Свет мой, зеркальце, скажи…
Дельфины распознают свое собственное отражение в зеркале, а среди животных это очень редко встречаемая способность, помимо человека обнаруженная лишь у крупных приматов – шимпанзе, горилл и орангутангов. Большинство животных, включая мелких приматов, обезьян и слонов, на собственное отражение реагируют как на неожиданно появившееся другое животное. Поэтому прежде среди ученых было принято считать, что весьма сложная когнитивная способность к «зеркальному самоузнаванию» объясняется близкими генетическими связями человека и крупных приматов.Однако ныне американскими исследовательницами Лори Марино из Университета Эмори (Атланта) и Дайаной Рейс из Колумбийского университета (Нью-Йорк) убедительно продемонстрировано, что дельфины тоже легко узнают себя в зеркале и, более того, безо всякого обучения умело зеркалом пользуются.
Марино и Рейс изучали поведение двух молодых дельфинов. Для этого в маленький круглый бассейн, соединенный с большим овальным, поместили крупное зеркало. При этом зеркало расположили так, чтобы его не было видно из большого бассейна. Здесь дельфинов подзывали и специальным маркером с нетоксичными чернилами наносили им на тело какой-либо рисунок в таком месте, где сам дельфин увидеть его не мог – на голове, плавниках или животе.
Схема эксперимента с дельфинами.
После этого дельфины тут же сами направлялись в соседний маленький бассейн и начинали вертеться перед зеркалом, внимательно разглядывая именно те области, где наносился рисунок. В некоторых опытах ученые наносили «ложный рисунок», т. е. просто водили по телу животного маркером без чернил. В этом случае сеанс разглядывания в зеркале был очень кратким и прекращался, как только дельфин убеждался, что никакого рисунка нет.Эти модели поведения дельфинов, зафиксированные на видео, были чисто спонтанными, поскольку опытам не предшествовало никакого обучения и не было никаких «наград», используемых при дрессировке. Как говорит Лори Марино, «некоторые специалисты полагают, что если животное способно узнавать себя в зеркале, то ему присущи и иные формы абстрактного мышления». Сами же исследовательницы, однако, не решаются делать столь сильное утверждение, поскольку не имеют пока достаточных экспериментальных обоснований.
Властелины колец
А вот в американской природозащитной организации Earthtrust считают, что имеется более чем достаточно свидетельств сложной мыслительной деятельности дельфинов. В сотрудничестве с гавайским «Парком жизни моря» в Гонолулу Earthtrust соорудила в 1990 году лабораторию подводных наблюдений за животными.Сюда был перенесен проект Delphis, в рамках которого сотрудники Earthtrust с 1985 года занимаются изучением сознания дельфинов. Организаторами проекта являются президент Earthtrust Дон Уайт и Декстер Кейт, один из зачинателей общественного движения за гуманное отношение к дельфинам. Наиболее поразительным, возможно, открытием ученых проекта Delphis стали «дельфиньи кольца». Вот, в самом кратком описании, что это собой представляет.
Юный дельфин делает стремительное движение головой – и перед ним появляется волнистое серебристое кольцо.
Юный дельфин делает стремительное движение головой – и перед ним появляется волнистое серебристое кольцо. По природе своей это тороидальный пузырь, достигающий до полуметра в диаметре, но благодаря вращению стабильно удерживающий свою форму и не всплывающий на поверхность. В течение нескольких секунд дельфин рассматривает свое творение в различных ракурсах и под разными углами, используя для этого зрение и сонарную систему.Затем, будто приняв какое-то решение, дельфин резким движением отсекает от целой структуры небольшое кольцо, в то время как оставшаяся часть распадается на мелкие пузырьки. Новое кольцо дельфин начинает «подталкивать» носом, играя с ним секунд 10. Затем останавливается, оглядывает вращающееся кольцо напоследок и перекусывает его, в результате чего стайка пузырьков устремляется к поверхности воды. После этого следует небольшая пауза и, словно поразмышляв, дельфин создает новое кольцо…
Это зафиксированный исследователями на видео и фотографиях один из примеров весьма редкого поведения животных, впервые обнаруженного при наблюдении за играми двух дельфинов-малышей, когда один как бы обучал этому другого. Последующие наблюдения показали, что дельфины носом или плавниками создают не только разной величины тороидальные кольца, но и больших размеров (до 7 метров) серебристые спирали. Эти спирали возникают в долю секунды, но благодаря своим гидродинамическим свойствам удерживают стабильную форму весьма долго, так что дельфины плавают вокруг них, с интересом разглядывая или откусывая небольшие фрагменты для дальнейших забав.
