Б.Т.

Ослябя

   Ослябя (Роман, в монашестве Родион) — боярин, инок Троице-Сергиевой Лавры. По сказаниям о Мамаевом побоище, сопровождал, вместе с иноком Пересветом, вел. Князя Димитрия в походе против татар, по повелению св. Сергия, и принимал участие в Куликовской битве, где и убит. Могила О. — Близ Симонова м-ря под Москвой.

Осман

   Осман (сын Аффана) — зять Мохаммеда, третий халиф (644-656), один из пяти лиц, которым доверил выбор халифа умирающий Омар. При нем арабы, продолжая начатые Омаром завоевания, покорили область Карфагена (648), о-в Кипр (649) и докончили покорение Персии (к 651 г.). Внутри халифата при О. Усилилась рознь между искренними мусульманами и людьми светского направления мыслей; принявшими ислам (как напр. Омейады) лишь по необходимости и ради выгод. Семидесятилетний, бесхарактерный О., при всей своей набожности, подчинился влиянию своих ближайших родственников, Омейядов и постепенно роздал все важнейшие и доходнейшие военноначальнические и гражданские места жадным и неверующим мекканским аристократам, обижая ближайших родственников пророка и его старейших сподвижников. В 653 г., Во время войны с Арменией, обнаружилось различие чтений Корана в иракском и сирийском войске. О. велел Зейду ибн Сабиту собрать все суры и установить одну окончательную редакцию. Куфийцы, среди которых жил знаток корана Абдоллах ибн Масуд, обиженный, что не ему поручено было это дело, обвинили халифа (неосновательно, впрочем) в подделке и воспользовались этим случаем, чтобы возмутиться против наместника О. Наступило брожение и в других городах, тайно поддерживаемое Алием, Аишей, Амром (смененным наместником Египта), Мохаммедом, сыном Абу-Бекра, Тальхой, Зобейром и др. В середине 655 г. О. созвал в Медину провинциальных наместников, для совещания об опасном положении государства, но съезд этот не привел ни к каким результатам. В апреле 656 г. к Медине подошла тысячная толпа египтян, куфийцев и басрийцев, с сыном Абу-Бекра во главе, требуя, чтобы халиф переменил образ правления. О. обещал сместить Омейядов, но по бесхарактерности, ничего не сделал. Бунтовщики возвратились в Медину и, когда О. отклонил небеcкорыстный совет Алия отречься от престола, осадили его дом. Через 10 недель, получив известие о приближении к Медине омейядских войск Моавии из Сирии и ибн Амира из Басры, бунтовщики ворвались в дом О., убили его за чтением Корана (17 июня 656 г.) И, сообща с мединцами, возвели на престол Алия.
   А. Крымский.

Осмий

   Осмий (хим.; Osmium; Os=190, 3[0=15,96], К. Зейберт, 1891) — принадлежит к семье платиновых металлов, один из тяжелых членов ее; по атомному весу он легче иридия, а по удельному Немного тяжелее его. По всем свойствам он занимает в VIII группе периодической системы место под железом и рутением; подобно последнему, образует летучий высший окисел типа RO4, осмиевый ангидрид, который получается весьма легко — при прямом сжигании металла в кислороде или воздухе, к чему рутений неспособен. Открыт О. одновременно с иридием (Теннант, 1803), потому что главный минерал, в котором он находится, есть осмистый иридий, встречающийся вместе с другими платиновыми металлами и отделяемый от них весьма легко при обработке царской водкой, в которой он нерастворим. Способ обработки осмистого иридия: накаливают (Фреми) минерал, помещенный в фарфоровой трубке, в струе кислорода (или воздуха), который предварительно пропущен через серную кислоту ради осушения и очищения от пыли, и уловляют OsO4 в виде кристаллов в хорошо охлажденном приемнике, а небольшое количество несгустившегося пара поглощается в другом приемнике раствором едкого кали. Осмивый ангидрид OsO4 — большие бесцветные призмы; при нагревании рукой он делается мягким, как воск, при 40° плавится, а при l00° кипит, превращаясь в бесцветный пар, плотность которого 128,4 (H = 1, при 246°-285° — Девилль и Дебрэ) вполне подтверждает приведенную формулу, OsO4 сильно и неприятно пахуч (отсюда название металла от osmh — запах) даже при обыкновенной