппаратуру, производящим настройку и ремонт. Однако есть целая группа устройств, которые необходимы рентгенолаборанту при обязательной периодической проверке аппаратуры в рентгеновском кабинете.

Магнитно-резонансная томография

   Магнитно-резонансная томография (МРТ) – способ получения диагностических изображений органов и тканей организма человека, в основе которого лежит феномен ядерно-магнитного резонанса.
   Магнитно-резонансная томография в последнее время заняла одно из ведущих мест в неинвазивной инструментальной диагностике. Постоянное развитие методики позволяет периодически находить новые сферы использования МРТ. Если сначала ее применение ограничивалось исследованиями центральной нервной системы, то в настоящее время МРТ используют в диагностике заболеваний практически всех органов и систем.
   В 1946 г. ученые из США Феликс Блох и Ричард Пурселл независимо друг от друга открыли явление ядерного магнитного резонанса (ЯМР) для жидкостей и твердых тел. В 1952 г. оба ученых были удостоены Нобелевской премии по физике, методику ЯМР стали использовать в физической и органической химии, биофизике, биохимии. В 1972 г. П. Лаутербур, используя методику ЯМР, получил первое в мире двухмерное изображение двух стеклянных капилляров, заполненных жидкостью. Уже в 1980–1981 гг. в клиниках появились первые магнитно-резонансные томографы для исследования организма человека. После начала использования ядерного магнитного резонанса для медицинской диагностики термин «ядерный» был опущен из соображений маркетинга и по настоянию специалистов по радиологии. Это связано с негативным восприятием понятия «ядерный» массовым сознанием, с которым ЯМР не имеет ничего общего. Поэтому в наши дни используется термин «магнитно-резонансная томография».
   В основе работы всех МР-томографов лежит явление магнитного резонанса. Этот физический феномен основан на возможности некоторых ядер атомов под действием магнитного поля поглощать энергию внешнего источника в радиочастотном диапазоне, а затем и выделять ее, возвращаясь на исходный энергетический уровень. При этом напряженность постоянного магнитного поля и частота радиочастотного магнитного поля должны строго соответствовать друг другу, что обеспечивает возникновение ядерного магнитного резонанса. Наиболее интересными являются ядра 1Н, 13С, 23Na, 31Р, так как все они присутствуют в теле человека. Для МРТ разработаны различные импульсные последовательности, которые в зависимости от цели определяют вклад того или иного параметра в интенсивность изображения исследуемых структур для получения оптимального контраста между нормальными и измененными тканями.
   Для создания магнитного резонанса необходимо постоянное, стабильное и однородное магнитное поле.
   В зависимости от напряженности магнитного поля все МР-то-мографы обычно делятся на сверхнизкие (менее 0,1 Тл), низкопольные (0,1–0,4 Тл), среднепольные (0,5 Тл), высокопольные (1–2 Тл), сверхвысокопольные (выше 2 Тл). Приборы, имеющие напряженность магнитного поля до 0,3 Тл, обычно имеют ре-зистивные или перманентные магниты, выше 0,3 Тл – сверхпроводящие. В практике верхний предел напряженности магнитного поля составляет 2–2,5 Тл, это предел безопасности магнитного поля для человеческого организма. Свыше этого предела поля предполагаются потенциально опасными и могут допускаться для использования только в исследовательских лабораториях. Более 70 % всех МР-томографов составляют модели со сверхпроводящими магнитами (0,5–1,5 Тл). В настоящее время в отличие от 1980-х гг. основные фирмы-производители МР-томографов («Дженерал Электрик», «Сименс», «Филипс», «Тошиба», «Пикер», «Брукер» и др.) особое внимание уделяют производству устройств со средним и низким полем, которые отличаются от высокопольных томографов компактностью, экономичностью при удовлетворительном качестве изображений и меньшей стоимости. Высокопольные системы используются преимущественно в научно-исследовательских центрах для проведения МР-спектроскопии.
   МРТ не имеет ничего общего с рентгенологическими методами исследований, однако при ее развитии и внедрении в практику был использован опыт рентгеновской компьютерной томографии (КТ). К моменту возникновения МРТ КТ уже активно использовалась в клинической практике, внедрение МРТ стало возможным благодаря преимуществам этого метода обследования по сравнению с КТ.
   К основным достоинствам МРТ относятся:
   1) неинвазивность;
   2) безвредность (отсутствие лучевой нагрузки);
   3) трехмерный характер получения изображений;
   4) естественный контраст от движущейся крови;
   5) отсутствие артефактов от костных тканей;
   6) высокая дифференциация мягких тканей;
   7) возможность выполнения МР-спектроскопии для прижизненного изучения метаболизма тканей).
   К основным недостаткам обычно относят достаточно большое время, необходимое для получения изображений (как минимум, несколько секунд, обычно – минуты), что приводит к появлению артефактов от дыхательных движений (что особенно снижает эффективность исследования легких), нарушений ритма (при исследовании сердца), невозможность надежного выявления камней, кальцификатов, некоторых видов патологии костных структур, достаточно высокую стоимость оборудования и его эксплуатации, специальные требования к помещениям, в которых находятся приборы (экранирование от помех), невозможность обследования больных с клаустрофобией, искусственными водителями ритма, крупными металлическими имплантатами из немедицинских металлов.