Физика процесса ученым вполне понятна, она базируется на известном эффекте Бернулли, однако значительно больший интерес представляют творческие проявления разума дельфинов. Нет никаких сомнений, что юные дельфины вполне осмысленно и с пониманием манипулируют аспектами окружающей их среды просто для того, чтобы развлечься. Весьма показательно и то, что юные дельфины наиболее активно занимались этим в отсутствие взрослых. Когда же количество взрослых особей превысило число детенышей, эти забавы полностью прекратились. Зато во время одного из сеансов наблюдений, когда у малыша получился особо удачный эксперимент с одновременно тремя устойчивыми кольцами, он пришел в необычайное возбуждение и все время подплывал к человеку, приглашая полюбоваться своим творением.
Если судить абстрактно, то перед нами не что иное, как разновидность искусства – создание и лицезрение нечеловеческим разумом артефактов («кинетических скульптур»), не имеющих никакого назначения, кроме развлечения и эстетики.
Если же рассуждать конкретно, то в настоящее время на этой планете человеком ежегодно уничтожаются сотни тысяч дельфинов: разной конструкции неводами, гарпунами, огнестрельным оружием и просто загрязнением окружающей среды. И единственный способ этому помешать – как можно больше публиковать данных о все новых открытиях, подтверждающих разумность этих крайне дружелюбных к человеку созданий. «Морского народа», живущего в океанах и морях жизнью, столь отличающейся от нашей, но, с точки зрения Природы, жизнью более разумной, чем человеческая.
6.4. Освоение реальности
Психолог Джек Корнфилд, рассказывая о своей первой встрече с покойным ныне учителем тибетского буддизма Калу Ринпоче, вспоминает, что между ними состоялся такой диалог: «Не могли бы вы мне изложить в нескольких фразах самую суть буддийских учений?» – «Я бы мог это сделать, но вы не поверите мне, и, чтоб понять, о чем я говорю, вам потребуется много лет». – «Все равно, объясните пожалуйста, так хочется знать…».
Ответ Ринпоче был предельно краток: «Вас реально не существует».
В общей сложности задавалось около трех десятков вопросов, на которые ответили больше полутысячи физиков. Одни, как на блиц-турнире по шахматам, быстренько расставили галочки в клетках («да», «нет», «не уверен»). У других наивные, казалось бы, вопросы вызвали замешательство. Третьи пришли в ярость и вернули лист нетронутым, не преминув отметить, что философы никогда не умели ставить вопросы правильно… (Любопытно, что коперникову модель Солнечной системы назвали «реальной» и «нереальной» равные доли опрошенных – по 43%. Поровну разделились мнения и о реальности и нереальности волновой функции квантовой системы. Галлюцинации, кстати, считают реальными 40%, эмоции – 49%.)
Вопросы и в самом деле были подобраны «провокационные», чтобы ответы на достаточно глубоком уровне отразили, каким образом профессиональные знания респондента соотносятся с его представлениями о реальности. Философы славятся своей любовью разложить все знания по полочкам и ящичкам, снабженным бирками. Каждой разновидности концептуальных воззрений на жизнь дается наименование: «реализм», «антиреализм», «операционализм», «конструктивизм», «инструментализм» и т. д. и т. п. Хорошо известно и то, что людей, занимающихся естественными науками, нередко раздражает стремление философов проанализировать их занятия, поскольку особой пользы от этого никто еще не видел, а вред от попыток жесткого очерчивания научных концепций может быть вполне ощутимым. Например, нобелевский лауреат Стивен Уайнберг одну из глав в своей книге «Мечты об окончательной теории» так и назвал – «Против философов». Другое не менее известное светило, Мюррей Гелл-Манн, поясняет нелестное мнение своих коллег о «любомудрии» следующим образом: «Философия мутит воду и затуманивает важнейшую задачу теоретической физики – отыскивать согласованную работоспособную структуру». Наличие же у физика четкой философской позиции, по мнению Гелл-Манна, может стать причиной «отвержения какой-нибудь хорошей идеи».
Даже Альберт Эйнштейн, уважительно относившийся к философским аспектам научной деятельности, однажды написал, что с точки зрения философа ученый-физик – это «беспринципный оппортунист», поскольку физик готов стать «реалистом, когда пытается описать мир в независимости от актов восприятия; идеалистом, когда взирает на концепции и теории (не выводимые логически из опыта) как на изобретательность человеческого духа; и позитивистом, когда считает свои теории обоснованными лишь в пределах логической согласованности с ощущениями своих органов чувств»…
Сегодня, пожалуй, никто не возьмется дать строгое определение «реализму». На протяжении XX века научные теории все больше концентрировались на прагматическом предсказании и управлении, а не на достоверном описании или объяснении природы. Горький опыт научил физиков, что доминирующие теории могут изменяться самым непредсказуемым образом, а прошлые фундаментальные достижения науки нередко приходится отвергать как ложные. А значит, в любой момент надо быть готовым, что и на смену сегодняшней науке придет радикально новая, более плодотворная концепция.