температуре, напоминая запах хлористой серы; пары его ядовито действуют на глаза и органы дыхания. Растворимость в воде значительная, хотя растворение совершается медленно; раствор не имеет кислой реакции и обладает запахом ангидрида; этот запах пропадает, если прибавить щелочи очевидно, вследствие образования соли; но осмивая кислота столь слабая кислота, что вытесняется; в растворе, даже углекислотой, при чем запах ангидрида снова появляется; соли ее некристалличны и при нагревании ангидрид из них обыкновенно улетает, за исключением щелочных солей; растворы солей окрашены в красно-желтый цвет. OsO4 растворяется в эфире и спирте, но такие растворы постепенно выделяют металлический О., причем растворитель окисляется. Вообще OsO4 легко восстанавливается разными, способными окисляться веществами, вследствие чего и необходимо при получении его избегать пыли; по этой же причине осмиевая кислота употребляется для окрашивания гистологических препаратов в черный цвет (порошкообразным О.). Если к щелочному (КОН, а также NaOH) раствору OsO4 прибавить немного спирта, то происходит разогревание, сопровождаемое появлением запаха алдегида и изменением красного цвета жидкости в фиолетовый; из такого раствора спирт осаждает кристаллы осмистокислого калия, состава K2OsO4.2Н2O, которые могут быть получены в более крупном виде, если сильно щелочной раствор OsO4 смешать с азотистокислым калием и дать стоять (Фреми). Та же соль получается, особенно при нагревании, и из раствора OsO4 просто в избытке крепкого КОН, при чем, конечно, должен выделиться кислород (Клаус). Соответствующая осмистая кислота H2OsO4 получается (Морат и К. Бишин, 1893) при разложении водой калиевой соли в присутствии спирта и в струе водорода, так как при доступе воздуха образуется OsO4; эта кислота обладает цветом сажи и нерастворима в воде; серная кислота на нее не действует, соляная на холоде слабо действует, а азотная легко, превращая в OsO4; способ получения:
   K2OsO4 + 2Н2О= H2OsO4 + 2КОН
   Показывает, что это тоже очень слабая кислота; ангидрид ее OsO3 неизвестен. Если нагревать металлический О. В струе хлора, то получаются хлористые соединения — одно более летучее высшего типа OsCl4, возгон которого представляет темно-красный порошок, другое, менее летучее, низшего типа OsCl2, возгоняющееся в виде темно-зеленых игол. Оба соединения в небольшом количестве воды растворимы с желтым или зеленым цветом, но избытком ее разлагаются, при чем образуются осмиевая и соляная кислоты и металлический О.; вода не производит разложения, если присутствует хлористый калий, с которым соединения обоих типов дают двойные соли, напр. OsCl4.2KCI, которая в порошке по цвету напоминает сурик или образует темно-бурые октаэдры. Двойная соль особого типа OsCl3.3KCl.3Н2O, темно-красные кристаллы, получается, если к раствору OsO4 в едком кали прибавить аммиаку (для восстановления) и затем насытить его соляной кислотой. Соответственные кислородные соединения OsO, Os2О3 и OsO2 получаются при нагревании солей с содой в токе углекислоты. В низших типах своих соединений О. играет роль металла. В парах серы О. горит; растворы хлористых его соединений осаждаются сероводородом (Берцелиус); из раствора K2OsO4 сероводород осаждает не OsS3, a OsS2, и в растворе образуется многосернистый калий (Фреми); H2OsO4 легко реагирует с сероводородом — продукт, бурый порошок, имеет состав Os2O3S2H2 (Морат и Вишин) и с серной кислотой выделяет сероводород; подкисленный соляной кислотой раствор OsO4 дает при осаждении сероводородом гидрат OsS4 — этот осадок нельзя сушить при высокой температуре, так как при этом он загорается; сернистые соединения О. нерастворимы ни в щелочах, ни в сернистых соединениях щелочных металлов или аммония. При действии аммиака на раствор OsO4 в едком кали осаждается особая соль, так называемый осмиамовокислый калий (Фритче и Струве, 1847); она кристаллизуется в светло-желтых октаэдрах и имеет состав (Жоли, 1891). OsNO3K, образуясь по уравнению:
   OsO4 +КОН + NH3 = OsN3K + 2Н2О.