   Противопоказания к МРТ-исследованию делятся на абсолютные и относительные. К абсолютным относят состояния пациентов, при которых проведение исследования создает угрожающую для их жизни ситуацию (например, наличие имплантатов, которые активируются электронным, магнитным или механическими путями, искусственных водителей ритма). Воздействие радиочастотного излучения МР-томографа может нарушить функционирование стимулятора, работающего в системе запроса, так как изменения магнитных полей могут имитировать сердечную деятельность. Магнитное притяжение может вызвать также смещение стимулятора в гнезде и сдвинуть электроды. Кроме того, магнитное поле создает препятствия для работы ферромагнитных или электронных имплан-татов среднего уха. Наличие искусственных клапанов сердца представляет опасность и является абсолютным противопоказанием только при исследовании на МР-томографах с высокими полями, а также если клинически предполагается повреждение клапана. К абсолютным противопоказаниям к исследованию относится также наличие небольших металлических хирургических имплантатов (ге-мостатических клипс) в центральной нервной системе, так как их смещение вследствие магнитного притяжения угрожает кровотечением. Их наличие в других частях тела имеет меньшую угрозу, так как после лечения фиброза инкапсулирование зажимов помогает удержать его в стабильном состоянии. Однако, помимо потенциальной опасности, наличие металлических имплантатов с магнитными свойствами в любом случае вызывает артефакты, создающие сложности для интерпретации результатов исследования.
   К относительным противопоказаниям, помимо перечисленных выше, относятся также некомпенсированная сердечная недостаточность, необходимость физиологического мониторинга (механическая вентиляция легких, электрические инфузионные насосы).
   Клаустрофобия является препятствием для проведения исследования в 1–4% случаев. Преодолеть его можно, с одной стороны, использованием приборов с открытыми магнитами, с другой – подробным объяснением устройства аппаратуры и хода обследования.
   Что касается обследования беременных женщин, свидетельств повреждающего действия МРТ на эмбрион или плод не получено, однако рекомендовано избегать МРТ в первые 3 месяца беременности. Применение МРТ при беременности показано в случаях, когда другие неионизирующие методы диагностической визуализации не дают удовлетворительной информации. МР-томографическое обследование требует большего участия в нем больного, чем КТ, так как движения больного во время исследования значительно сильнее влияют на качество изображений, поэтому исследование больных с острой патологией, нарушенным сознанием, спастическими состояниями, деменцией и детей нередко бывает затруднительным.
   При заболеваниях головного мозга первоначально предпочтение должно отдаваться КТ как более экономичному и быстрому методу (время исследования пациента при КТ обычно в 2–2,5 раза меньше, чем при МРТ). МРТ применяется для уточнения результатов КТ, если в этом есть необходимость. Однако, если имеются подозрения на наличие поражения мозга в области задней черепной ямки, ствола, мелкоочаговых или диффузных поражений белого вещества (например, рассеянный склероз, энцефалиты, лакунарные инфаркты), необходима неинвазивная оценка состояния интракраниальных артерий (аневризмы, артериовенозные маль-формации), то целесообразно начинать обследование сразу с МРТ. Парамагнитные контрастные средства позволяют более эффективно выявлять патологию центральной нервной системы.
   При исследованиях спинного мозга и межпозвонковых дисков в шейном и грудном отделах МРТ предпочтительнее КТ, так как она позволяет получать сагиттальные срезы, не дает артефакты от костных структур и не требует введения контрастных средств.
   МРТ (особенно системы со сверхпроводящими магнитами) имеет ряд преимуществ перед КТ 3-го и 4-го поколений при исследовании сердца и магистральных сосудов. Появление МР-ан-гиографии и динамических программ (кино-МР) еще более расширило возможности МРТ в диагностике сердечно-сосудистой патологии. Сегодня с помощью МРТ возможна достоверная оценка не только анатомии, но и функции сердца, внутрисердечной гемодинамики, перфузии миокарда.
   Визуализация органов малого таза у мужчин и женщин – еще одна область, где МРТ, как правило, имеет преимущества перед КТ. На МР-изображениях хорошо видны зональная анатомия матки, предстательной железы, инвазия опухолей в жировую клетчатку и мышцы, лимфатические узлы.
   При исследовании печени, селезенки, почек и надпочечников, выявлении опухолей средостения и шеи диагностические возможности МРТ сопоставимы примерно с таковыми КТ, поэтому по упомянутым выше причинам предпочтение отдается КТ. Существуют отдельные ситуации, когда МРТ может дать больше информации, чем КТ (например, при выявлении мелких геман-гиом, оценке степени инвазии сосудистых структур брюшной полости, диагностике вне надпочечниковых феохромоцитов).