Например, для физиков реальность не могла оставаться прежней после «второй научной революции» (примерно 1925 год), когда микромир перешел под власть квантовой механики. Согласно квантово-механической теории, служащей ныне фундаментом для множества современных технологий, энергия имеет дискретную природу, частицы могут быть волнами, объект может одновременно находиться в нескольких местах, пока кто-то не попытается измерить его параметры… Эти факты известны давно, тем не менее наука так и не смогла дать им удовлетворительных объяснений, доступных пониманию на уровне «бытового реализма». Другим поводом для серьезных беспокойств остается по-прежнему неразрешенная несовместность двух важнейших физических теорий – квантовой теории, описывающей микромир, и общей теории относительности, описывающей макромир в терминах гравитации.
В сложностях с определением реализма немаловажен еще и такой аспект: очень многое из того, чем сегодня занимаются физики, является продуктом их же собственных теорий. По замечанию, сделанному когда-то Робертом Оппенгеймером, специфика исследований заставила ученых «пересмотреть соотношение между наукой и здравым смыслом, заставила нас признать: хоть мы и говорим на каком-то определенном языке и используем определенные концепции, отсюда вовсе не обязательно следует, что в реальном мире имеется что-то этим вещам соответствующее».
Наконец, нельзя исключать, что новейшая, наиболее плодотворная концепция реальности не станет отменять предшествующие, противоречащие друг другу теории, а органично из них прорастет, объединив лучшее, освободившись от ложного и попутно объяснив многое из того, что прежде было совершенно непостижимо, а потому просто игнорировалось.
Оригинальная техника объемной фотографии, разработанная Деннисом Габором в середине столетия, к настоящему времени стала чрезвычайно мощной метафорой новых научных воззрений и одновременно – наглядной иллюстрацией весьма тонких физических идей. Зафиксированная на плоской пластине информация о трехмерном объекте не только позволяет воссоздать его объемное изображение, но и всякий, сколь угодно малый фрагмент голограммы содержит в себе всё изображение. Осветив любой участок голограммы, мы увидим изображение объекта в целом, хотя и не такое подробное, как при освещении всей пластины. Изменяя же параметры освещающего луча, с помощью одного и того же слоя в принципе можно записывать и воспроизводить множество различных голограмм.
Согласно концепции Бома, окружающий нас мир структурирован аналогичным образом, на основе тех же общих принципов, так что каждая существующая вещь «вкладывается» в каждую из своих составных частей. Отправной точкой для рассуждений ученого было понятие «неразрывного единства» квантового мира, ярче всего проявляющееся в знаменитом парадоксе Эйнштейна-Подольского-Розена (ЭПР), когда «сцепленные» (entangled) частицы ведут себя строго взаимосогласованно, так что изменение состояния одной приводит к мгновенной перемене в другой, сколь далеко бы она ни находилась от первой.
Пояснить эту идею помогает следующая иллюстрация. Представим себе, говорит Бом, аквариум с рыбкой. Допустим, по какой-то причине мы не можем разглядывать эту систему непосредственно, а имеем лишь возможность смотреть в два телеэкрана на аквариум, снимаемый спереди и сбоку. Глядя на экраны, легко заключить, что две плавающие там рыбки – это отдельные объекты. Но присмотревшись можно выяснить, что между двумя рыбками на двух экранах существует какая-то отчетливая взаимосвязь. Если одна рыбка меняет положение, то одновременно приходит в движение и другая. Причем всегда оказывается, что если одну видно «анфас», то другую – непременно «в профиль». И если не знать, что снимается один и тот же аквариум, внимательный наблюдатель скорее заключит, что рыбки неведомым образом мгновенно сообщаются друг с другом, нежели припишет это случайности.
Экстраполируя концепцию на элементарные частицы, Бом заключил, что явно сверхсветовое взаимодействие между частицами свидетельствует о существовании более глубокого уровня реальности, скрытого от нас, имеющего более высокую размерность, нежели наша. А частицы мы видим раздельными по той причине, что способны наблюдать лишь часть действительности. Частицы – это не отдельные «фрагменты», но грани, проекции более глубокого единства. И поскольку все в физической реальности содержится в этом «фантоме», вселенная сама по себе есть проекция, голограмма.