   Осмиамовая кислота, OsNO3H, известна только в растворе; получены кристаллические соли аммонийная, серебряная, бариевая. При осторожном нагревании (350°), калиевая соль выделяет азот и превращается в смесь OsO2 и K2OsO4. При ударе и при быстром нагревании эти соли разлагаются со взрывом. Есть основание полагать, что осмиамовая кислота может быть отнесена к разряду нитрозосоединений О: Os(NO).OH и, следов., принадлежит к типу OsX4, а быть может, она содержит группу (N:N)" и выражается такой формулой: HО.O2Оs.N : N.OsO2OH, где О. шестиэквивалентен. Металлический О. разными способами может быть получен из OsO4. Вокелен восстановлял цинком солянокислый раствор ангидрида. Берцелиус пропускал смесь паров его с водородом через накаленную трубку, где и происходило восстановление. Девилль и Дебрэ пользовались для той же цели окисью углерода. Во всех этих случаях металл получался порошкообразный или в виде губчатой массы, смотря по температуре, при которой велась операция. Сплавляя О. с оловом в угольном тигле и удалив по охлаждении олово из королька соляной кислотой, Девилль и Дебрэ получили (1876) кристаллический О., уд. в. 22,477; кристаллы представляли очень маленькие кубики синевато-белого цвета с фиолетовым отливом. Сплавление с пиритом точно также приводит к кристаллическому О. Это самый трудноплавкий металл; в пламени гремучего газа вполне сплавить его не удается, а только в электрической печи (Жоли, 1893); сплавленный О. блестящ, синеватосерого цвета, чертит стекло и кварц и сам чертится топазом; уд. в. 22,48. По удельному весу О. тяжелее всех металлов. Порошкообразный О. окисляется уже при обыкновенной температуре, пахнет ангидридом и, подогретый в одной точке, горит, как трут; сплавленный совсем не окисляется при обыкновенной температуре. При температуре плавления иридия О. летуч. Чистый О. не имеет никаких практических применений, но О. иридий. Вследствие своей неизменяемости и твердости, употребляется для концов стальных перьев, так. наз. «вечных», и для приготовления цапф и остриев в компасах, потому что он и немагнитен.
   С. С. К.

Осмос

   Осмос — своеобразная форма явлений диффузии, приобретшая весьма важное значение в теории растворов. Явления О. наблюдаются, когда жидкости приходят в взаимодействие через перепонки. Если взять сосуд, в котором вместо дна — перепонка, напр. пузырь, наполнить сосуд соляным раствором и погрузить в воду, то, по мере того, как будет происходить диффузия через перепонку, уровень жидкости в сосуде будет повышаться, обнаружится явление О. В данном примере это будет эндосмос, при обратном нарушении уровней — эксосмос. Первые опыты с О. принадлежат Нолле, дальнейшие исследования — Дютроше, Брюкке, Фирорту и др. О. весьма часто встречается и играет весьма важную роль в явлениях, происходящих в организмах. Траубе указал способ искусственно образовать перепонки, приводя осторожно в прикосновение растворы таких двух тел, от взаимодействия которых образуется нерастворимый, аморфный осадок; погружая каплю клея в раствор таннина, он приготовляет таким образом искусственную клеточку, т.е. каплю раствора, облеченную тонкой оболочкой нерастворимого соединения клея с таннином, и через эту перепонку происходили явления О. Значительный шаг вперед в изучении явлений О. сделан был Пфеффером. Он вызывал образование перепонки внутри стенок сосуда из пористой глины и этим путем достиг возможности измерять те большие разности давлений, которыми сопровождаются явления О. Пфеффер приготовлял свои сосуды обыкновенно таким образом: сосуд из пористой глины смачивался водой, наполнялся раствором красной соли и погружался в раствор медного купороса, при этом в порах сосуда образовывались пленки нерастворимой железосинеродной меди. Таким путем приготовлены были «полупроницаемые стенки». Явления О. происходят от того, что диффузионный ток происходит через перепонку в двух противоположных направлениях не с одинаковой скоростью. Перепонка выдерживает в большей или меньшей степени диффузию одной из составных частей, вследствие этого и происходит поднятие уровня жидкости по ту сторону перепонки, где находится или преобладает эта худо диффундирующая через данную перепонку составная часть раствора. Пфефферу удалось достигнуть предельного случая, т. е. условий, при которых скорость диффузии через описанную стенку растворенного в воде тела была ничтожно мала. Тогда происходила односторонняя диффузия, диффундировала только вода, а стенка являлась полупроницаемой. При помощи таких сосудов Пфеффер произвел целый ряд измерений осмотического давления, т. е. давления, которое возникает вследствие разности уровней, вызываемой О. через полупроницаемую стенку. Если в сосуд с полупроницаемой стенкой поместить раствор, напр., сахара и погрузить