   Несомненны достоинства МРТ при исследованиях суставов. На МР-изображениях очень хорошо видны хрящевые поверхности суставов, мениски, связочный аппарат. Метод позволяет выявлять метастатические поражения костей, остеомиелит, аваску-лярные некрозы еще на той стадии, когда они затрагивают лишь костный мозг и не вызывают деструкции костных структур, видимой на рентгеновских изображениях.
   Применение МРТ практически не имеет смысла при легочной патологии, заболеваниях желчного пузыря, в выявлении камней, кальцификатов, переломов костей. МРТ не применяется для диагностики заболеваний желудка и кишечника.
   Появляются новые методики исследования, вводятся в практику МР-контрастные препараты. Особенно интересной представляется разработка органоспецифических агентов (т. е. веществ, специфических для определенного типа нормальных или патологических тканей).
   Наиболее интенсивные работы ведутся по совершенствованию методик МР-ангиографии, кино-МРТ, подавлению артефактов от дыхания, МР-спектроскопии, трехмерному сбору и реконструкции изображений.
   На рисунке 2 изображен принцип образования послойного изображения:
   F 0, F 1, F 2 – нулевое, исходное и конечное положение фокуса рентгеновской трубки;
   j – 1/2 угла поворота трубки;
   S – поверхность стола;
   Т – объект исследования;
   О – точка выделяемого слоя;
   О1, О2 – точки, находящиеся выше и ниже выделяемого слоя;
   О`, О» – проекции точки О на пленке при исходном и конечном положениях фокуса рентгеновской трубки;
   О1 `, О1 » – проекции точки О1 на пленке при тех же положениях фокуса трубки;
   О2 `, О2 » – проекции точки О2 при тех же положениях фокуса трубки;
   «` – проекции всех точек на пленке при нулевом положении рентгеновской трубки.
   Глядя на рисунок, видно, что при перемещении трубки из положения F1 в положение F2 проекция точки О, которая соответствует оси вращения рычага, будет постоянно находиться в одном и том же месте пленки. Проекция точки О неподвижна относительно пленки, и следовательно, ее изображение будет четким. Проекции точек О1 и О2, находящиеся вне выделяемого слоя, с перемещением трубки и пленки меняют свое положение на пленке, и следовательно, их изображение будет нечетким, размазанным. Доказано, что геометрическим местом точек, проекции которых при движении системы неподвижны относительно пленки, является плоскость, параллельная плоскости пленки и проходящая через ось окончания системы. На томограмме, таким образом, будут четкими изображения всех точек, находящихся в плоскости на уровне оси вращения системы, т. е. в выделяемом томографическом слое.
   На рисунке показано перемещение трубки и пленки по траектории прямая-прямая, т. е. по параллельным прямолинейным направляющим. Такие томографы, имеющие самую простую конструкцию, получили наибольшее распространение. В томографах с траекториями дуга-дуга, дуга-прямая геометрическим местом точек, проекции которых при движении системы неподвижны относительно пленки, являются плоскости, параллельные плоскости пленки и проходящие через ось качания системы; выделяется также слой плоской формы. Из-за более сложной конструкции эти томографы получили меньшее распространение.
   Описанные выше аппараты относятся к линейным томографам (с линейными траекториями), так как проекции траекторий движения системы «трубка – пленка» на выделяемую плоскость имеют вид прямой линии, а тени размазывания имеют прямолинейную форму.
   За угол поворота (качания) трубки 2i в таких томографах принимают угол ее поворота из одного крайнего положения в другое; перемещение трубки от нулевого положения равно i.
   В томографах с нелинейным размазыванием перемещение системы «трубка – пленка» происходит по криволинейным траекториям – кругу, эллипсу, гипоциклоиде, спирали. При этом отношение расстояний фокус трубки – центр вращения и центр вращения – пленка сохраняется постоянным. И в этих случаях доказано, что геометрическим местом точек, проекции которых при движении системы неподвижны относительно пленки, является плоскость, параллельная плоскости пленки и проходящая через ось качания системы. Размазывание изображения точек объекта, лежащих вне выделяемой плоскости, происходит по соответствующим кривым траекториям движения системы. Размазываемые изображения повторяют на пленке траекторию перемещения фокуса рентгеновской трубки.
   При симультанной (многослойной) томографии в один прием (одно перемещение трубки и пленки в противоположных направлениях) получают несколько томограмм благодаря расположению в одной кассете нескольких пленок, расположенных на некотором расстоянии друг от друга. Проекция изображения первого слоя, находящегося на оси вращения системы (избранной высоте слоя), получается на верхней пленке. Геометрически доказано, что на последующих пленках получают свое изображение нижележащие параллельные оси движения системы слои, расстояния между которыми примерно равны расстояниям между пленками. Основным недостатком продольной томографии является то, что расплывчатые изображения выше– и нижележащих плоскостей с нежелательной информацией уменьшают естественную контрастность. Вследствие этого восприятие в выделяемом слое тканей с невысокой контрастностью ухудшается.