Согласно Дэвиду Бому, мир, каким мы его знаем, представляет собой только один аспект реальности, ее «явный» или «развернутый» порядок. Порождающей же его матрицей является «скрытый» (имплицитный) порядок, то есть, как правило, незримая для нас сфера, в которой время и пространство свернуты. Для понимания имплицитного порядка Бом счел нужным рассматривать и сознание как неотъемлемый компонент «холо-движения» (мира как голограммы в динамике), а потому включил в «развернутый» порядок и его. Таким образом, сознание и материя оказываются взаимосвязанными и взаимозависимыми, однако не имеющими причинных связей на «явном» уровне реальности. Они представляют собой вложенные друг в друга проекции более высокой реальности, которая не является ни материей, ни сознанием в чистом виде.
Теории Дэвида Бома были изложены им в ряде статей и в книге «Целостность и имплицитный порядок»[41]. В тех же 1980-х годах уровень развития техники наконец-то позволил экспериментально подтвердить парадоксальный феномен ЭПР, по иронии судьбы специально сформулированный в 1930-е годы Эйнштейном и его коллегами для демонстрации изъянов в построениях квантовой теории. Успешные эксперименты придали теории Бома солидности. Открытая примерно в те же годы Бенуа Мандельбротом фрактальная геометрия, описывающая упорядоченный хаос природы, также демонстрировала «топографический» принцип бесконечного вложения самоподобных структур друг в друга на основе весьма простых математических соотношений. Некоторый математический фундамент удалось заложить в свою теорию и Дэвиду Бому, однако необъятность задачи, преклонные годы и переключение интересов на вопросы соотношения физики и сознания помешали ученому перевести свою концепцию топографической вселенной из качественного состояния в количественное.
Независимо от Бома к идеям холономной парадигмы пришел в 1970-е годы нейрофизиолог из Стэнфордского университета Карл Прибрам, работающий в области исследований мозга. За несколько десятилетий экспериментальной работы в нейрохирургии и электрофизиологии Прибрам завоевал репутацию одного из ведущих специалистов в своей области, однако главным интересом его исследований была загадка памяти мозга, непостижимым образом хранящего и обрабатывающего воспоминания. Еще учитель Прибрама Карл Лешли огромным количеством экспериментов на крысах продемонстрировал в 1920-е годы безуспешность попыток локализации памяти. Какой бы участок мозга крысы ни удалялся, не удавалось добиться исчезновения условных рефлексов, выработанных у животного до операции.
Таким образом, Лешли открыл, что воспоминания хранятся во всех частях коры, а их интенсивность зависит от общего числа активных клеток. Когда же в 1960-е годы Карл Прибрам познакомился с принципами голографии, ему стало ясно, что найдено объяснение, которое так долго искали нейрофизиологи. Получалось, что память, подобно голограмме, содержится не в каких-то конкретных нейронах или группах нейронов, а в мозге целиком, формируясь как интерференционная картина нервных импульсов. Другими словами, Прибрам уверен, что мозг, по сути, является голограммой.
В многочисленных статьях и книге «Языки мозга» («Languages of the Brain») ученый демонстрирует, что модель мозга, основанная на голографических принципах, может объяснить многие из кажущихся таинственными свойств мозга – огромный объем и дистрибутивность памяти, способность сенсорных систем к воображению, проекцию образов из области памяти, некоторые важные аспекты ассоциативного воспоминания. В процессе развития холономной теории мозга и выявления «Фурье-подобных» преобразований спектра сигналов в мозге Прибраму удалось сформировать несколько основополагающих, экспериментально обоснованных концепций. Особо среди них можно отметить следующие: (а) частотную фильтрацию спектра сигнала клетками коры; (б) связь между голограммой и преобразованием Фурье, раскладывающим сигнал любой сложности в ряд регулярных волн, что позволяет мозгу удивительно быстро находить корреляции между новыми данными и уже накопленной памятью.
Нетрадиционная теория Карла Прибрама с воодушевлением воспринята многими энтузиастами «альтернативной» науки. Имеются интересные, подтверждающие концепцию исследования специалистов в области информатики, однако пока что холономную модель мозга ни в коей мере нельзя считать общепризнанной в области нейрофизиологии. Здесь экспериментаторы предпочитают накапливать данные независимо от какой-либо глобальной теории, а построение модели мозга/сознания оставляют будущим поколениям. По этой же причине неординарные работы Прибрама по сию пору обычно игнорируются авторами базовых учебников нейрофизиологии. Что, конечно, достойно сожаления, хотя и вполне объяснимо с точки зрения здорового научного консерватизма.