сосуд в воду, то вода до тех пор будет проникать через полупроницаемую стенку к раствору, пока уровень в сосуде не достигнет известной высоты; стенка будет испытывать тогда изнутри определенное осмотическое давление. Если раствор сразу подвергнуть этому давлению, то О. не происходит; если же приложить большее давление, то, вместо эндосмоса, будет происходить эксосмос, движение воды из сосуда от раствора через стенку. Раствор, заключенный в полупроницаемую оболочку и погруженный в этой оболочке в воду, уподобляется, следовательно, газу: оболочка испытывает определенное давление и, если она ему уступает, то происходить увеличение объема от проникания воды и, вместе с тем, уменьшение крепости раствора (концентрации). При помощи полупроницаемой стенки, пользуясь явлением О., можно изменять крепость раствора давлением так же, как и плотность газа. Осмотическое давление раствора данного тела зависит только от температуры и от крепости раствора, т. е. от содержания в единице объема раствора непроникающей через оболочку его составной части (напр. в приведенном примере от концентрации сахара) и не зависит от природы оболочки, которая влияет лишь на скорость О. Осмотическое давление возрастает при увеличении крепости раствора и при повышении температуры. Теоретическое значение приема «полупроницаемой стенки», законы, управляющие величиной осмотического давления, а также связь между осмотическим давлением и другими свойствами растворов указаны Вант-Гоффом (см. «Zeitschrift fur Physikalische Chemie», 1887). Пользуясь наблюдениями Пфеффера над величинами осмотического давления и производя соответствующие расчеты Вант-Гофф, пришел к нижеследующему чрезвычайно важному выводу: "осмотическое давление равно тому давлению, которое обнаруживалось бы, если бы тоже количество растворенного тела в состоянии газа наполняло бы объем, равный объему раствора. Напр., по опытам Пфеффера, осмотическое давление раствора сахара, заключающего 1 гр. сахара в 100,6 куб. стм. (однопроцентный раствор) при 15,5° равно 0,684 атмосферного давления; принимая же вес частицы сахара согласно формуле С12Н12О11 равным 342, находим газовое давление для вещества с частичным весом 342, при температуре 15,5° и при содержании его 1 гр. В 106,5 куб. стм., равным:
   Осмотическое давление может быть, следовательно, заранее вычислено, если известен частичный вес растворенного вещества, крепость и температура раствора. В основании расчета лежит положение: «осмотическое давление, как и газовое, управляется законами Бойля-Мариотта, Гей-Люссака и Авогадро». Осмотическое давление прямо пропорционально крепости раствора, обратно пропорционально величине частичного веса растворенного тела и возрастает на каждый градус Цельсия на 0,00367. Если раствор во всех своих частях имеет одну и ту же температуру и одинаковую крепость, то и осмотическое давление во всех точках одинаково. Если же нарушено равенство температуры, то нарушится и равенство величин осмотического давления; составные части раствора придут в движение, начнется диффузия, ведущая к неодинаковости состава раствора, тогда как при одинаковости температуры диффузия стремится привести раствор к однородности состава во всех частях. В согласии с этим, наблюдения Соре показали, что, если раствор в верхних слоях нагревать, а нижнюю часть охлаждать, то раствор, первоначально совершенно однородный, становится вверху, в нагретой части, слабее, а внизу крепче. Напр. раствор медного купороса по истечении значительного промежутка времени показывал в верхней нагретой до 80° части 14,3% , а в нижней, имевшей темп. 20° — 17,332%. Раствор относится вполне аналогично газу и в отношении неравенства температуры. Зная температуру обоих слоев раствора и крепость одного, можно вычислить крепость другого совершенно так же, как плотность газа в случае неодинаковости температуры в разных его частях. Для вышеприведенного примера расчет по Вант-Гоффу дает для 14,3% вместо найденных 14,03%. Непосредственные измерения величины осмотического давления сопряжены с значительными трудностями, приготовление полупроницаемой стенки осуществимо в редких случаях, и не вполне. Есть возможность, однако, вычислять величину осмотического давления из других свойств растворов. Сам прием полупроницаемой стенки дает возможность, найдя соотношение между осмотическим Давлением и другими свойствами раствора, тем самым установить зависимость этих свойств между собой. Это относится до тех свойств растворов, при помощи которых может быть изменяема их крепость, как то замерзание или испарение растворителя, выделение растворенного тела. Раствор данной крепости характеризуется определенной температурой замерзания, определенной упругостью его пара. Вымораживая растворитель или испаряя его, можно