В отечественной биологии и биофизике накоплено гигантское количество экспериментальных результатов, свидетельствующих о «невидимых излучениях», постоянно испускаемых живой материей. Еще в 1920-е годы наш гистолог Александр Гурвич (1874—1954) открыл сверхслабое ультрафиолетовое излучение, не только испускаемое всеми клетками, но и стимулирующее их деление. Излучение получило название митогенетического, было подтверждено разными лабораториями в СССР и за рубежом, однако, вследствие совершенно непонятной физики происходящего, было забыто. Тот же Гурвич, кстати говоря, ввел в отечественную биологию и понятие морфогенетического поля – невидимой формообразующей структуры, направляющей развитие единственной клетки зародыша в сложнейший организм. Физика, химия и математика, напомним, по сию пору находятся лишь на подступах к решению непостижимой загадки морфогенеза, и концепция некоего морфогенетического поля непонятной природы остается, строго говоря, пока что псевдонаучной теорией.
В 1960-70-е годы советские биологи получили множество интереснейших результатов, перекликающихся с открытием Гурвича. Так, Борис Тарусов из МГУ занимался исследованиями естественной люминесценции и особых форм «патологического» свечения биологических объектов с помощью высокочувствительных фотоумножителей – устройств, аналогичных по принципу работы армейским приборам ночного видения. В алмаатинском университете группа Виктора Инюшина изучала ультрафиолетовое излучение, испускаемое глазами человека и животных. Этот тонкий эффект удается фиксировать на фотопленке, чувствительной к ультрафиолетовым лучам, при использовании специальных светофильтров и устройств, экранирующих тепловое излучение.
В Новосибирске В. Казначеевым, С. Шуриным и Л. Михайловой в середине 1960-х годов было проведено несколько тысяч экспериментов, не только строго подтвердивших давние результаты Гурвича, но и позволивших обнаружить иные, прежде неизвестные свойства «целостности» живой материи. Колония клеток с помощью кварцевой перегородки, пропускающей УФ-излучение, разделялась на две герметично изолированные части. Одну из частей убивали посредством смертельной дозы радиации, химических ядов или болезнетворных вирусов. При этом у родственной колонии в соседнем отсеке, не подвергавшемся смертоносному воздействию, каждый раз развивались те же симптомы поражения, что и в первой колонии. Если же перегородка между отсеками была из материала, не пропускающего УФ-лучи, то ничего подобного не наблюдалось. Поскольку изоляция частей проводилась очень тщательно, был сделан вывод, что каким-то образом клетки обмениваются информацией, закодированной в их ультрафиолетовом излучении.
Ответ Ринпоче был предельно краток: «Вас реально не существует».
Физики против философов
В апрельском, 2002 года номере журнала Physics World опубликована статья американского философа науки Роберта Криси с анализом воззрений ученых-физиков на окружающую реальность. Философа интересовали сугубо практические суждения этой категории людей о том, что в этом мире «реально», а что нет. Базой для умозаключений послужил опросный лист с нехитрыми на первый взгляд вопросами типа таких: «Полагаете ли вы реальными Землю, камни, галлюцинации, эмоции, цвета, длину волны, вязкость, кинетическую энергию, гравитационную постоянную, электрон, атом по Бору, массу, действительные числа, мнимые числа…»В общей сложности задавалось около трех десятков вопросов, на которые ответили больше полутысячи физиков. Одни, как на блиц-турнире по шахматам, быстренько расставили галочки в клетках («да», «нет», «не уверен»). У других наивные, казалось бы, вопросы вызвали замешательство. Третьи пришли в ярость и вернули лист нетронутым, не преминув отметить, что философы никогда не умели ставить вопросы правильно… (Любопытно, что коперникову модель Солнечной системы назвали «реальной» и «нереальной» равные доли опрошенных – по 43%. Поровну разделились мнения и о реальности и нереальности волновой функции квантовой системы. Галлюцинации, кстати, считают реальными 40%, эмоции – 49%.)
Вопросы и в самом деле были подобраны «провокационные», чтобы ответы на достаточно глубоком уровне отразили, каким образом профессиональные знания респондента соотносятся с его представлениями о реальности. Философы славятся своей любовью разложить все знания по полочкам и ящичкам, снабженным бирками. Каждой разновидности концептуальных воззрений на жизнь дается наименование: «реализм», «антиреализм», «операционализм», «конструктивизм», «инструментализм» и т. д. и т. п. Хорошо известно и то, что людей, занимающихся естественными науками, нередко раздражает стремление философов проанализировать их занятия, поскольку особой пользы от этого никто еще не видел, а вред от попыток жесткого очерчивания научных концепций может быть вполне ощутимым. Например, нобелевский лауреат Стивен Уайнберг одну из глав в своей книге «Мечты об окончательной теории» так и назвал – «Против философов». Другое не менее известное светило, Мюррей Гелл-Манн, поясняет нелестное мнение своих коллег о «любомудрии» следующим образом: «Философия мутит воду и затуманивает важнейшую задачу теоретической физики – отыскивать согласованную работоспособную структуру». Наличие же у физика четкой философской позиции, по мнению Гелл-Манна, может стать причиной «отвержения какой-нибудь хорошей идеи».
Даже Альберт Эйнштейн, уважительно относившийся к философским аспектам научной деятельности, однажды написал, что с точки зрения философа ученый-физик – это «беспринципный оппортунист», поскольку физик готов стать «реалистом, когда пытается описать мир в независимости от актов восприятия; идеалистом, когда взирает на концепции и теории (не выводимые логически из опыта) как на изобретательность человеческого духа; и позитивистом, когда считает свои теории обоснованными лишь в пределах логической согласованности с ощущениями своих органов чувств»…
Сегодня, пожалуй, никто не возьмется дать строгое определение «реализму». На протяжении XX века научные теории все больше концентрировались на прагматическом предсказании и управлении, а не на достоверном описании или объяснении природы. Горький опыт научил физиков, что доминирующие теории могут изменяться самым непредсказуемым образом, а прошлые фундаментальные достижения науки нередко приходится отвергать как ложные. А значит, в любой момент надо быть готовым, что и на смену сегодняшней науке придет радикально новая, более плодотворная концепция.
Например, для физиков реальность не могла оставаться прежней после «второй научной революции» (примерно 1925 год), когда микромир перешел под власть квантовой механики. Согласно квантово-механической теории, служащей ныне фундаментом для множества современных технологий, энергия имеет дискретную природу, частицы могут быть волнами, объект может одновременно находиться в нескольких местах, пока кто-то не попытается измерить его параметры… Эти факты известны давно, тем не менее наука так и не смогла дать им удовлетворительных объяснений, доступных пониманию на уровне «бытового реализма». Другим поводом для серьезных беспокойств остается по-прежнему неразрешенная несовместность двух важнейших физических теорий – квантовой теории, описывающей микромир, и общей теории относительности, описывающей макромир в терминах гравитации.
В сложностях с определением реализма немаловажен еще и такой аспект: очень многое из того, чем сегодня занимаются физики, является продуктом их же собственных теорий. По замечанию, сделанному когда-то Робертом Оппенгеймером, специфика исследований заставила ученых «пересмотреть соотношение между наукой и здравым смыслом, заставила нас признать: хоть мы и говорим на каком-то определенном языке и используем определенные концепции, отсюда вовсе не обязательно следует, что в реальном мире имеется что-то этим вещам соответствующее».
Наконец, нельзя исключать, что новейшая, наиболее плодотворная концепция реальности не станет отменять предшествующие, противоречащие друг другу теории, а органично из них прорастет, объединив лучшее, освободившись от ложного и попутно объяснив многое из того, что прежде было совершенно непостижимо, а потому просто игнорировалось.
Вехи холономной парадигмы
Может статься, что наши потомки важнейшим достижением XX века, открывшим человечеству новый взгляд на мир, будут считать вовсе не квантовую механику или теорию относительности, а нечто совершенно иное – голографию. Пионером же «третьей научной революции» окажется не слишком известный вне научного мира физик-теоретик Дэвид Бом, соратник Оппенгеймера и Эйнштейна, воспользовавшийся идеями голографии для интерпретации окружающей действительности и заложивший основы так называемой холономной парадигмы.Оригинальная техника объемной фотографии, разработанная Деннисом Габором в середине столетия, к настоящему времени стала чрезвычайно мощной метафорой новых научных воззрений и одновременно – наглядной иллюстрацией весьма тонких физических идей. Зафиксированная на плоской пластине информация о трехмерном объекте не только позволяет воссоздать его объемное изображение, но и всякий, сколь угодно малый фрагмент голограммы содержит в себе всё изображение. Осветив любой участок голограммы, мы увидим изображение объекта в целом, хотя и не такое подробное, как при освещении всей пластины. Изменяя же параметры освещающего луча, с помощью одного и того же слоя в принципе можно записывать и воспроизводить множество различных голограмм.
Согласно концепции Бома, окружающий нас мир структурирован аналогичным образом, на основе тех же общих принципов, так что каждая существующая вещь «вкладывается» в каждую из своих составных частей. Отправной точкой для рассуждений ученого было понятие «неразрывного единства» квантового мира, ярче всего проявляющееся в знаменитом парадоксе Эйнштейна-Подольского-Розена (ЭПР), когда «сцепленные» (entangled) частицы ведут себя строго взаимосогласованно, так что изменение состояния одной приводит к мгновенной перемене в другой, сколь далеко бы она ни находилась от первой.
Дэвид Бом.