изменять крепость раствора; того же можно достигнуть путем полупроницаемой стенки, пользуясь осмотич. давлением. Каждая из этих операций в отдельности может быть совершаема в форме обратимого процесса, а воспроизведенные последовательно они могут являться частями обратимого процесса. Соотношение между величинами, характеризующими эти операции, устанавливается тогда легко на основании формул термодинамики и одну из этих величин можно вычислить, когда известны остальные. Этим же путем можно найти соотношение между растворимостью и осмотическим давлением, вводя в обратимый процесс выделение растворенного тела. Осуществление этих расчетов требует знания точных законов, управляющих зависимостью между крепостью раствора, температурой и каждой из названных величин, а простые отношения между ними устанавливаются указанным путем при условии приложимости к осмотическим давлениям простых законов газообразного состояния. Это имеет место при малой плотности вещества, т. е. в случае растворов слабых, таких, при разбавлении которых не обнаруживается заметного теплового эффекта. Крепкие растворы обнаруживают, как и сильно сжатые газы, значительные отступления от этих простых законов. Согласие вычисленных результатов с действительностью для слабых растворов весьма полное, и таким образом аналогия между газообразным состоянием и состоянием вещества в разбавленном растворе опирается, благодаря изысканиям Вант-Гоффа, на точные количественные отношения. Осмотическое давление в немногих случаях удается измерять непосредственно; но вычисление его величины по данным для растворимости, замерзания и испарения растворов дает вполне между собой согласные результаты. Не измеряя осмотического давления непосредственно, но пользуясь приемом полупроницаемой стенки, теоретически можно вычислить осмотическое давление по величинам, гораздо более доступным точному измерению, чем осмотическое давление. Таким образом, в весьма большом числе случаев осмотическое давление можно считать известным. Хотя приведенная выше характеристика осмотического давления для слабых растворов является общим законом — осмотическое давление равно газовому, в значительном числе случаев — однако, наблюдаются отступления: величины осмотического давления оказываются аномальными. Аномалии осмотического давления характеризуются величиной, которая показывает во сколько раз осмотическое давление больше или меньше того, которое обнаруживалось бы, если бы данное количество вещества в состоянии газа наполняло бы объем, равный объему его раствора. Основанием для объяснения этих аномалий, как и при объяснении резких аномалий плотностей газов, служит положение: осмотическое давление определяется числом частиц растворенного тела в единице объема и потому аномальные величины осмотического давления в слабых растворах вызываются теми явлениями, которые изменяют число частиц в растворе. Если частицы соединяются между собой, если происходит полимеризация, осмотическое давление уменьшается, i — меньше единицы; если растворенное тело разлагается, если происходит диссоциация в растворе, осмотическое давление увеличивается, i — больше единицы. Такая точка зрения послужила основанием теории «электролитической диссоциации». Помимо гипотетической стороны предмета, существует следующее, выведенное из опыта соотношение между гальванопроводностью и величиной осмотического давления: в слабых растворах величина оказывается больше единицы только в тех случаях, когда раствор обладает гальванопроводностью, т. е. когда мы имеем дело с раствором электролита; в электролитах, разлагающихся на два иона, как HCl, величина i часто достигает двух при достаточном разведении раствора; при большем числе ионов, как в случае BaCl2, K4FeC6N6, i бывает больше двух. Аномально большие величины, свойственные растворам электролитов, осмотического давления обнаруживаются не только косвенно вычислением, путем, указанным выше, но и непосредственными наблюдениями. Де-Врис собрал значительное число данных касательно величины осмотического давления, пользуясь свойством протоплазмы клеточек сжиматься и расширяться в растворах. Клеточка обнаруживает здесь явления, наблюдаемые с помощью полупроницаемой оболочки: сжатие или расширение протоплазмы обусловливается явлениями О. и зависят от того, движется ли вода из клеточки к раствору, или наоборот. Пользуясь данным образчиком протоплазмы можно подобрать такой ряд водных растворов разных веществ, в которых протоплазма не будет изменяться в объеме; это будут растворы, обладающие одинаковой величиной осмотического давления. Этим путем также доказано, что растворы электролитов могут обладать большей величиной осмотического давления, чем растворы неэлектролитов при равном числе частиц в единице объема