Размышляя над этой загадкой, противоречащей не только здравому смыслу, но и эйнштейновской теории относительности, налагающей жесткие ограничения на скорость распространения взаимодействий, Бом пришел к выводу, что элементарные частицы взаимодействуют на любом расстоянии не потому, что они обмениваются таинственными сигналами между собой, а потому, что их «разделенность» есть иллюзия. Иными словами, на каком-то более глубоком уровне реальности сцепленные частицы – это вовсе не отдельные объекты, а фактически продолжения чего-то более фундаментального и цельного.Пояснить эту идею помогает следующая иллюстрация. Представим себе, говорит Бом, аквариум с рыбкой. Допустим, по какой-то причине мы не можем разглядывать эту систему непосредственно, а имеем лишь возможность смотреть в два телеэкрана на аквариум, снимаемый спереди и сбоку. Глядя на экраны, легко заключить, что две плавающие там рыбки – это отдельные объекты. Но присмотревшись можно выяснить, что между двумя рыбками на двух экранах существует какая-то отчетливая взаимосвязь. Если одна рыбка меняет положение, то одновременно приходит в движение и другая. Причем всегда оказывается, что если одну видно «анфас», то другую – непременно «в профиль». И если не знать, что снимается один и тот же аквариум, внимательный наблюдатель скорее заключит, что рыбки неведомым образом мгновенно сообщаются друг с другом, нежели припишет это случайности.
Экстраполируя концепцию на элементарные частицы, Бом заключил, что явно сверхсветовое взаимодействие между частицами свидетельствует о существовании более глубокого уровня реальности, скрытого от нас, имеющего более высокую размерность, нежели наша. А частицы мы видим раздельными по той причине, что способны наблюдать лишь часть действительности. Частицы – это не отдельные «фрагменты», но грани, проекции более глубокого единства. И поскольку все в физической реальности содержится в этом «фантоме», вселенная сама по себе есть проекция, голограмма.
Согласно Дэвиду Бому, мир, каким мы его знаем, представляет собой только один аспект реальности, ее «явный» или «развернутый» порядок. Порождающей же его матрицей является «скрытый» (имплицитный) порядок, то есть, как правило, незримая для нас сфера, в которой время и пространство свернуты. Для понимания имплицитного порядка Бом счел нужным рассматривать и сознание как неотъемлемый компонент «холо-движения» (мира как голограммы в динамике), а потому включил в «развернутый» порядок и его. Таким образом, сознание и материя оказываются взаимосвязанными и взаимозависимыми, однако не имеющими причинных связей на «явном» уровне реальности. Они представляют собой вложенные друг в друга проекции более высокой реальности, которая не является ни материей, ни сознанием в чистом виде.
Теории Дэвида Бома были изложены им в ряде статей и в книге «Целостность и имплицитный порядок»[41]. В тех же 1980-х годах уровень развития техники наконец-то позволил экспериментально подтвердить парадоксальный феномен ЭПР, по иронии судьбы специально сформулированный в 1930-е годы Эйнштейном и его коллегами для демонстрации изъянов в построениях квантовой теории. Успешные эксперименты придали теории Бома солидности. Открытая примерно в те же годы Бенуа Мандельбротом фрактальная геометрия, описывающая упорядоченный хаос природы, также демонстрировала «топографический» принцип бесконечного вложения самоподобных структур друг в друга на основе весьма простых математических соотношений. Некоторый математический фундамент удалось заложить в свою теорию и Дэвиду Бому, однако необъятность задачи, преклонные годы и переключение интересов на вопросы соотношения физики и сознания помешали ученому перевести свою концепцию топографической вселенной из качественного состояния в количественное.
Независимо от Бома к идеям холономной парадигмы пришел в 1970-е годы нейрофизиолог из Стэнфордского университета Карл Прибрам, работающий в области исследований мозга. За несколько десятилетий экспериментальной работы в нейрохирургии и электрофизиологии Прибрам завоевал репутацию одного из ведущих специалистов в своей области, однако главным интересом его исследований была загадка памяти мозга, непостижимым образом хранящего и обрабатывающего воспоминания. Еще учитель Прибрама Карл Лешли огромным количеством экспериментов на крысах продемонстрировал в 1920-е годы безуспешность попыток локализации памяти. Какой бы участок мозга крысы ни удалялся, не удавалось добиться исчезновения условных рефлексов, выработанных у животного до операции.
Таким образом, Лешли открыл, что воспоминания хранятся во всех частях коры, а их интенсивность зависит от общего числа активных клеток. Когда же в 1960-е годы Карл Прибрам познакомился с принципами голографии, ему стало ясно, что найдено объяснение, которое так долго искали нейрофизиологи. Получалось, что память, подобно голограмме, содержится не в каких-то конкретных нейронах или группах нейронов, а в мозге целиком, формируясь как интерференционная картина нервных импульсов. Другими словами, Прибрам уверен, что мозг, по сути, является голограммой.