раствора. Фактически несомненно существует связь между величиной осмотического давления и гальванопроводности. Прием полупроницаемой стенки весьма упрощает также вывод формул для химических равновесий в растворах. Теория О. находится в начальной стадии развития. Основанием ее служит положение о тождестве состояний тела в слабом растворе и в форме газа. Осмотическое давление рассматривается, как следствие ударов частиц растворенного типа, задерживаемых полупроницаемой оболочкой, тогда как растворитель свободно через нее проходит. С другой стороны осмотическое давление вызывается движением растворителя внутрь к раствору и величина осмотического давления определяется разностью живых сил движения растворителя к раствору и от раствора. Почему величина осмотического давления в нормальных случаях равна величине газового давления? Какова роль в явлении полупроницаемой стенки? Эти вопросы составляют предмет разработки в настоящее время, обсуждая вопрос о величине осмотического давления нельзя оставлять в стороне растворителя прежде всего потому, что частицы растворенного тела движутся не в пустоте, а в пространстве, заполненном растворителем. Попытку дать теорию осмотическому давлению представил в недавнее время ван-дер-Ваальс, принимая во внимание растворитель и вводя дополнительные величины эмпирического характера в свою общую формулу для газов и жидкостей. Пока мы не имеем законченной теории осмотического давления в нормальных случаях, приведенные выше объяснения аномальных величин осмотического давления должно рассматривать как предположения гипотетического характера, не заключающие в себе данных для суждения о химической стороне явлений растворения. Действие полупроницаемой стенки лишь в грубом виде может быть представляемо как роль сита, через которое проходят частицы растворителя, а задерживаются частицы растворяемого тела. Явление обусловливается абсорбцией растворителя, образовавшем между ним и материалом полупроницаемой стенки непрочного соединения, рода раствора, и движение растворителя через стенку совершается так же, как транспирация газов.
   Д. Коновалов.

Основание

   Основание (хим.). — Под именем О. (Bases salifiables) понимаются вещества, обладающие известной химической функцией: вещества, дающие с кислотами соли, таким образом вопрос, что такое О., связывается с вопросом, что такое кислота и что такое соль. В истории химии эти три понятия (о кислоте, соли и О.) неразрывно связаны между собой и дополняют одно другое; изменение в одном неизбежно влекло изменение в остальных. В конце прошлого столетия и в начале нынешнего О. определяли ближе таким образом: О. образуются соединением кислорода с металлами, как кислоты (ангидриды) образованы соединением кислорода с металлоидами. Но не всякое соединение такого рода могло назваться О.: еще Лавуазье допускал, что при избытке кислорода здесь могут получаться кислоты. Типическими представителями О. могли считаться щелочи и щелочные земли. Загадочным исключением здесь являлся аммиак, обдающий всеми характерными химическими свойствами щелочи, но состоящий из соединения азота и водорода, как нашел Бертолет. Уверенность в необходимости присутствия кислорода для образования щелочей была так велика, что Дэви и Берцелиус произвели многочисленные и остроумные исследования для открытия кислорода в аммиаке. Получив при действии тока на раствор аммиака в воде в присутствии ртути амальгаму аммония, Берцелиус указывал на полную аналогию в этом случае с получением амальгам щелочных металлов! Когда Гей-Люссак и Тенар показали, что здесь происходит не раскисление аммиака, а соединение его с водородом, то Берцелиус стал даже сомневаться в элементарном составе азота. В 1819 г. Он высказал гипотезу, что азот состоит из соединения в равных частях еще неизвестного элемента, который он назвал Nitricum, и кислорода. Вопрос наконец, мог считаться решенным, когда высказано было мнение, что аммиак в водном растворе находится в соединении с водой, являясь в виде гидрата окиси сложного металла аммония, и представляет таким образом сходство с другими щелочами. При господстве электрохимических воззрений Берцелиуса О., как соединение металла с кислородом, являлись при образовании солей электроположительной половиной, а кислота (ангидрид) — электроотрицательной. Когда было указано, что кислород не является необходимым условием для образования кислот и что существует множество соединений, имеющих все характерные признаки солей и не содержащих кислорода, напр. сульфосоли и проч. — простое определение О. должно было сильно усложниться, в особенности, когда найдены были многочисленные классы органических О. Не представляя никакого однообразия в составе, О. могут быть теперь только определены, как вещества, дающие с кислотами соли.