В многочисленных статьях и книге «Языки мозга» («Languages of the Brain») ученый демонстрирует, что модель мозга, основанная на голографических принципах, может объяснить многие из кажущихся таинственными свойств мозга – огромный объем и дистрибутивность памяти, способность сенсорных систем к воображению, проекцию образов из области памяти, некоторые важные аспекты ассоциативного воспоминания. В процессе развития холономной теории мозга и выявления «Фурье-подобных» преобразований спектра сигналов в мозге Прибраму удалось сформировать несколько основополагающих, экспериментально обоснованных концепций. Особо среди них можно отметить следующие: (а) частотную фильтрацию спектра сигнала клетками коры; (б) связь между голограммой и преобразованием Фурье, раскладывающим сигнал любой сложности в ряд регулярных волн, что позволяет мозгу удивительно быстро находить корреляции между новыми данными и уже накопленной памятью.
Нетрадиционная теория Карла Прибрама с воодушевлением воспринята многими энтузиастами «альтернативной» науки. Имеются интересные, подтверждающие концепцию исследования специалистов в области информатики, однако пока что холономную модель мозга ни в коей мере нельзя считать общепризнанной в области нейрофизиологии. Здесь экспериментаторы предпочитают накапливать данные независимо от какой-либо глобальной теории, а построение модели мозга/сознания оставляют будущим поколениям. По этой же причине неординарные работы Прибрама по сию пору обычно игнорируются авторами базовых учебников нейрофизиологии. Что, конечно, достойно сожаления, хотя и вполне объяснимо с точки зрения здорового научного консерватизма.
Отзвуки голограммы
Топографическая (холономная) модель реальности предоставляет чрезвычайно удобную концепцию для рациональной интерпретации или даже объяснения множества явлений из числа тех, что хоть и хорошо известны, но по сию пору не интегрированы в современную науку из-за своей «непонятности». Приведем лишь несколько примеров.В отечественной биологии и биофизике накоплено гигантское количество экспериментальных результатов, свидетельствующих о «невидимых излучениях», постоянно испускаемых живой материей. Еще в 1920-е годы наш гистолог Александр Гурвич (1874—1954) открыл сверхслабое ультрафиолетовое излучение, не только испускаемое всеми клетками, но и стимулирующее их деление. Излучение получило название митогенетического, было подтверждено разными лабораториями в СССР и за рубежом, однако, вследствие совершенно непонятной физики происходящего, было забыто. Тот же Гурвич, кстати говоря, ввел в отечественную биологию и понятие морфогенетического поля – невидимой формообразующей структуры, направляющей развитие единственной клетки зародыша в сложнейший организм. Физика, химия и математика, напомним, по сию пору находятся лишь на подступах к решению непостижимой загадки морфогенеза, и концепция некоего морфогенетического поля непонятной природы остается, строго говоря, пока что псевдонаучной теорией.
В 1960-70-е годы советские биологи получили множество интереснейших результатов, перекликающихся с открытием Гурвича. Так, Борис Тарусов из МГУ занимался исследованиями естественной люминесценции и особых форм «патологического» свечения биологических объектов с помощью высокочувствительных фотоумножителей – устройств, аналогичных по принципу работы армейским приборам ночного видения. В алмаатинском университете группа Виктора Инюшина изучала ультрафиолетовое излучение, испускаемое глазами человека и животных. Этот тонкий эффект удается фиксировать на фотопленке, чувствительной к ультрафиолетовым лучам, при использовании специальных светофильтров и устройств, экранирующих тепловое излучение.
В Новосибирске В. Казначеевым, С. Шуриным и Л. Михайловой в середине 1960-х годов было проведено несколько тысяч экспериментов, не только строго подтвердивших давние результаты Гурвича, но и позволивших обнаружить иные, прежде неизвестные свойства «целостности» живой материи. Колония клеток с помощью кварцевой перегородки, пропускающей УФ-излучение, разделялась на две герметично изолированные части. Одну из частей убивали посредством смертельной дозы радиации, химических ядов или болезнетворных вирусов. При этом у родственной колонии в соседнем отсеке, не подвергавшемся смертоносному воздействию, каждый раз развивались те же симптомы поражения, что и в первой колонии. Если же перегородка между отсеками была из материала, не пропускающего УФ-лучи, то ничего подобного не наблюдалось. Поскольку изоляция частей проводилась очень тщательно, был сделан вывод, что каким-то образом клетки обмениваются информацией, закодированной в их ультрафиолетовом излучении.